Unlocking the Potential of Bacillus subtilis: A Comprehensive Study on Mycotoxin Decontamination, Mechanistic Insights, and Efficacy Assessment in a Liquid Food Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Bacterial Strains and Culture Conditions
2.3. Mycotoxins Decontamination Tests
2.4. LC Analysis of Residual Mycotoxins
2.5. ZEA Decontamination: Effect of Incubation Time, Temperature, pH, and Toxin Concentration
2.6. Carbon Source Test
2.7. Study of the Mechanism for ZEA Decontamination
2.7.1. ZEA Desorption from Bacterial Cell Pellets
2.7.2. ZEA Decontamination by Culture Supernatants
2.7.3. Effect of Heat- and Acid-Treated Bacteria on ZEA Removal
2.7.4. Preliminary Enzymatic Hydrolysis Tests to Study the Mechanism of ZEA Removal
2.8. ZEA Decontamination in a Liquid Food Model
2.9. Statistical Analysis
3. Results and Discussion
3.1. Mycotoxins Removal by B. subtilis
3.1.1. Mycotoxins Removal Under Aerobic Growth Conditions
3.1.2. Mycotoxins Removal Under Anaerobic Growth Conditions
3.2. Effect of Incubation Time, Temperature, pH, and Toxin Concentration on ZEA Removal by B. subtilis
3.2.1. Effect of Incubation Time
3.2.2. Effect of Medium pH
3.2.3. Effect of Temperature
3.2.4. Effect of Toxin Concentration
3.3. Carbon Source Test
3.4. ZEA Removal by B. subtilis Strains: Insights into the Mechanism of Action
3.4.1. ZEA Desorption Experiments
3.4.2. ZEA Removal by Extracellular Fractions of B. subtilis
3.4.3. Enzymatic Treatment of Extracellular Supernatants of B. subtilis
3.5. Evaluation of ZEA Removal Activity by B. subtilis Strains in a Liquid Food Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gurikar, C.; Shivaprasad, D.P.; Sabillón, L.; Nanje Gowda, N.A.; Siliveru, K. Impact of mycotoxins and their metabolites associated with food grains. Grain Oil Sci. Technol. 2023, 6, 1–9. [Google Scholar] [CrossRef]
- Luo, S.; Du, H.; Kebede, H.; Liu, Y.; Xing, F. Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control 2021, 127, 108120. [Google Scholar] [CrossRef]
- Chiotta, M.L.; Fumero, M.V.; Cendoya, E.; Palazzini, J.M.; Alaniz-Zanon, M.S.; Ramirez, M.L.; Chulze, S.N. Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Rev. Argent. Microbiol. 2020, 52, 339–347. [Google Scholar] [CrossRef]
- Kolosova, A.; Joerg, S. Substances for reduction of the contamination of feed by mycotoxins: A review. World Mycotoxin J. 2011, 4, 225–256. [Google Scholar] [CrossRef]
- Schatzmayr, G.; Zehner, F.; Täubel, M.; Schatzmayr, D.; Klimitsch, A.; Loibner, A.P.; Binder, E.M. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res. 2006, 50, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Huwig, A.; Freimund, S.; Käppeli, O.; Dutler, H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001, 122, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, N.; Zhang, M.; Xue, F.; Xu, Q. Isolation and Characterization of the Zearalenone-Degrading Strain, Bacillus spizizenii B73, Inspired by Esterase Activity. Toxins 2023, 15, 488. [Google Scholar] [CrossRef] [PubMed]
- Bata, A.; Lasztity, R. Detoxification of mycotoxin-contaminated food and feed by microorganisms. Trends Food Sci. Technol. 1999, 10, 223–228. [Google Scholar] [CrossRef]
- Liu, L.; Xie, M.; Wei, D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int. J. Mol. Sci. 2022, 23, 1064. [Google Scholar] [CrossRef]
- Qiu, T.Y.; Wang, H.M.; Yang, Y.; Yu, J.; Ji, J.; Sun, J.D.; Zhang, S.; Sun, X. Exploration of biodegradation mechanism by AFB1-degrading strain Aspergillus niger FS10 and its metabolic feedback. Food Control 2021, 121, 107609. [Google Scholar] [CrossRef]
- Chlebicz, A.; Śliżewska, K. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 Toxin and zearalenone by probiotic bacteria from genus Lactobacillus and saccharomyces cerevisiae yeast. Probiotics Antimicrob. Proteins 2020, 12, 289–301. [Google Scholar] [CrossRef]
- Fang, Q.A.; Du, M.R.; Chen, J.W.; Liu, T.; Zheng, Y.; Liao, Z.L.; Zhong, Q.; Wang, L.; Fang, X.; Wang, J. Degradation and detoxification of aflatoxin B1 by tea-derived aspergillus niger RAF106. Toxins 2020, 12, 777. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Martineztuppia, C.; Queiroz, O.; Jiang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A.T. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J. Dairy Sci. 2018, 101, 4034–4059. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, I.; Audenaert, K.; De Gelder, L. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Front. Microbiol. 2016, 7, 561. [Google Scholar] [CrossRef]
- González Pereyra, M.L.; Di Giacomo, A.L.; Lara, A.L.; Martínez, M.P.; Cavaglieri, L. Aflatoxin-degrading Bacillus sp. strains degrade zearalenone and produce proteases, amylases and cellulases of agro-industrial interest. Toxicon 2020, 180, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Shetty, P.H.; Jespersen, L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Technol. 2006, 17, 48–55. [Google Scholar] [CrossRef]
- Chang, J.; Wang, T.; Wang, P.; Yin, Q.Q.; Liu, C.Q.; Zhu, Q.; Lu, F.; Gao, T.Z. Compound probiotics alleviating aflatoxin B1 and zearalenone toxic effects on broiler production performance and gut microbiota. Ecotoxicol. Environ. Saf. 2020, 194, 110420. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Wu, Z.S.; Wei, M.M.; Liu, X.C.; He, Y.H.; Ye, B.C. Bacillus subtilis SL-13 biochar formulation promotes pepper plant growth and soil improvement. Can. J. Microbiol. 2019, 65, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Stein, T. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 2005, 56, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, C.; Georgoulakis, I.E.; Tzivara, A.; Kritas, S.K.; Siochu, A.; Kyriakis, S.C. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J. Anim. Physiol. Anim. Nutr. 2004, 88, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Hooge, D.M.; Ishimaru, H.; Sims, M.D. Influence of dietary Bacillus subtilis C-3102 spores on live performance of broiler chickens in four controlled pen trials. J. Appl. Poult. Res. 2004, 13, 222–228. [Google Scholar] [CrossRef]
- Molnar, O.; Schatzmayr, G.; Fuchs, E.; Prillinger, H. Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst. Appl. Microbiol. 2004, 27, 661–671. [Google Scholar] [CrossRef]
- Fumagalli, F.; Ottoboni, M.; Pinotti, L.; Cheli, F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins 2021, 13, 572. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M. Microbiological Decontamination of Mycotoxins: Opportunities and Limitations. Toxins 2021, 13, 819. [Google Scholar] [CrossRef]
- Ahlberg, S.H.; Joutsjoki, V.; Korhonen, H.J. Potential of lactic acid bacteria in aflatoxin risk mitigation. Int. J. Food Microbiol. 2015, 207, 87–102. [Google Scholar] [CrossRef] [PubMed]
- El-Nezami, H.; Gratz, S. Control of mycotoxin contamination in foods using lactic acid bacteria. In Protective Cultures, Antimicrobial Metabolites and Bacteriophages for Food and Beverage Biopreservation; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2011; pp. 449–459. [Google Scholar] [CrossRef]
- Dalié, D.; Deschamps, A.; Richard-Forget, F. Lactic acid bacteria—Potential for control of mould growth and mycotoxins: A review. Food Control 2010, 21, 370–380. [Google Scholar] [CrossRef]
- Sun, F.; Yu, D.; Zhou, H.; Lin, H.; Yan, Z.; Wu, A. CotA laccase from Bacillus licheniformis ZOM-1 effectively degrades zearalenone, aflatoxin B1 and alternariol. Food Control 2023, 145, 109472. [Google Scholar] [CrossRef]
- Ragoubi, C.; Quintieri, L.; Greco, D.; Mehrez, A.; Maatouk, I.; D’Ascanio, V.; Landoulsi, A.; Avantaggiato, G. Mycotoxin Removal by Lactobacillus spp. and Their Application in Animal Liquid Feed. Toxins 2021, 13, 185. [Google Scholar] [CrossRef]
- Hu, H.N.; Jia, X.; Wang, Y.P.; Liang, Z.H. Removal of ochratoxin A by a carboxypeptidase and peptides present in liquid cultures of Bacillus subtilis CW14. World Mycotoxin J. 2018, 11, 559–570. [Google Scholar] [CrossRef]
- Earl, A.M.; Losick, R.; Kolter, R. Ecology and genomics of Bacillus subtilis. Trends Microbiol. 2008, 16, 269–275. [Google Scholar] [CrossRef]
- Michiko, M.; Nakano, F.; Hulett, M. Adaptation of Bacillus subtilis to oxygen limitation. FEMS Microbiol. Lett. 1997, 157, 1–7. [Google Scholar] [CrossRef]
- Errington, J.; Aart, L.T.V. Microbe Profile: Bacillus subtilis: Model organism for cellular development, and industrial workhorse. Microbiology 2020, 166, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Liu, C.; Fang, H.; Zhang, D. Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Factories 2020, 19, 173. [Google Scholar] [CrossRef]
- Borriss, R.; Danchin, A.; Harwood, C.R.; Médigue, C.; Rocha, E.P.C.; Sekowska, A.; Vallenet, D. Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement. Microb. Biotechnol. 2018, 11, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, F.; Neubauer, P.; Gimpel, M. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. J. Nat. Prod. 2019, 82, 2038–2053. [Google Scholar] [CrossRef] [PubMed]
- Thakaew, R.; Niamsup, H. Inhibitory activity of Bacillus subtilis BCC 6327 metabolites against growth of aflatoxigenic fungi isolated from bird chili powder. Int. J. Biosci. Biochem. Bioinforma. 2013, 3, 27–32. [Google Scholar] [CrossRef]
- Leñini, C.; Rodriguez Ayala, F.; Goñi, A.J.; Rateni, L.; Nakamura, A.; Grau, R.R. Probiotic properties of Bacillus subtilis DG101 isolated from the traditional Japanese fermented food nattō. Front. Microbiol. 2023, 28, 1253480. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Sella, S.R.B.; Bueno, T.; de Oliveira, A.A.B.; Karp, S.G.; Soccol, C.R. Bacillus subtilis natto as a potential probiotic in animal nutrition. Crit. Rev. Biotechnol. 2021, 41, 355–369. [Google Scholar] [CrossRef]
- Lee, N.K.; Kim, W.S.; Paik, H.D. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 2019, 28, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Jacquier, V.; Nelson, A.; Jlali, M.; Rhayat, L.; Brinch, K.S.; Devillard, E. Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poult. Sci. 2019, 98, 2548–2554. [Google Scholar] [CrossRef]
- Khadieva, G.F.; Lutfullin, M.T.; Mochalova, N.K.; Lenina, O.A.; Sharipova, M.R.; Mardanova, A.M. New Bacillus subtilis Strains as Promising Probiotics. Microbiology 2018, 87, 463–471. [Google Scholar] [CrossRef]
- Elshaghabee, F.M.F.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, L.; Ma, Q.; Zhang, J.; Zhou, T.; Gao, C.; Ji, C. Degradation of zearalenone in swine feed and feed ingredients by Bacillus subtilis ANSB01G. World Mycotoxin J. 2014, 7, 143–151. [Google Scholar] [CrossRef]
- Nithya, V.; Halami, P.M. Antibacterial Peptides, Probiotic Properties and Biopreservative Efficacy of Native Bacillus Species Isolated from Different Food Sources. Probiotics Antimicrob. Proteins. 2012, 4, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Dusemund, B.; Fasmon Durjava, M.; Kouba, M.; Lopez-Alonso, M.; Lopez Puente, S.; Marcon, F.; et al. Scientific Opinion on the safety and efficacy of a feed additive consisting of Bacillus subtilis strains CNCM I-4606, CNCM I-5043 and CNCM I-4607 and Lactococcus lactis CNCM I-4609 for all animal species (Nolivade). EFSA J. 2021, 19, 6907. [Google Scholar] [CrossRef]
- Farzaneh, M.; Shi, Z.-Q.; Ghassempour, A.; Sedaghat, N.; Ahmadzadeh, M.; Mirabolfathy, M.; Javan-Nikkhah, M. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control 2012, 23, 100–106. [Google Scholar] [CrossRef]
- Gao, X.; Ma, Q.G.; Zhao, L.H.; Lei, Y.P.; Shan, Y.; Ji, C. Isolation of Bacillus subtilis: Screening for aflatoxins B1, M1, and G1 detoxification. Eur. Food Res. Technol. 2011, 232, 957–962. [Google Scholar] [CrossRef]
- Jia, R.; Cao, L.R.; Liu, W.B.; Shen, Z.Y. Detoxification of deoxynivalenol by Bacillus subtilis ASAG 216 and characterization the degradation process. Eur. Food Res. Technol. 2021, 247, 67–76. [Google Scholar] [CrossRef]
- Ju, J.; Tinyiro, S.E.; Yao, W.R.; Yu, H.; Guo, Y.; Qian, H.; Xie, Y. The ability of Bacillus subtilis and Bacillus natto to degrade zearalenone and its application in food. J. Food Process. Preserv. 2019, 43, e14122. [Google Scholar] [CrossRef]
- Hathout, A.S.; Aly, S.E. Biological detoxification of mycotoxins: A review. Ann. Microbiol. 2014, 64, 905–919. [Google Scholar] [CrossRef]
- Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon 2019, 162, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Król, A.; Pomastowski, P.; Rafińska, K.; Railean-Plugaru, V.; Walczak, J.; Buszewski, B. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp. Anal. Bioanal. Chem. 2018, 410, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A.; Soriano, J.M.; Molto, J.C.; Manes, J. Review on thetoxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2009, 45, 1–18. [Google Scholar] [CrossRef]
- De Saeger, S.; Sibanda, L.; Van Peteghem, C. Analysis of zearalenone and alpha-zearalenol in animal feed using high-performance liquid chromatography. Anal. Chim. Acta 2003, 487, 137–143. [Google Scholar] [CrossRef]
- Zhu, Y.; Hassan, Y.I.; Lepp, D.; Shao, S.; Zhou, T. Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins. Toxins 2017, 9, 130. [Google Scholar] [CrossRef]
- Adamse, P.; van Egmond, H.J.; Driessen, J.J.M.; de Rijk, T.C.; de Jong, J.; de Nijs, W.C.M. Trend Analysis of Mycotoxins in Animal Feed; Rikilt-Institute for Food Safety: Wageningen, The Netherlands, 2012; No. 2011.017; Available online: https://edepot.wur.nl/197668 (accessed on 1 February 2012).
- Hurst, D.; Clarke, L.; Lean, I.J. Effect of liquid feeding at different water-to-feed ratios on the growth performance of growing finishing pigs. Animal 2008, 2, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Brooks, P.H.; Beal, J.D.; Niven, S. Liquid feeding of pigs: Potential for reducing environmental impact and for improving productivity and food safety. Recent Adv. Anim. Nutr. Aust. 2001, 13, 49–63. [Google Scholar]
- European Commission. Commission Regulation (EU) 2015/786 of 19 May 2015 Defining Acceptability Criteria for Detoxification Processes Applied to Products Intended for Animal Feed as Provided for in Directive 2002/32/EC of the European Parliament and of the Council; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- European Commission. Commission Regulation (EC) No 386/2009 of 12 May 2009 Amending Regulation (EC) No 1831/2003 of the European Parliament and of the Council as Regards the Establishment of a New Functional Group of Feed Additives; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Warner, J.B.; Lolkema, J.S. Growth of Bacillus subtilis on citrate and isocitrate is supported by the Mg2+-citrate transporter CitM. Microbiology 2002, 148, 3405–3412. [Google Scholar] [CrossRef] [PubMed]
- Glaser, P.; Danchin, A.; Kunst, F.; Zuber, P.; Nakano, M.M. Identification and isolation of a gene required for nitrate assimilation and anaerobic growth of Bacillus subtilis. J. Bacteriol. 1995, 177, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Gauvry, E.; Mathot, A.G.; Couvert, O.; Leguérinel, I.; Coroller, L. Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1. Int. J. Food Microbiol. 2021, 337, 108915. [Google Scholar] [CrossRef]
- Greco, D.; D’Ascanio, V.; Abbasciano, M.; Santovito, E.; Garbetta, A.; Logrieco, A.F.; Avantaggiato, G. Simultaneous Removal of Mycotoxins by a New Feed Additive Containing a Tri-Octahedral Smectite Mixed with Lignocellulose. Toxins 2022, 14, 393. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.M.; Dailly, Y.P.; Zuber, P.; Clark, D.P. Characterization of anaerobic fermentative growth of Bacillus subtilis: Identification of fermentation end products and genes required for growth. J. Bacteriol. 1997, 179, 6749–6755. [Google Scholar] [CrossRef] [PubMed]
- El-Nezami, H.; Polychronaki, N.; Salminen, S.; Mykkänen, H. Binding rather than metabolism may explain the interaction of two food-Grade Lactobacillus strains with zearalenone and its derivative α-Zearalenol. Appl. Environ. Microbiol. 2002, 68, 3545–3549. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Chen, X.; Ma, L.; Feng, Y. Mycotoxin Biodegradation by Bacillus Bacteria—A Review. Toxins 2024, 16, 478. [Google Scholar] [CrossRef] [PubMed]
- Hullo, M.; Moszer, I.; Danchin, A.; Martin-Verstraete, I. CotA of Bacillus subtilis Is a Copper-Dependent Laccase. J. Bacteriol. 2001, 183, 5426–5430. [Google Scholar] [CrossRef] [PubMed]
- Gari, J.; Abdella, R. Degradation of zearalenone by microorganisms and enzymes. PeerJ 2023, 11, e15808. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, L.; Gong, G.; Zhang, L.; Shi, L.; Dai, J.; Han, Y.; Wu, Y.; Khalil, M.M.; Sun, L. Invited review: Remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 2022, 13, 19. [Google Scholar] [CrossRef]
- Veras, F.F.; Silveira, R.D.; Welke, J.E. Bacillus spp. as a strategy to control fungi and mycotoxins in food. Curr. Opin. Food Sci. 2023, 52, 101068. [Google Scholar] [CrossRef]
- Xiang, M.; Liu, P.; Zhang, H.; Liu, M.; Ding, Q.; Cai, J. In Vitro Degradation of Zearalenone by Culture Supernatant of Bacillus subtilis. Food Bioprocess Technol. 2023, 17, 2206–2215. [Google Scholar] [CrossRef]
- Ndiaye, S.; Zhang, M.; Fall, M.; Ayessou, N.M.; Zhang, Q.; Li, P. Current Review of Mycotoxin Biodegradation and Bioadsorption: Microorganisms, Mechanisms, and Main Important Applications. Toxins 2022, 14, 729. [Google Scholar] [CrossRef]
- Yang, S.B.; Zheng, H.C.; Xu, J.Y.; Zhao, X.Y.; Shu, W.J.; Li, X.M.; Song, H.; Ma, Y.H. New Biotransformation Mode of Zearalenone Identified in Bacillus subtilis Y816 Revealing a Novel ZEN Conjugate. J. Agric. Food Chem. 2021, 69, 7409–7419. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Tao, H.; Liu, J.; Zhao, P.; Yang, F.; Lv, Z.; Wang, J. Effects of Bacillus subtilis ZJ-2019-1 on Zearalenone Toxicosis in Female Gilts. Toxins 2021, 13, 788. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y. Review on microbial degradation of zearalenone and aflatoxins. Grain Oil Sci. Technol. 2020, 3, 117–125. [Google Scholar] [CrossRef]
- Wang, G.; Yu, M.; Dong, F.; Shi, J.; Xu, J. Esterase activity inspired selection and characterization of zearalenone degrading bacteria Bacillus pumilus ES-21. Food Control 2017, 77, 57–64. [Google Scholar] [CrossRef]
- Tinyiro, S.E.; Yao, W.; Sun, X.; Wokadala, C.; Wang, S. Scavenging of zearalenone by Bacillus strains—In Vitro. Res. J. Microbiol. 2011, 6, 304–309. [Google Scholar] [CrossRef]
- Cho, K.J.; Kang, J.S.; Cho, W.T.; Lee, C.H.; Ha, J.K.; Song, K.B. In vitro degradation of zearalenone by Bacillus subtilis. Biotechnol. Lett. 2010, 32, 1921–1924. [Google Scholar] [CrossRef]
- Petchkongkaew, A.; Taillandier, P.; Gasaluck, P.; Lebrihi, A. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): Screening for aflatoxin B1 and ochratoxin A detoxification. J. Appl. Microbiol. 2008, 104, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, H.; Wang, R.; Xu, Q. Deoxynivalenol in food and feed: Recent advances in decontamination strategies. Front. Microbiol. 2023, 14, 1141378. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Park, J.H.; Chung, S.H.; Kim, M. Ochratoxin A reduction ability of biocontrol agent Bacillus subtilis isolated from Korean traditional fermented food Kimchi. Sci. Rep. 2018, 8, 8039. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Liang, Z.; Li, J.; Hao, J.; Xu, Y.; Huang, K.; Tian, J.; He, X.; Xu, W. Ochratoxin A biocontrol and biodegradation by Bacillus subtilis CW 14. J. Sci. Food Agric. 2014, 94, 1879–1885. [Google Scholar] [CrossRef]
- Molina-Molina, J.M.; Real, M.; Jimenez-Diaz, I.; Belhassen, H.; Hedhili, A.; Torné, P.; Fernández, M.F.; Olea, N. Assessment of estrogenic and anti-androgenic activities of the mycotoxin zearalenone and its metabolites using in vitro receptor-specific bioassays. Food Chem. Toxicol. 2014, 74, 233–239. [Google Scholar] [CrossRef]
- Frizzell, C.; Ndossi, D.; Verhaegen, S.; Dahl, E.; Eriksen, G.; Sørlie, M.; Ropstad, E.; Muller, M.; Elliott, C.T.; Connolly, L. Endocrine disrupting effects of zearalenone, alpha- and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis. Toxicol. Lett. 2011, 206, 210–217. [Google Scholar] [CrossRef]
- Shier, W.T.; Shier, A.C.; Xie, W.; Mirocha, C.J. Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon 2001, 39, 1435–1438. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Wang, H.T.; Shih, W.Y.; Ciou, Y.A.; Chang, Y.Y.; Ananda, L.; Wang, S.Y.; Hsu, J.T. Application of Zearalenone (ZEN)-Detoxifying Bacillus in Animal Feed Decontamination through Fermentation. Toxins 2019, 11, 330. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Drouin, P.; Lepp, D.; Li, X.Z.; Zhu, H.; Castex, M.; Zhou, T. A Novel Microbial Zearalenone Transformation through Phosphorylation. Toxins 2021, 13, 294. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, F.; Ning, H.; Zhang, W.; Niu, D.; Shi, Z.; Chai, S.; Shan, A. Screening of Pig-Derived Zearalenone-Degrading Bacteria through the Zearalenone Challenge Model, and Their Degradation Characteristics. Toxins 2022, 14, 224. [Google Scholar] [CrossRef]
- Li, K.; Jia, J.; Xu, Q.; Wu, N. Whole-genome sequencing and phylogenomic analyses of a novel zearalenone-degrading Bacillus subtilis B72. 3 Biotech 2023, 13, 103. [Google Scholar] [CrossRef]
- Deng, T.; Chen, Y.; Zhang, J.; Gao, Y.; Yang, C.; Jiang, W.; Ou, X.; Wang, Y.; Guo, L.; Zhou, T.; et al. A Probiotic Bacillus amyloliquefaciens D-1 Strain Is Responsible for Zearalenone Detoxifying in Coix Semen. Toxins 2023, 15, 674. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, J.; Yu, Y.; Tang, Y. A novel glycosyltransferase from Bacillus subtilis achieves zearalenone detoxification by diglycosylation modification. Food Funct. 2024, 15, 6042–6053. [Google Scholar] [CrossRef] [PubMed]
Mycotoxin | MYCOTOXIN REMOVAL (%, Mean ± sd, n = 3) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Aerobic Growth Conditions | Anaerobic Growth Conditions | ||||||||
24 h | 72 h | 72 h | |||||||
A5 | B7 | C9 | A5 | B7 | C9 | A5 | B7 | C9 | |
ZEA | 96 ± 1 a | 54 ± 3 b | 91 ± 0 a | 97 ± 1 a | 65 ± 2 b | 97 ± 2 a | 98 ± 1 a | 80 ± 2 b | 96 ± 1 a |
AFB1 | 3 ± 1 | 3 ± 1 | 2 ± 1 | 3 ± 1 | 2 ± 1 | 3 ± 1 | 2 ± 1 | 1 ± 1 | 1 ± 1 |
FB1 | 5 ± 3 a | 13 ± 4 a | 38 ± 3 b | 5 ± 3 a | 19 ± 4 b | 9 ± 1 a | 3 ± 2 | 4 ± 1 | 2 ± 1 |
OTA | 14 ± 5 a | 14 ± 1 a | 11 ± 5 a | 7 ± 3 a | 10 ± 5 a | 16 ± 5 a | 2 ± 0 | 2 ± 1 | 2 ± 1 |
DON | 2 ± 3 | 1 ± 0 | 2 ± 2 | 4 ± 1 | 3 ± 2 | 0 ± 0 | 2 ± 1 | 2 ± 0 | 1 ± 2 |
T2 | 2 ± 1 | 2 ± 1 | 6 ± 3 | 7 ± 1 | 1 ± 1 | 4 ± 4 | 3 ± 1 | 2 ± 2 | 2 ± 1 |
H-T2 | 3 ± 1 | 1 ± 1 | 3 ± 2 | 6 ± 2 | 4 ± 2 | 5 ± 3 | 4 ± 1 | 3 ± 1 | 1 ± 1 |
ZEAmix | 93 ± 1 a | 74 ± 1 b | 97 ± 0 c | 91 ± 1 a | 73 ± 1 b | 96 ± 2 c | 100 ± 0 a | 44 ± 1 b | 96 ± 1 c |
α-ZOL | 94 ± 1 a | 87 ± 1 b | 98 ± 0 c | 93 ± 1 a | 91 ± 1 a | 99 ± 0 b | 100 ± 1 a | 57 ± 3 b | 100 ± 0 a |
β-ZOL | 96 ± 1 a | 96 ± 1 a | 99 ± 0 b | 92 ± 3 a | 97 ± 2 a | 97 ± 0 a | 100 ± 1 a | 47 ± 4 b | 100 ± 1 a |
α-ZAL | 69 ± 0 a | 41 ± 0 b | 69 ± 1 a | 72 ± 2 a | 45 ± 3 b | 73 ± 2 a | 100 ± 0 a | 33 ± 1 b | 79 ± 1 c |
β-ZAL | 71 ± 0 a | 48 ± 3 b | 76 ± 0 c | 74 ± 1 a | 52 ± 2 b | 80 ± 2 c | 100 ± 1 a | 45 ± 2 b | 87 ± 1 c |
ZAL | 71 ± 1 a | 46 ± 4 b | 76 ± 1 c | 73 ± 2 a | 48 ± 2 b | 78 ± 1 c | 100 ± 1 a | 20 ± 3 b | 69 ± 1 c |
Mycotoxin | MYCOTOXIN REMOVAL (%, Mean ± sd, n = 3) | |||||
---|---|---|---|---|---|---|
AEROBIOSIS | ANAEROBIOSIS | |||||
A5 | B7 | C9 | A5 | B7 | C9 | |
ZEA | 100 ± 0 a | 99 ± 0 a | 99 ± 0 a | 23 ± 4 a | 20 ± 1 a | 80 ± 2 b |
AFB1 | 1 ± 1 | 1 ± 1 | 1 ± 1 | 2 ± 1 | 1 ± 1 | 1 ± 1 |
FB1 | 4 ± 2 | 1 ± 1 | 3 ± 1 | 4 ± 1 | 3 ± 2 | 4 ± 1 |
OTA | 2 ± 0 | 3 ± 1 | 3 ± 1 | 2 ± 1 | 2 ± 2 | 1 ± 0 |
DON | 1 ± 3 | 1 ± 0 | 1 ± 2 | 1 ± 1 | 1 ± 1 | 1 ± 0 |
T2 | 4 ± 1 | 4 ± 2 | 3 ± 1 | 5 ± 2 | 3 ± 1 | 3 ± 2 |
H-T2 | 4 ± 1 | 3 ± 1 | 1 ± 1 | 4 ± 1 | 3 ± 0 | 3 ± 1 |
ZEAmix | 100 ± 0 a | 99 ± 1 a | 99 ± 2 a | 11 ± 0 a | 5 ± 1 b | 58 ± 2 c |
α-ZOL | 100 ± 1 a | 98 ± 1 a | 99 ± 0 a | 1 ± 1 a | 3 ± 1 a | 50 ± 0 b |
β-ZOL | 100 ± 1 a | 97 ± 0 b | 99 ± 2 a | 11 ± 1 a | 9 ± 2 a | 40 ± 3 b |
α-ZAL | 99 ± 2 a | 85 ± 1 b | 97 ± 1 c | 1 ± 0 a | 2 ± 3 a | 19 ± 3 b |
β-ZAL | 99 ± 1 a | 80 ± 2 b | 93 ± 1 c | 7 ± 1 a | 7 ± 2 a | 18 ± 2 b |
ZAL | 99 ± 1 a | 81 ± 4 b | 96 ± 0 a | 2 ± 1 a | 3 ± 2 a | 5 ± 1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, D.; D’Ascanio, V.; Santovito, E.; Abbasciano, M.; Quintieri, L.; Techer, C.; Avantaggiato, G. Unlocking the Potential of Bacillus subtilis: A Comprehensive Study on Mycotoxin Decontamination, Mechanistic Insights, and Efficacy Assessment in a Liquid Food Model. Foods 2025, 14, 360. https://doi.org/10.3390/foods14030360
Greco D, D’Ascanio V, Santovito E, Abbasciano M, Quintieri L, Techer C, Avantaggiato G. Unlocking the Potential of Bacillus subtilis: A Comprehensive Study on Mycotoxin Decontamination, Mechanistic Insights, and Efficacy Assessment in a Liquid Food Model. Foods. 2025; 14(3):360. https://doi.org/10.3390/foods14030360
Chicago/Turabian StyleGreco, Donato, Vito D’Ascanio, Elisa Santovito, Mariagrazia Abbasciano, Laura Quintieri, Clarisse Techer, and Giuseppina Avantaggiato. 2025. "Unlocking the Potential of Bacillus subtilis: A Comprehensive Study on Mycotoxin Decontamination, Mechanistic Insights, and Efficacy Assessment in a Liquid Food Model" Foods 14, no. 3: 360. https://doi.org/10.3390/foods14030360
APA StyleGreco, D., D’Ascanio, V., Santovito, E., Abbasciano, M., Quintieri, L., Techer, C., & Avantaggiato, G. (2025). Unlocking the Potential of Bacillus subtilis: A Comprehensive Study on Mycotoxin Decontamination, Mechanistic Insights, and Efficacy Assessment in a Liquid Food Model. Foods, 14(3), 360. https://doi.org/10.3390/foods14030360