Characteristics of Food Printing Inks and Their Impact on Selected Product Properties
Abstract
:1. Introduction
2. Printing Inks in Food Production
2.1. Non-Natively Extrudable
2.1.1. Plant-Based Inks (Fruits and Vegetables)
2.1.2. Meat-Based Inks
2.2. Natively Extrudable
2.2.1. Dairy-Based Inks
2.2.2. Hydrogels-Based Inks
2.2.3. Confectionary-Based Inks
2.3. Printing Ingredients
3. Crucial Properties of Inks and Printed Foods
3.1. Rheological Properties and Texture
Modelling Rheological Properties
3.2. Print Fidelity and Stability of Products
4. Printing Parameters and Methods
4.1. Jetting-Based Method
4.2. Extrusion Method
5. Innovative Use of Food Inks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.un.org/en/global-issues/population (accessed on 20 December 2024).
- Prakash, S.; Bhandari, B.R.; Godoi, F.C.; Zhang, M. Chapter 13—Future Outlook of 3D Food Printing. In Fundamentals of 3D Food Printing and Applications; Godoi, F.C., Bhandari, B.R., Prakash, S., Zhang, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 373–381. [Google Scholar]
- Lipton, J.I.; Cutler, M.; Nigl, F.; Cohen, D.; Lipson, H. Additive manufacturing for the food industry. Trends Food Sci. Technol. 2015, 43, 114–123. [Google Scholar] [CrossRef]
- Shahbazi, M.; Jäger, H.; Chen, J.; Ettelaie, R. Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part II: Printing performance, thermal, tribological, and dynamic sensory characterization of printed objects. Food Hydrocoll. 2021, 121, 107054. [Google Scholar] [CrossRef]
- Waseem, M.; Tahir, A.U.; Majeed, Y. Printing the future of food: The physics perspective on 3D food printing. Food Phys. 2024, 1, 100003. [Google Scholar] [CrossRef]
- Donn, P.; Prieto, M.A.; Mejuto, J.C.; Cao, H.; Simal-Gandara, J. Functional foods based on the recovery of bioactive ingredients from food and algae by-products by emerging extraction technologies and 3D printing. Food Biosci. 2022, 49, 101853. [Google Scholar] [CrossRef]
- Park, B.-R.; No, J.; Oh, H.; Park, C.S.; You, K.-M.; Chewaka, L.S. Exploring puffed rice as a novel ink for 3D food printing: Rheological characterization and printability analysis. J. Food Eng. 2025, 387, 112313. [Google Scholar] [CrossRef]
- Bhuiyan, M.H.R.; Yeasmen, N.; Ngadi, M. Effect of food hydrocolloids on 3D meat-analog printing and deep-fat-frying. Food Hydrocoll. 2025, 159, 110716. [Google Scholar] [CrossRef]
- Qiu, R.; Wang, G.; Zhao, P.; Liu, L.; Awais, M.; Fan, B.; Huang, Y.; Tong, L.; Wang, L.; Accoroni, C.; et al. Modification of the texture of 3D printing soy protein isolate-based foods with proper nozzle sizes: A swallowing oriented strategy for dysphagia diet. Int. J. Biol. Macromol. 2024, 282, 136694. [Google Scholar] [CrossRef]
- Chao, E.; Yan, X.; Fan, L. Fabrication of edible inks for 3D printing as a dysphagia food: An emerging application of bigels. Food Hydrocoll. 2024, 157, 110463. [Google Scholar] [CrossRef]
- Wu, R.; Jiang, J.; An, F.; Ma, X.; Wu, J. Research progress of 3D printing technology in functional food, powering the future of food. Trends Food Sci. Technol. 2024, 149, 104545. [Google Scholar] [CrossRef]
- Lee, J. A 3D food printing process for the new normal era: A review. Processes 2021, 9, 1495. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, M.; Bhandari, B. Materials properties of printable edible inks and printing parameters optimization during 3D printing: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3074–3081. [Google Scholar] [CrossRef] [PubMed]
- Vadodaria, S.; Mills, T. Jetting-based 3D printing of edible materials. Food Hydrocoll. 2020, 106, 105857. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Cai, Y.; Ahmad, I.; Zhang, A.; Ding, Y.; Qiu, Y.; Zhang, G.; Tang, W.; Lyu, F. Hot extrusion 3D printing technologies based on starchy food: A review. Carbohydr. Polym. 2022, 294, 119763. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, L. Formulated food inks for extrusion-based 3D printing of personalized foods: A mini review. Curr. Opin. Food Sci. 2022, 44, 100803. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.I.; Kim, Y.B.; Kim, H.W.; Choi, Y.S. Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Sci. Anim. Resour. 2019, 39, 521–540. [Google Scholar] [CrossRef] [PubMed]
- Voon, S.L.; An, J.; Wong, G.; Zhang, Y.; Chua, C.K. 3D food printing: A categorised review of inks and their development. Virtual Phys. Prototyp. 2019, 14, 203–218. [Google Scholar] [CrossRef]
- Lille, M.; Nurmela, A.; Nordlund, E.; Metsä-Kortelainen, S.; Sozer, N. Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J. Food Eng. 2018, 220, 20–27. [Google Scholar] [CrossRef]
- Yang, G.; Tao, Y.; Wang, P.; Xu, X.; Zhu, X. Optimizing 3D printing of chicken meat by response surface methodology and genetic algorithm: Feasibility study of 3D printed chicken product. LWT 2022, 154, 112693. [Google Scholar] [CrossRef]
- Le Tohic, C.; O’Sullivan, J.J.; Drapala, K.P.; Chartrin, V.; Chan, T.; Morrison, A.P.; Kerry, J.P.; Kelly, A.L. Effect of 3D printing on the structure and textural properties of processed cheese. J. Food Eng. 2018, 220, 56–64. [Google Scholar] [CrossRef]
- Lee, C.P.; Hashimoto, M. Prediction of textural properties of 3D-printed food using response surface methodology. Heliyon 2024, 10, e27658. [Google Scholar] [CrossRef]
- Mantihal, S.; Prakash, S.; Godoi, F.C.; Bhandari, B. Effect of additives on thermal, rheological and tribological properties of 3D printed dark chocolate. Food Res. Int. 2019, 119, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Monzó, J.; Cárdenas, J.; García-Segovia, P. Effect of temperature on 3d printing of commercial potato puree. Food Biophys. 2019, 14, 225–234. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, M.; Prakash, S.; Liu, Y. Physical properties of 3D printed baking dough as affected by different compositions. Innov. Food Sci. Emerg. Technol. 2018, 49, 202–210. [Google Scholar] [CrossRef]
- Lee, C.P.; Ng, M.J.Y.; Chian, N.M.Y.; Hashimoto, M. Multi-material Direct Ink Writing 3D food printing using multi-channel nozzle. Future Foods 2024, 10, 100376. [Google Scholar] [CrossRef]
- Pant, A.; Lee, A.Y.; Karyappa, R.; Lee, C.P.; An, J.; Hashimoto, M.; Tan, U.X.; Wong, G.; Chua, C.K.; Zhang, Y. 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients. Food Hydrocoll. 2021, 114, 106546. [Google Scholar] [CrossRef]
- Barrios-Rodríguez, Y.F.; Igual, M.; Martínez-Monzó, J.; García-Segovia, P. Exploration of changes in rheological and spectral properties of rice protein inks before and after 3D printing. LWT 2024, 210, 116808. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Bhandari, B.; Yang, C. Investigation on fish surimi gel as promising food material for 3D printing. J. Food Eng. 2018, 220, 101–108. [Google Scholar] [CrossRef]
- Abedini, A.; Hosseini, H.; Shariatifar, N.; Molaee-aghaee, E.; Sadighara, P. Studying the impact of 3d printing technology on safety indicators of plant-based burger. Food Chem. X 2024, 22, 101489. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, M.; Phuhongsung, P. 3D printing of protein-based composite fruit and vegetable gel system. LWT 2021, 141, 110978. [Google Scholar] [CrossRef]
- Liu, L.; Xie, T.; Cheng, W.; Ding, Y.; Xu, B. Characterization and mechanism of thermally induced tea polyphenols and egg white proteins gel system and its 3D printing. LWT 2024, 205, 116488. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Bhandari, B.; Yang, C. Impact of rheological properties of mashed potatoes on 3D printing. J. Food Eng. 2018, 220, 76–82. [Google Scholar] [CrossRef]
- He, C.; Zhang, M.; Guo, C. 4D printing of mashed potato/purple sweet potato puree with spontaneous color change. Innov. Food Sci. Emerg. Technol. 2020, 59, 102250. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, M.; Bhandari, B.; Liu, Y. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT 2018, 87, 67–76. [Google Scholar] [CrossRef]
- Vancauwenberghe, V.; Katalagarianakis, L.; Wang, Z.; Meerts, M.; Hertog, M.; Verboven, P.; Moldenaers, P.; Hendrickx, M.E.; Lammertyn, J.; Nicolaï, B. Pectin based food-ink formulations for 3-D printing of customizable porous food simulants. Innov. Food Sci. Emerg. Technol. 2017, 42, 138–150. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Yang, X.; Cheng, J.-H. Versatile dielectric barrier discharge cold plasma for safety and quality control in fruits and vegetables products: Principles, configurations and applications. Food Res. Int. 2024, 196, 115117. [Google Scholar] [CrossRef] [PubMed]
- Tomašević, I.; Putnik, P.; Valjak, F.; Pavlić, B.; Šojić, B.; Bebek Markovinović, A.; Bursać Kovačević, D. 3D printing as novel tool for fruit-based functional food production. Curr. Opin. Food Sci. 2021, 41, 138–145. [Google Scholar] [CrossRef]
- Derossi, A.; Caporizzi, R.; Azzollini, D.; Severini, C. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. J. Food Eng. 2018, 220, 65–75. [Google Scholar] [CrossRef]
- Severini, C.; Derossi, A.; Ricci, I.; Caporizzi, R.; Fiore, A. Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. J. Food Eng. 2018, 220, 89–100. [Google Scholar] [CrossRef]
- Zhou, Q.; Nan, X.; Zhang, S.; Zhang, L.; Chen, J.; Li, J.; Wang, H.; Ruan, Z. Effect of 3D food printing processing on polyphenol system of loaded Aronia melanocarpa and post-processing evaluation of 3D printing products. Foods 2023, 12, 2068. [Google Scholar] [CrossRef] [PubMed]
- Ricci, I.; Derossi, A.; Severini, C. Chapter 5—3D Printed Food From Fruits and Vegetables. In Fundamentals of 3D Food Printing and Applications; Godoi, F.C., Bhandari, B.R., Prakash, S., Zhang, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 117–149. [Google Scholar]
- Wang, Y.; Zhao, R.; Liu, W.; Zhao, R.; Liu, Q.; Hu, H. Effect of twin-screw extrusion pretreatment on starch structure, rheological properties and 3D printing accuracy of whole potato flour and its application in dysphagia diets. Int. J. Biol. Macromol. 2024, 278, 134796. [Google Scholar] [CrossRef]
- Tyupova, A.; Harasym, J. Valorization of fruit and vegetables industry by-streams for 3D printing—A review. Foods 2024, 13, 2186. [Google Scholar] [CrossRef] [PubMed]
- De Smet, S.; Van Hecke, T. Meat products in human nutrition and health—About hazards and risks. Meat Sci. 2024, 218, 109628. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, L.; Consalvo, S.; Esposito, C.; Tammaro, D. Tailoring texture and functionality of vegetable protein meat analogues through 3D printed porous structures. Food Hydrocoll. 2025, 159, 110611. [Google Scholar] [CrossRef]
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef]
- Dong, H.; Wang, P.; Yang, Z.; Xu, X. 3D printing based on meat materials: Challenges and opportunities. Curr. Res. Food Sci. 2023, 6, 100423. [Google Scholar] [CrossRef]
- Liu, C.; Ho, C.; Wang, J. The development of 3D food printer for printing fibrous meat materials. IOP Conf. Ser. Mater. Sci. Eng. 2018, 284, 012019. [Google Scholar] [CrossRef]
- Hertafeld, E.; Zhang, C.; Jin, Z.; Jakub, A.; Russell, K.; Lakehal, Y.; Andreyeva, K.; Bangalore, S.N.; Mezquita, J.; Blutinger, J.; et al. Multi-material three-dimensional food printing with simultaneous infrared cooking. 3D Print. Addit. Manuf. 2018, 6, 13–19. [Google Scholar] [CrossRef]
- Lipton, J.; Arnold, D.; Nigl, F.; Lopez, N.; Cohen, D.; Noren, N.; Lipson, H. Multi-material food printing with complex internal structure suitable for conventional post-processing. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 9–11 August 2010; pp. 809–8015. [Google Scholar]
- Li, K.; Liu, J.-Y.; Fu, L.; Li, W.-J.; Zhao, Y.-Y.; Bai, Y.-H.; Kang, Z.-L. Effect of gellan gum on functional properties of low-fat chicken meat batters. J. Texture Stud. 2019, 50, 131–138. [Google Scholar] [CrossRef]
- Dougkas, A.; Barr, S.; Reddy, S.; Summerbell, C.D. A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents. Nutr. Res. Rev. 2019, 32, 106–127. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, Y.; Liu, C.; Regenstein, J.M.; Liu, X.; Zhou, P. Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing. LWT 2019, 102, 338–346. [Google Scholar] [CrossRef]
- Lee, C.P.; Karyappa, R.; Hashimoto, M. 3D printing of milk-based product. RSC Adv. 2020, 10, 29821–29828. [Google Scholar] [CrossRef] [PubMed]
- Jeon, E.Y.; Kim, Y.; Yun, H.J.; Kim, B.K.; Choi, Y.S. 3D printing of materials and printing parameters with animal resources: A review. Food Sci. Anim. Resour. 2024, 44, 225–238. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Wei, G.; Ma, Y.; Bhandari, B.; Zhou, P. 3D printed milk protein food simulant: Improving the printing performance of milk protein concentration by incorporating whey protein isolate. Innov. Food Sci. Emerg. Technol. 2018, 49, 116–126. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, M.; Chen, H. Effect of whey protein on the 3D printing performance of konjac hybrid gel. LWT 2021, 140, 110716. [Google Scholar] [CrossRef]
- Ross, M.M.; Kelly, A.L.; Crowley, S.V. Chapter 7—Potential applications of dairy products, ingredients and formulations in 3D printing. In Fundamentals of 3D Food Printing and Applications; Godoi, F.C., Bhandari, B.R., Prakash, S., Zhang, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 175–206. [Google Scholar]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Padma Ishwarya, S.; Sandhya, R.; P, N. Advances and prospects in the food applications of pectin hydrogels. Crit. Rev. Food Sci. Nutr. 2022, 62, 4393–4417. [Google Scholar] [CrossRef]
- Cohen, D.L.; Lipton, J.I.; Cutler, M.; Coulter, D.; Vesco, A.; Lipson, H. Hydrocolloid printing: A novel platform for customized food production. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 3–5 August 2009; pp. 807–818. [Google Scholar]
- Bulut, E.G.; Candoğan, K. Development and characterization of a 3D printed functional chicken meat based snack: Optimization of process parameters and gelatin level. LWT 2022, 154, 112768. [Google Scholar] [CrossRef]
- Rahman, J.M.H.; Shiblee, M.D.N.I.; Ahmed, K.; Khosla, A.; Kawakami, M.; Furukawa, H. Rheological and mechanical properties of edible gel materials for 3D food printing technology. Heliyon 2020, 6, e05859. [Google Scholar] [CrossRef]
- Sharma, R.; Chandra Nath, P.; Kumar Hazarika, T.; Ojha, A.; Kumar Nayak, P.; Sridhar, K. Recent advances in 3D printing properties of natural food gels: Application of innovative food additives. Food Chem. 2024, 432, 137196. [Google Scholar] [CrossRef]
- Rando, P.; Ramaioli, M. Food 3D printing: Effect of heat transfer on print stability of chocolate. J. Food Eng. 2021, 294, 110415. [Google Scholar] [CrossRef]
- Mantihal, S.; Prakash, S.; Godoi, F.C.; Bhandari, B. Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling. Innov. Food Sci. Emerg. Technol. 2017, 44, 21–29. [Google Scholar] [CrossRef]
- Chen, Y.W.; Mackley, M.R. Flexible chocolate. Soft Matter 2006, 2, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Va, A.; Udayarajan, C.T.; Goksen, G.; Brennan, C.S.; P, N. A brief review on 3D printing of chocolate. Int. J. Food Sci. Technol. 2023, 58, 2811–2828. [Google Scholar] [CrossRef]
- Karyappa, R.; Hashimoto, M. Chocolate-based Ink Three-dimensional Printing (Ci3DP). Sci. Rep. 2019, 9, 14178. [Google Scholar] [CrossRef] [PubMed]
- Guénard-Lampron, V.; Masson, M.; Leichtnam, O.; Blumenthal, D. Impact of 3D printing and post-processing parameters on shape, texture and microstructure of carrot appetizer cake. Innov. Food Sci. Emerg. Technol. 2021, 72, 102738. [Google Scholar] [CrossRef]
- Guo, Z.; Arslan, M.; Li, Z.; Cen, S.; Shi, J.; Huang, X.; Xiao, J.; Zou, X. Application of protein in extrusion-based 3D Food Printing: Current status and prospectus. Foods 2022, 11, 1902. [Google Scholar] [CrossRef]
- Aydemir, C.; Yenidoğan, S.; Karademir, A.; Arman Kandirmaz, E. The examination of vegetable- and mineral oil-based inks’ effects on print quality: Green printing effects with different oils. J. Appl. Biomater. Funct. Mater. 2018, 16, 137–143. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, W.; Huang, D.; Fuh, J.Y.H.; Hong, G.S. An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol. 2015, 8, 1605–1615. [Google Scholar] [CrossRef]
- Nachal, N.; Moses, J.A.; Karthik, P.; Anandharamakrishnan, C. Applications of 3D printing in food processing. Food Eng. Rev. 2019, 11, 123–141. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, T.; Duan, S.; Qin, Z.; Li, C.; Zhang, Z.; Liu, A.; Wu, D.; Chen, H.; Han, G.; et al. Effects of sodium alginate and rice variety on the physicochemical characteristics and 3D printing feasibility of rice paste. LWT 2020, 127, 109360. [Google Scholar] [CrossRef]
- Huang, C.Y. Extrusion-Based 3D Printing and Characterization of Edible Materials. Master Thesis, University of Waterloo, Waterloo, ON, Canada, 2018. [Google Scholar]
- Kim, H.W.; Lee, J.H.; Park, S.M.; Lee, M.H.; Lee, I.W.; Doh, H.S.; Park, H.J. Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food printing. J. Food Sci. 2018, 83, 2923–2932. [Google Scholar] [CrossRef] [PubMed]
- Ainis, W.N.; Feng, R.; van den Berg, F.W.J.; Ahrné, L. Comparing the rheological and 3D printing behavior of pea and soy protein isolate pastes. Innov. Food Sci. Emerg. Technol. 2023, 84, 103307. [Google Scholar] [CrossRef]
- Venkatachalam, A.; Wilms, P.F.C.; Tian, B.; Bakker, E.-J.; Schutyser, M.A.I.; Zhang, L. Customizing fracture properties of pea-based snacks using 3D printing by varying composition and processing parameters. Food Res. Int. 2025, 202, 115715. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Pandya, J.K.; McClements, D.J.; Lu, J.; Kinchla, A.J. Advancements in 3D food printing: A comprehensive overview of properties and opportunities. Crit. Rev. Food Sci. Nutr. 2022, 62, 4752–4768. [Google Scholar] [CrossRef]
- Pereira, T.; Barroso, S.; Gil, M.M. Food texture design by 3D printing: A review. Foods 2021, 10, 320. [Google Scholar] [CrossRef]
- Carranza, T.; Guerrero, P.; Caba, K.d.l.; Etxabide, A. Texture-modified soy protein foods: 3D printing design and red cabbage effect. Food Hydrocoll. 2023, 145, 109141. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.S.; Lim, J.-H.; Moon, K.-D. Effects of isolated pea protein on honeyed red ginseng manufactured by 3D printing for patients with dysphagia. LWT 2024, 191, 115570. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Xia, X.; Liu, Q.; Chen, Q.; Sun, F.; Kong, B. Rheological properties and 3D printability of tomato-starch paste with different types of starch. LWT 2024, 212, 116988. [Google Scholar] [CrossRef]
- Riantiningtyas, R.R.; Sager, V.F.; Chow, C.Y.; Thybo, C.D.; Bredie, W.L.P.; Ahrné, L. 3D printing of a high protein yoghurt-based gel: Effect of protein enrichment and gelatine on physical and sensory properties. Food Res. Int. 2021, 147, 110517. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Suzuki, Y.; Toba, K.; Ogawa, J.; Furukawa, H.; Hashizume, M.; Noji, T.; Teratani, K.; Ito, N. Multifunctional 3D food printer with quad-screw nozzle for four-color printing and dual ink mixing. J. Food Eng. 2025, 388, 112384. [Google Scholar] [CrossRef]
- Bagley, E.; Christianson, D. Measurement and interpretation of rheological properties of foods. Food Technol. 1987, 41, 96–99. [Google Scholar]
- Wang, Z.; Hirai, S. Modeling and estimation of rheological properties of food products for manufacturing simulations. J. Food Eng. 2011, 102, 136–144. [Google Scholar] [CrossRef]
- Steffe, J.F. Rheological Methods in Food Process Engineering; Freeman Press: East Lansing, MI, USA, 1992. [Google Scholar]
- Jonkers, N.; van Dommelen, J.A.W.; Geers, M.G.D. Experimental characterization and modeling of the mechanical behavior of brittle 3D printed food. J. Food Eng. 2020, 278, 109941. [Google Scholar] [CrossRef]
- Vancauwenberghe, V.; Delele, M.A.; Vanbiervliet, J.; Aregawi, W.; Verboven, P.; Lammertyn, J.; Nicolaï, B. Model-based design and validation of food texture of 3D printed pectin-based food simulants. J. Food Eng. 2018, 231, 72–82. [Google Scholar] [CrossRef]
- Bao, Y.; Li, L.; Chen, J.; Cao, W.; Liu, W.; Ren, G.; Luo, Z.; Pan, L.; Duan, X. Prediction of 3D printability and rheological properties of different pineapple gel formulations based on LF-NMR. Food Chem. X 2024, 24, 101906. [Google Scholar] [CrossRef]
- Zheng, H. Introduction: Measuring Rheological Properties of Foods. In Rheology of Semisolid Foods; Joyner, H.S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–30. [Google Scholar]
- Maldonado-Rosas, R.; Tejada-Ortigoza, V.; Cuan-Urquizo, E.; Mendoza-Cachú, D.; Morales-de la Peña, M.; Alvarado-Orozco, J.M.; Campanella, O.H. Evaluation of rheology and printability of 3D printing nutritious food with complex formulations. Addit. Manuf. 2022, 58, 103030. [Google Scholar] [CrossRef]
- Liu, Z.; Bhandari, B.; Prakash, S.; Mantihal, S.; Zhang, M. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocoll. 2019, 87, 413–424. [Google Scholar] [CrossRef]
- Yang, F.; Guo, C.; Zhang, M.; Bhandari, B.; Liu, Y. Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation. LWT 2019, 102, 89–99. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, M.; Devahastin, S. 3D extrusion-based printability evaluation of selected cereal grains by computational fluid dynamic simulation. J. Food Eng. 2020, 286, 110113. [Google Scholar] [CrossRef]
- Bugday, Z.Y.; Venkatachalam, A.; Anderson, P.D.; van der Sman, R.G.M. Rheology of paste-like food inks for 3D printing: Effects of nutrient and water content. Curr. Res. Food Sci. 2024, 9, 100847. [Google Scholar] [CrossRef]
- Dick, A.; Bhandari, B.; Prakash, S. Printability and textural assessment of modified-texture cooked beef pastes for dysphagia patients. Future Foods 2021, 3, 100006. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, M.; Devahastin, S. Improvement of 3D printability of buckwheat starch-pectin system via synergistic Ca2+-microwave pretreatment. Food Hydrocoll. 2021, 113, 106483. [Google Scholar] [CrossRef]
- Schulz, M.; Bogdahn, M.; Geissler, S.; Quodbach, J. Transfer of a rational formulation and process development approach for 2D inks for pharmaceutical 2D and 3D printing. Int. J. Pharm. X 2024, 7, 100256. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Bhandari, B.; Wang, Y. 3D printing: Printing precision and application in food sector. Trends Food Sci. Technol. 2017, 69, 83–94. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, W.; Yan, L.; Huang, D.; Lin, L.-y. Extrusion-based food printing for digitalized food design and nutrition control. J. Food Eng. 2018, 220, 1–11. [Google Scholar] [CrossRef]
- García-Segovia, P.; García-Alcaraz, V.; Balasch-Parisi, S.; Martínez-Monzó, J. 3D printing of gels based on xanthan/konjac gums. Innov. Food Sci. Emerg. Technol. 2020, 64, 102343. [Google Scholar] [CrossRef]
- Hamilton, C.A.; Alici, G.; in het Panhuis, M. 3D printing Vegemite and Marmite: Redefining “breadboards”. J. Food Eng. 2018, 220, 83–88. [Google Scholar] [CrossRef]
- Caron, E.; Van de Walle, D.; Dewettinck, K.; Marchesini, F.H. State of the art, challenges, and future prospects for the multi-material 3D printing of plant-based meat. Food Res. Int. 2024, 192, 114712. [Google Scholar] [CrossRef]
- Demircan, E.; Aydar, E.F.; Mertdinc, Z.; Kasapoglu, K.N.; Ozcelik, B. 3D printable vegan plant-based meat analogue: Fortification with three different mushrooms, investigation of printability, and characterization. Food Res. Int. 2023, 173, 113259. [Google Scholar] [CrossRef] [PubMed]
- Mulakkal, M.C.; Trask, R.S.; Ting, V.P.; Seddon, A.M. Responsive cellulose-hydrogel composite ink for 4D printing. Mat. Des. 2018, 160, 108–118. [Google Scholar] [CrossRef]
- Wang, N.; Li, R.; Wang, X.; Yang, X. 4D food printing: Key factors and optimization strategies. Tren. Food Sci. Technol. 2024, 145, 104380. [Google Scholar] [CrossRef]
- Teng, X.; Zhang, M.; Mujumdar, A.S. 4D printing: Recent advances and proposals in the food sector. Tren. Food Sci. Technol. 2021, 110, 349–363. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, B.; Liang, N.; Huang, X.; Shi, J.; Li, Z.; Paximada, P.; Xiaobo, Z. 4D printing of Pickering emulsion: Temperature-driven color changes. J. Food Eng. 2025, 386, 112258. [Google Scholar] [CrossRef]
- Navaf, M.; Sunooj, K.V.; Aaliya, B.; Akhila, P.P.; Sudheesh, C.; Mir, S.A.; George, J. 4D printing: A new approach for food printing; effect of various stimuli on 4D printed food properties. A comprehensive review. Appl. Food Res. 2022, 2, 100150. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, Z.; Zhang, W.; Fang, Z. 4D printing of edible insect snacks: Color changes with external pH stimulation. Food Biosci. 2023, 55, 102971. [Google Scholar] [CrossRef]
- Ghazal, A.F.; Zhang, M.; Bhandari, B.; Chen, H. Investigation on spontaneous 4D changes in color and flavor of healthy 3D printed food materials over time in response to external or internal pH stimulus. Food Res. Int. 2021, 142, 110215. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, M.; Guo, C.; Chen, H. 4D printing of lotus root powder gel: Color change induced by microwave. Innov. Food Sci. Emerg. Technol. 2021, 68, 102605. [Google Scholar] [CrossRef]
- Phuhongsung, P.; Zhang, M.; Bhandari, B. 4D printing of products based on soy protein isolate via microwave heating for flavor development. Food Res. Int. 2020, 137, 109605. [Google Scholar] [CrossRef]
- Phuhongsung, P.; Zhang, M.; Devahastin, S. Influence of surface pH on color, texture and flavor of 3D printed composite mixture of soy protein isolate, pumpkin, and beetroot. Food Bioprocess Technol. 2020, 13, 1600–1610. [Google Scholar] [CrossRef]
- Oral, M.O.; Derossi, A.; Caporizzi, R.; Severini, C. Analyzing the most promising innovations in food printing. Programmable food texture and 4D foods. Future Foods 2021, 4, 100093. [Google Scholar] [CrossRef]
- Shi, J.; Pan, Z.; McHugh, T.H.; Wood, D.; Zhu, Y.; Avena-Bustillos, R.J.; Hirschberg, E. Effect of berry size and sodium hydroxide pretreatment on the drying characteristics of blueberries under infrared radiation heating. J. Food Sci. 2008, 73, E259–E265. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Arya, S.; Gupta, V.; Furukawa, H.; Khosla, A. 4D printing: Fundamentals, materials, applications and challenges. Polymer 2021, 228, 123926. [Google Scholar] [CrossRef]
- Yang, W.; Tu, A.; Ma, Y.; Li, Z.; Xu, J.; Lin, M.; Zhang, K.; Jing, L.; Fu, C.; Jiao, Y.; et al. Chitosan and whey protein bio-inks for 3D and 4D printing applications with particular focus on food industry. Molecules 2022, 27, 173. [Google Scholar] [CrossRef] [PubMed]
Food Materials | Printing Method | Nozzle Diameter | Nozzle Height | Process Temperature | Printing Speed | Rheological Characteristic | Ref. |
---|---|---|---|---|---|---|---|
Chilled chicken breast (mince) and edible salt | Extrusion | 0.8, 1.0, 1.2, 1.5, and 2.0 mm | Consistent with nozzle diameter | 25, 35, and 45 °C | 25 mm/s | Non-Newtonian and pseudoplastic | [20] |
Cheese | Extrusion | 1.5 mm | 75 mm | 180 °C | A computer controlled the motion and positioning of the system | Non-Newtonian and pseudoplastic | [21] |
Cricket powder (Acheta Domesticus) and xanthan gum | Direct ink writing based on pneumatic extrusion | 0.9 mm | X | 25 ± 1 °C | A computer controlled the motion and positioning of the system | Non-Newtonian and pseudoplastic | [22] |
Dark chocolate and two types of additives: magnesium stearate powder and plant sterol powder | Extrusion | 0.78 mm | X | 32 °C | 70 mm/s | Non-Newtonian and pseudoplastic | [23] |
Dehydrated potato purée and whole milk | Extrusion | 2 mm | 2 mm | 10, 20, and 30 °C | 2 mm/s | Non-Newtonian and pseudoplastic | [24] |
Dough (caster sugar, butter, low-gluten flour, egg, and water) | Extrusion | 0.8, 1.5, and 2 mm | 0.84 mm | 24.8 °C | 25 mm/s | Non-Newtonian and pseudoplastic | [25] |
Milk powder | Direct ink writing based on pneumatic extrusion | 0.5–1.3 mm | X | 25 ± 1 °C | A computer controlled the motion and positioning of the system | Non-Newtonian and pseudoplastic | [26] |
Paste: starch, milk powder, cellulose nanofibers, rye bran, oat protein concentrate, and bean protein concentrate. | Extrusion | 0.41 mm | X | 25 ± 1 °C | 2 mm/s | Non-Newtonian and pseudoplastic | [19] |
Puréed vegetables (carrots, pak choi, and garden peas) and hydrocolloids (kappa carrageenan, locust bean flour, and xanthan gum) | Extrusion | 0.84 mm | 0.5 mm | 25 ± 1 °C | 25 mm/s | Non-Newtonian and pseudoplastic | [27] |
Rice protein isolate, water, and xanthan gum | Extrusion | 1,2 mm | X | 25.5 ± 0.5 °C | 50 mm/s | Non-Newtonian and pseudoplastic | [28] |
Surimi fish gel | Extrusion | 0.8, 1.5, and 2.0 mm | 5, 10, 15, and 20 mm | 25 °C | Different extrusion speeds for various movement speeds | Non-Newtonian and pseudoplastic or thixotropic | [29] |
Textured soy protein, onion, breadcrumb powder, xanthan gum, gluten powder, salt, spices, and sunflower oil | Extrusion | 4.0 mm | 4.0 mm | 25 ± 1 °C | 5–10 mL/s | Non-Newtonian and pseudoplastic | [30] |
Whey protein powder, peanut protein powder, casein, hydrolysed wheat protein, and pea protein powder | Extrusion | 0.8; 1.0; 1.2; and 1.5 mm | The printing layer height was the nozzle diameter (0.8, 1.0, 1.2, and 1.5 mm) | 25 ± 1 °C | 2 mm/s | Non-Newtonian and pseudoplastic | [31] |
Egg-white protein, tea polyphenols, polyphenols, and phosphate-buffered saline | Extrusion | 1.2 mm | X | 25 °C | 15 mm/s | Non-Newtonian and pseudoplastic | [32] |
Ground purée and 15% trehalose | Extrusion | 2.0 mm | 3.0 mm | 25 °C | The nozzle speed and extrusion rate were adjusted to achieve the desired results | Non-Newtonian and pseudoplastic | [33] |
Ground purée, sodium alginate, citric acid, and sodium bicarbonate | Extrusion | 1.2 mm | 1.2 mm | 25 °C | 15 mm/s | Non-Newtonian and thixotropic | [34] |
Lemon juice and ground starch | Extrusion | 0.5, 1.0, 1.5, and 2.0 mm | X | 25 ± 1 °C | 24 mm/s | Non-Newtonian and pseudoplastic | [35] |
Low-methoxylated pectin + CaCl2, bovine serum albumin, and sugar syrup | Extrusion | 0.84 mm | 0.84 mm | 25 ± 1 °C | 10 mm/s | Non-Newtonian and pseudoplastic | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domżalska, Z.; Jakubczyk, E. Characteristics of Food Printing Inks and Their Impact on Selected Product Properties. Foods 2025, 14, 393. https://doi.org/10.3390/foods14030393
Domżalska Z, Jakubczyk E. Characteristics of Food Printing Inks and Their Impact on Selected Product Properties. Foods. 2025; 14(3):393. https://doi.org/10.3390/foods14030393
Chicago/Turabian StyleDomżalska, Zuzanna, and Ewa Jakubczyk. 2025. "Characteristics of Food Printing Inks and Their Impact on Selected Product Properties" Foods 14, no. 3: 393. https://doi.org/10.3390/foods14030393
APA StyleDomżalska, Z., & Jakubczyk, E. (2025). Characteristics of Food Printing Inks and Their Impact on Selected Product Properties. Foods, 14(3), 393. https://doi.org/10.3390/foods14030393