Prediction of Pasta Colour Considering Traits Involved in Colour Expression of Durum Wheat Semolina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Semolina Production
2.3. Pasta Processing
2.4. Enzyme Assays in Semolina
2.4.1. Hydroperoxidation and Bleaching Activities of LOX
2.4.2. Peroxidase Activity
2.4.3. Polyphenoloxidase Activity
2.5. Laboratory Analyses of Semolina and Pasta
2.5.1. Determination of β-Carotene and Lutein Content
2.5.2. Yellow and Brown Indices
2.6. Procedure for Calculating High-Performance Index (HPI)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Contribution of Genotype, Environment, and Their Interaction to Colour-Related Traits in Semolina and Pasta
3.2. Effects of Processing on Pasta Colour
3.2.1. Variation in Colour-Related Traits in Pasta
3.2.2. Multiple Regression Analysis for Pasta Colour
3.3. Principal Component Analysis
3.4. High-Performance Index (HPI)—Tool for Descriptive Identification of Genotype with Best Combination of Traits Involved in Colour of Pasta
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Moreno, F.; Ammar, K.; Solís, I. Global changes in cultivated area and breeding activities of durum wheat from 1800 to date: A historical review. Agronomy 2022, 12, 1135. [Google Scholar] [CrossRef]
- Blanco, A. Structure and trends of worldwide research on durum wheat by bibliographic mapping. Int. J. Plant Biol. 2024, 15, 132–160. [Google Scholar] [CrossRef]
- Grosse-Heilmann, M.; Cristiano, E.; Deidda, R.; Viola, F. Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects. Resour. Environ. Sustain. 2024, 17, 100170. [Google Scholar] [CrossRef]
- Xynias, I.N.; Mylonas, I.; Korpetis, E.G.; Ninou, E.; Tsaballa, A.; Avdikos, I.D.; Mavromatis, A.G. Durum wheat breeding in the mediterranean region: Current status and future prospects. Agronomy 2020, 10, 432. [Google Scholar] [CrossRef]
- WITS (World Integrated Trade Solution). Cereals; Durum Wheat Imports by Country. 2023. Available online: https://wits.worldbank.org/trade/comtrade/en/country/ALL/year/2021/tradeflow/Imports/partner/WLD/product/100110 (accessed on 3 January 2025).
- Dello Russo, M.; Spagnuolo, C.; Moccia, S.; Angelino, D.; Pellegrini, N.; Martini, D. Nutritional quality of pasta sold on the italian market: The food labelling of italian products (FLIP) study. Nutrients 2021, 13, 171. [Google Scholar] [CrossRef]
- Bresciani, A.; Pagani, M.A.; Marti, A. Pasta-making process: A narrative review on the relation between process variables and pasta quality. Foods 2022, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- Troccoli, A.; Borrelli, G.M.; De Vita, P.; Fares, C.; Di Fonzo, N. Durum wheat quality: A multidisciplinary concept. A review. J. Cereal Sci. 2000, 32, 99–113. [Google Scholar] [CrossRef]
- Hare, R. Durum Wheat: Grain-Quality Characteristics and Management of Quality Requirements. In Cereal Grains: Assessing and Managing Quality, 2nd ed.; Wrigley, C., Batey, I., Miskelly, D., Eds.; Woodhead Publishing: Cambridge, UK, 2017; Chapter 6; pp. 135–151. [Google Scholar] [CrossRef]
- Martínez-Peña, R.; Rezzouk, F.Z.; Díez-Fraile, M.d.C.; Nieto-Taladriz, M.T.; Araus, J.L.; Aparicio, N.; Vicente, R. Genotype-by-environment interaction for grain yield and quality traits in durum wheat: Identification of ideotypes adapted to the Spanish region of Castile and León. Eur. J. Agron. 2023, 151, 126951. [Google Scholar] [CrossRef]
- Borrelli, G.M.; Troccoli, A.; Di Fonzo, N.; Fares, C. Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chem. 1999, 76, 335–340. [Google Scholar] [CrossRef]
- Borrelli, G.M.; De Leonardis, A.M.; Fares, C.; Platani, C.; Di Fonzo, N. Effects of modified processing conditions on oxidative properties of semolina dough and pasta. Cereal Chem. 2003, 80, 225–231. [Google Scholar] [CrossRef]
- Borrelli, G.M.; De Leonardis, A.M.; Platani, C.; Troccoli, A. Distribution along durum wheat kernel of the components involved in semolina colour. J. Cereal Sci. 2008, 48, 494–502. [Google Scholar] [CrossRef]
- Fraignier, M.-P.; Michaux-Ferriere, N.; Kobrehel, K. Distribution of peroxidase in durum wheat (Triticum durum). Cereal Chem. 2000, 77, 11–17. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Mastrangelo, A.M.; Trono, D.; Borrelli, G.M.; De Vita, P.; Fares, C.; Beleggia, R.; Platani, C.; Papa, R. The colours of durum wheat: A review. Crop Pasture Sci. 2014, 65, 1–15. [Google Scholar] [CrossRef]
- Taha, S.A.; Sagi, F. Relationships between chemical composition of durum wheat semolina and quality. II. Ash, carotenoid pigments, and oxidative enzymes. Cereal Res. Commun. 1987, 15, 123–129. [Google Scholar]
- Feillet, P.; Autran, J.-C.; Icard-Vernière, C. Pasta brownness: An Assessment. J. Cereal Sci. 2000, 32, 215–233. [Google Scholar] [CrossRef]
- Taranto, F.; Delvecchio, L.N.; Mangini, G.; Del Faro, L.; Blanco, A.; Pasqualone, A. Molecular and physico-chemical evaluation of enzymatic browning of whole meal and dough in a collection of tetraploid wheats. J. Cereal Sci. 2012, 55, 405–414. [Google Scholar] [CrossRef]
- Cabas-Lühmann, P.A.; Manthey, F.A.; Elias, E.M. Variations of colour, polyphenol oxidase and peroxidase activities during the production of low temperature dried pasta in various durum wheat genotypes. Int. J. Food Sci. Technol. 2021, 56, 4700–4709. [Google Scholar] [CrossRef]
- Harisha, R.; Singh, S.K.; Ahlawat, A.K.; Narwal, S.; Jaiswal, J.P.; Singh, J.B.; Kumar, R.R.; Singhal, S.; Balakrishnan, A.P.; Shukla, P.; et al. Elucidating the effects on polyphenol oxidase activity and allelic variation of polyphenol oxidase genes on dough and whole wheat-derived product color parameters. Int. J. Food Prop. 2023, 26, 2716–2731. [Google Scholar] [CrossRef]
- Elouafi, I.; Nachit, M.M.; Martin, L.M. Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 2001, 135, 255–261. [Google Scholar] [CrossRef]
- Clarke, F.R.; Clarke, J.M.; McCaig, T.N.; Knox, R.E.; DePauw, R.M. Inheritance of yellow pigment concentration in four durum wheat crosses. Can. J. Plant Sci. 2006, 86, 133–141. [Google Scholar] [CrossRef]
- Leenhardt, F.; Lyan, B.; Rock, E.; Boussard, A.; Potus, J.; Chanliaud, E.; Remesy, C. Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Eur. J. Agron. 2006, 25, 170–176. [Google Scholar] [CrossRef]
- Digesù, A.M.; Platani, C.; Cattivelli, L.; Mangini, G.; Blanco, A. Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. J. Cereal Sci. 2009, 50, 210–218. [Google Scholar] [CrossRef]
- Blanco, A.; Colasuonno, P.; Gadaleta, A.; Mangini, G.; Schiavulli, A.; Simeone, R.; Digesù, A.M.; De Vita, P.; Mastrangelo, A.M.; Cattivelli, L. Quantitative trait loci for yellow pigment concentration and individual carotenoid compounds in durum wheat. J. Cereal Sci. 2011, 54, 255–264. [Google Scholar] [CrossRef]
- Troccoli, A.; De Leonardis, A.M.; Platani, C.; Borrelli, G.M. High Performance Index as a tool to identify the best combination of pearled fractions and durum wheat genotypes for semolina and pasta colour improvement. Int. J. Food Sci. Technol. 2021, 56, 4799–4806. [Google Scholar] [CrossRef]
- D’Egidio, M.G.; Cecchini, C.; Cantone, M.T.; Dottori, A.; Gosparini, E. Caratteristiche qualitative delle varietà in prova nel ’99-2000. Molini d’Italia 2001, 1, 35–49. [Google Scholar]
- Mariani, B.M.; D’Egidio, M.G.; Novaro, P. Durum wheat quality evaluation: Influence of genotype and environment. Cereal Chem. 1995, 72, 194–197. [Google Scholar]
- Desiderio, E.; Fornara, M.; Cecchi, V.; Frongia, L. Risultati della sperimentazione condotta nel 1999–2000. L’Informatore Agrario 2000, 35, 30–66. [Google Scholar]
- González, E.M.; de Ancos, B.; Cano, M.P. Partial characterization of peroxidase and polyphenol oxidase activities in blackberry fruits. J. Agric. Food Chem. 2000, 48, 5459–5464. [Google Scholar] [CrossRef]
- Lowry, O.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Barone, R.; Briante, R.; D’Auria, S.; Febbraio, F.; Vaccaro, C.; Del Giudice, L.; Borrelli, G.M.; Di Fonzo, N.; Nucci, R. Purification and characterization of lipoxygenase activity from durum wheat flour. J. Agric. Food Chem. 1999, 47, 1924–1931. [Google Scholar] [CrossRef]
- Okot-Kotber, M.; Liavoga, A.; Yong, K.-J.; Bagorogoza, K. Activity and inhibition of polyphenol oxidase in extracts of bran and other milling fractions from a variety of wheat cultivars. Cereal Chem. 2001, 78, 514–520. [Google Scholar] [CrossRef]
- Commission Internationale de l’Eclairage. Publication 15.2. Colorimetry, 2nd ed.; Commission Internationale de l’Eclairage Central Bureau: Vienna, Austria, 1986. [Google Scholar]
- Schulthess, A.; Matus, I.; Schwember, A.R. Genotypic and environmental factors and their interactions determine semolina color of elite genotypes of durum wheat (Triticum turgidum L. var. durum) grown in different environments of Chile. Field Crops Res. 2013, 149, 234–244. [Google Scholar] [CrossRef]
- Rharrabti, Y.; Villegas, D.; Royo, C.; Martos-Núñez, V.; García del Moral, L.F. Durum wheat quality in Mediterranean environments: II. Influence of climatic variables and relationships between quality parameters. Field Crops Res. 2003, 80, 133–140. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Beleggia, R.; Pecorella, I.; Giovanniello, V.; Frenda, A.S.; Vita, P.D. Relationship between seed morphological traits and ash and mineral distribution along the kernel using debranning in durum wheats from different geographic sites. Foods 2020, 9, 1523. [Google Scholar] [CrossRef] [PubMed]
- Sissons, M.; Kadkol, G.; Taylor, J. Genotype by environment effects on durum wheat quality and yield-implications for breeding. Crop Breed. Genet. Genom. 2020, 2, e200018. [Google Scholar] [CrossRef]
- Colasuonno, P.; Marcotuli, I.; Blanco, A.; Maccaferri, M.; Condorelli, G.E.; Tuberosa, R.; Parada, R.; de Camargo, A.C.; Schwember, A.R.; Gadaleta, A. Carotenoid pigment content in durum wheat (Triticum turgidum L. var durum): An overview of quantitative trait loci and candidate genes. Front. Plant Sci. 2019, 10, 1347. [Google Scholar] [CrossRef]
- Ghaed-Rahimi, L.; Heidari, B.; Dadkhodaie, A. Genotype × environment interactions for wheat grain yield and antioxidant changes in association with drought stress. Arch. Agron. Soil Sci. 2014, 61, 153–171. [Google Scholar] [CrossRef]
- Al-Ashkar, I.; Sallam, M.; Al-Suhaibani, N.; Ibrahim, A.; Alsadon, A.; Al-Doss, A. Multiple stresses of wheat in the detection of traits and genotypes of high-performance and stability for a complex interplay of environment and genotypes. Agronomy 2022, 12, 2252. [Google Scholar] [CrossRef]
- Ziegler, J.U.; Wahl, S.; Würschum, T.; Longin, C.F.H.; Carle, R.; Schweiggert, R.M. Lutein and lutein esters in whole grain flours made from 75 genotypes of 5 Triticum species grown at multiple sites. J. Agric. Food Chem. 2015, 63, 5061–5071. [Google Scholar] [CrossRef] [PubMed]
- Groth, S.; Wittmann, R.; Longin, C.F.; Böhm, V. Influence of variety and growing location on carotenoid and vitamin E contents of 184 different durum wheat varieties (Triticum turgidum ssp. durum) in Germany. Eur. Food Res. Technol. 2020, 246, 2079–2092. [Google Scholar] [CrossRef]
- Siedow, J.N. Plant lipoxygenase, structure and function. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 145–188. [Google Scholar] [CrossRef]
- Leenhardt, F.; Lyan, B.; Rock, E.; Boussard, A.; Potus, J.; Chanliaud, E.; Remesy, C. Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during breadmaking. J. Agric. Food Chem. 2006, 54, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Verlotta, A.; De Simone, V.; Mastrangelo, A.M.; Cattivelli, L.; Papa, R.; Trono, D. Insight into durum wheat Lpx-B1: A small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. BMC Plant Biol. 2010, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Nokthai, P.; Lee, V.S.; Shank, L. Molecular modeling of peroxidase and polyphenol oxidase: Substrate specificity and active site comparison. Int. J. Mol. Sci. 2010, 11, 3266–3276. [Google Scholar] [CrossRef]
- Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chem. 2019, 275, 644–660. [Google Scholar] [CrossRef] [PubMed]
- Schutte, M.; Hayward, S.; Manley, M. Nonenzymatic browning and antioxidant properties of thermally treated cereal grains and end products. J. Food Biochem. 2024, 2024, 3865849. [Google Scholar] [CrossRef]
- Pozniak, C.J.; Knox, R.E.; Clarke, F.R.; Clarke, J.M. Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor. Appl. Genet. 2007, 114, 525–537. [Google Scholar] [CrossRef]
- Singh, A.; Reimer, S.; Pozniak, C.J.; Clarke, F.R.; Clarke, J.M.; Knox, R.E.; Singh, A.K. Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor. Appl. Genet. 2009, 118, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Crawford, A.C.; Francki, M.G. Lycopene-ε-cyclase (e-LCY3A) is functionally associated with quantitative trait loci for flour b * colour on chromosome 3A in wheat (Triticum aestivum L.). Mol. Breed. 2013, 31, 737–741. [Google Scholar] [CrossRef]
- Owens, B.F.; Mathew, D.; Diepenbrock, C.H.; Tiede, T.; Wu, D.; Mateos-Hernandez, M.; Gore, M.A.; Rocheford, T. Genome-Wide Association Study and Pathway-Level Analysis of Kernel Color in Maize. G3 Genes|Genomes|Genet. 2019, 9, 1945–1955. [Google Scholar] [CrossRef]
- McDowell, R.; Banda, L.; Bean, S.R.; Morris, G.P.; Rhodes, D.H. Grain yellowness is an effective predictor of carotenoid content in global sorghum populations. Sci. Rep. 2024, 14, 25132. [Google Scholar] [CrossRef]
- Carrera, A.; Echenique, V.; Zhang, W.; Helguera, M.; Manthey, F.; Schrager, A.; Picca, A.; Cervigni, G.; Dubcovsky, J. A deletion at the Lpx-B1 locus is associated with low lipoxygenase activity and improved pasta color in durum wheat (Triticum turgidum ssp. durum). J. Cereal Sci. 2007, 45, 67–77. [Google Scholar] [CrossRef]
- Fratianni, A.; Irano, M.; Panfili, G.; Acquistucci, R. Estimation of color of durum wheat. comparison of WSB, HPLC, and reflectance colorimeter measurements. J. Agric. Food Chem. 2005, 53, 2373–2378. [Google Scholar] [CrossRef] [PubMed]
- Sgrulletta, D.; De Stefanis, E. Simultaneous evaluation of quality parameters of durum wheat (Triticum durum) by near infrared spectroscopy. Ital. J. Food Sci. 1997, 9, 295–301. [Google Scholar]
- Clarke, J.M.; Clarke, F.R.; Cames, N.P.; McCaig, T.N.; Knox, R.E. Evaluation of predictors of quality for use in early generation selection. In Options Méditerranéennes, Proceedings of the Séminaries Méditerranéennes Serie A/N.40 “Durum Wheat Improvement in the Mediterranean Region: New challenges”, Zaragoza, Spain, 12–14 April 2000; Royo, C., Nachit, M., Di Fonzo, N., Araus, J.L., Eds.; CIHEAM, CYMMIT, ICARDA: Zaragoza, Spain, 2000; pp. 439–446. [Google Scholar]
- Fu, B.X.; Schlichting, L.; Pozniak, C.J.; Singh, A.K. Pigment loss from semolina to dough: Rapid measurement and relationship with pasta colour. J. Cereal Sci. 2013, 57, 560–566. [Google Scholar] [CrossRef]
- Fratianni, A.; Giuzio, L.; Di Criscio, T.; Flagella, Z.; Panfili, G. Response of carotenoids and tocols of durum wheat in relation to water stress and sulfur fertilization. J. Agric. Food Chem. 2013, 61, 2583–2590. [Google Scholar] [CrossRef] [PubMed]
- Beleggia, R.; Ficco, D.B.M.; Nigro, F.M.; Giovanniello, V.; Colecchia, S.A.; Pecorella, I.; De Vita, P. Effect of sowing date on bioactive compounds and grain morphology of three pigmented cereal species. Agronomy 2021, 11, 591. [Google Scholar] [CrossRef]
- Requena-Ramírez, M.D.; Rodríguez-Suárez, C.; Hornero-Méndez, D.; Atienza, S.G. Durum wheat at risk in a climate change scenario: The carotenoid content is affected by short heat waves. J. Agric. Food Chem. 2024, 72, 20354–20361. [Google Scholar] [CrossRef]
HP (EU g−1) | BL (EU g−1) | POD (EU g−1) | PPO (EU g−1) | Lut-S (µg g−1, DM) | ß-Car-S (µg g−1, DM) | YI-S | BI-S | Lut-P (µg g−1, DM) | ß-Car-P (µg g−1, DM) | YI-P | BI-P | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype (G; n = 24) | ||||||||||||
Arcobaleno | 1.284 ± 0.427 | 0.006 ± 0.003 | 154.492 ± 45.203 | 273.034 ± 113.304 | 1.718 ± 0.675 | 0.485 ± 0.164 | 23.438 ± 0.748 | 14.113 ± 1.201 | 0.165 ± 0.054 | 0.047 ± 0.018 | 19.425 ± 1.054 | 15.438 ± 1.337 |
Claudio | 1.442 ± 0.471 | 0.010 ± 0.007 | 118.625 ± 36.392 | 207.330 ± 51.962 | 2.148 ± 0.607 | 0.560 ± 0.16 | 22.759 ± 0.993 | 13.500 ± 0.994 | 0.181 ± 0.06 | 0.054 ± 0.026 | 18.450 ± 0.978 | 14.638 ± 1.116 |
Colosseo | 0.937 ± 0.419 | 0.005 ± 0.002 | 138.693 ± 39.417 | 140.928 ± 46.412 | 1.031 ± 0.247 | 0.210 ± 0.211 | 19.783 ± 0.928 | 13.213 ± 0.888 | 0.259 ± 0.085 | 0.039 ± 0.017 | 17.775 ± 0.517 | 14.125 ± 0.747 |
Creso | 0.671 ± 0.428 | 0.005 ± 0.005 | 131.700 ± 40.375 | 256.388 ± 63.158 | 1.117 ± 0.229 | 0.177 ± 0.037 | 18.688 ± 1.174 | 13.875 ± 1.184 | 0.124 ± 0.043 | 0.047 ± 0.018 | 16.525 ± 1.323 | 14.838 ± 1.163 |
Duilio | 4.640 ± 1.610 | 0.004 ± 0.003 | 15.030 ± 10.055 | 60.240 ± 31.166 | 1.092 ± 0.309 | 0.339 ± 0.094 | 21.753 ± 0.924 | 13.413 ± 1.313 | 0.148 ± 0.024 | 0.044 ± 0.015 | 18.450 ± 1.006 | 14.613 ± 1.237 |
Duprì | 0.921 ± 0.277 | 0.007 ± 0.004 | 8.291 ± 3.496 | 64.113 ± 22.515 | 2.946 ± 0.716 | 0.745 ± 0.227 | 26.324 ± 1.034 | 13.775 ± 0.905 | 0.204 ± 0.041 | 0.068 ± 0.038 | 21.400 ± 1.143 | 14.788 ± 0.926 |
Flaminio | 0.970 ± 0.252 | 0.001 ± 0.001 | 17.086 ± 5.515 | 84.943 ± 38.013 | 2.336 ± 0.495 | 0.652 ± 0.184 | 25.441 ± 0.672 | 13.450 ± 1.250 | 0.219 ± 0.060 | 0.046 ± 0.016 | 21.200 ± 1.089 | 14.471 ± 1.212 |
Gianni | 0.870 ± 0.151 | 0.004 ± 0.002 | 9.318 ± 4.214 | 61.018 ± 28.986 | 1.084 ± 0.202 | 0.170 ± 0.043 | 18.709 ± 0.893 | 12.925 ± 0.994 | 0.135 ± 0.025 | 0.024 ± 0.014 | 16.338 ± 1.081 | 14.000 ± 1.068 |
Iride | 1.052 ± 0.267 | 0.007 ± 0.003 | 106.818 ± 30.023 | 137.060 ± 54.426 | 1.844 ± 0.351 | 0.361 ± 0.074 | 22.889 ± 1.018 | 13.838 ± 1.034 | 0.181 ± 0.036 | 0.027 ± 0.017 | 19.063 ± 1.068 | 14.825 ± 1.193 |
Meridiano | 1.312 ± 0.281 | 0.001 ± 0.003 | 110.448 ± 37.772 | 227.706 ± 69.657 | 2.621 ± 0.658 | 0.776 ± 0.215 | 25.670 ± 1.290 | 14.225 ± 1.004 | 0.416 ± 0.250 | 0.157 ± 0.092 | 21.088 ± 1.339 | 15.288 ± 1.244 |
Nefer | 0.967 ± 0.331 | 0.020 ± 0.008 | 142.755 ± 33.476 | 268.312 ± 88.313 | 1.376 ± 0.481 | 0.344 ± 0.095 | 23.761 ± 0.739 | 14.188 ± 0.793 | 0.236 ± 0.086 | 0.045 ± 0.023 | 20.263 ± 0.826 | 15.150 ± 0.956 |
Parsifal | 0.509 ± 0.217 | 0.004 ± 0.002 | 26.010 ± 23.127 | 96.948 ± 46.591 | 1.695 ± 0.297 | 0.379 ± 0.025 | 20.867 ± 0.772 | 12.788 ± 0.967 | 0.192 ± 0.078 | 0.036 ± 0.016 | 17.850 ± 0.621 | 14.050 ± 1.087 |
Preco | 5.056 ± 0.861 | 0.002 ± 0.002 | 34.454 ± 10.969 | 78.097 ± 35.682 | 2.952 ± 1.002 | 0.923 ± 0.339 | 31.482 ± 0.708 | 14.300 ± 1.181 | 0.464 ± 0.247 | 0.145 ± 0.077 | 25.925 ± 2.177 | 15.425 ± 1.257 |
Saadi | 0.411 ± 0.231 | 0.005 ± 0.003 | 137.448 ± 48.702 | 171.027 ± 41.246 | 1.811 ± 0.411 | 0.473 ± 0.120 | 22.777 ± 0.794 | 14.000 ± 0.945 | 0.160 ± 0.071 | 0.055 ± 0.031 | 19.213 ± 1.084 | 15.275 ± 1.056 |
San Carlo | 1.655 ± 0.665 | 0.006 ± 0.006 | 107.216 ± 42.485 | 285.593 ± 126.047 | 1.809 ± 0.452 | 0.705 ± 0.243 | 24.445 ± 0.783 | 13.900 ± 0.892 | 0.204 ± 0.048 | 0.049 ± 0.02 | 20.350 ± 1.471 | 15.238 ± 0.994 |
Simeto | 4.062 ± 1.547 | 0.007 ± 0.004 | 167.517 ± 30.868 | 494.108 ± 146.923 | 1.711 ± 0.359 | 0.319 ± 0.071 | 23.013 ± 1.054 | 14.575 ± 1.057 | 0.222 ± 0.075 | 0.038 ± 0.02 | 19.388 ± 1.411 | 15.438 ± 1.056 |
Torrebianca | 4.898 ± 1.315 | 0.005 ± 0.003 | 97.698 ± 34.32 | 246.375 ± 57.289 | 1.567 ± 0.396 | 0.339 ± 0.095 | 22.989 ± 0.706 | 14.200 ± 0.919 | 0.221 ± 0.070 | 0.042 ± 0.014 | 18.625 ± 0.506 | 14.863 ± 1.308 |
Verdi | 1.524 ± 1.230 | 0.005 ± 0.002 | 51.122 ± 17.611 | 192.983 ± 46.37 | 1.356 ± 0.388 | 0.408 ± 0.132 | 25.033 ± 1.343 | 13.713 ± 1.088 | 0.273 ± 0.076 | 0.110 ± 0.030 | 20.563 ± 1.438 | 15.788 ± 1.183 |
F(17,119) | 39.014 | 10.066 | 58.806 | 25.122 | 29.661 | 34.272 | 204.441 | 8.630 | 8.322 | 12.666 | 39.059 | 7.625 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Environment (E; n = 54) | ||||||||||||
ENV1 | 2.207 ± 1.814 | 0.007 ± 0.004 | 88.085 ± 53.558 | 150.317 ± 91.262 | 1.939 ± 0.627 | 0.524 ± 0.239 | 23.687 ± 2.818 | 14.894 ± 0.767 | 0.257 ± 0.108 | 0.091 ± 0.065 | 19.711 ± 1.39 | 16.061 ± 0.854 |
ENV2 | 2.536 ± 2.342 | 0.004 ± 0.003 | 63.798 ± 44.962 | 143.255 ± 95.172 | 1.584 ± 0.537 | 0.501 ± 0.235 | 22.418 ± 3.144 | 13.928 ± 0.541 | 0.186 ± 0.079 | 0.071 ± 0.039 | 18.333 ± 2.457 | 15.067 ± 0.635 |
ENV3 | 2.021 ± 2.121 | 0.009 ± 0.009 | 76.794 ± 51.64 | 230.835 ± 166.08 | 1.578 ± 0.632 | 0.504 ± 0.265 | 22.737 ± 3.093 | 14.078 ± 0.705 | 0.159 ± 0.068 | 0.059 ± 0.030 | 18.944 ± 2.372 | 14.989 ± 0.810 |
ENV4 | 1.780 ± 1.622 | 0.003 ± 0.004 | 74.848 ± 50.823 | 175.371 ± 127.671 | 2.258 ± 0.784 | 0.533 ± 0.286 | 23.518 ± 2.993 | 12.744 ± 0.630 | 0.265 ± 0.079 | 0.060 ± 0.031 | 20.228 ± 2.512 | 13.806 ± 0.569 |
ENV5 | 1.722 ± 1.604 | 0.003 ± 0.003 | 60.804 ± 41.421 | 132.449 ± 68.127 | 2.223 ± 0.759 | 0.497 ± 0.252 | 23.304 ± 3.334 | 13.072 ± 0.604 | 0.344 ± 0.259 | 0.082 ± 0.088 | 20.017 ± 2.651 | 14.106 ± 0.644 |
ENV6 | 1.589 ± 1.312 | 0.006 ± 0.004 | 90.043 ± 62.742 | 208.868 ± 104.753 | 1.902 ± 0.700 | 0.520 ± 0.282 | 22.942 ± 3.145 | 13.217 ± 0.637 | 0.218 ± 0.081 | 0.052 ± 0.035 | 19.389 ± 2.692 | 14.361 ± 0.730 |
ENV7 | 1.329 ± 1.171 | 0.007 ± 0.006 | 106.996 ± 66.394 | 217.845 ± 142.554 | 1.892 ± 0.692 | 0.491 ± 0.207 | 24.833 ± 2.831 | 15.406 ± 0.665 | 0.169 ± 0.083 | 0.034 ± 0.024 | 20.511 ± 2.305 | 16.761 ± 0.787 |
ENV8 | 1.564 ± 1.255 | 0.005 ± 0.005 | 138.508 ± 84.528 | 228.261 ± 158.994 | 0.941 ± 0.517 | 0.148 ± 0.072 | 23.146 ± 2.790 | 12.878 ± 0.701 | 0.180 ± 0.059 | 0.029 ± 0.018 | 19.261 ± 2.055 | 14.070 ± 0.739 |
F(7,119) | 5.273 | 6.661 | 27.058 | 7.434 | 32.645 | 26.788 | 27.362 | 79.108 | 9.413 | 9.267 | 9.500 | 69.328 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
G × E Interaction (n = 3) | ||||||||||||
F(119,288) | 249.274 | 143.747 | 185.877 | 144.206 | 142.449 | 13.295 | 8.766 | 17.325 | 1593.217 | 1949.488 | 21.520 | 20.032 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Overall mean | 1.843 ± 1.726 | 0.006 ± 0.006 | 87.485 ± 62.699 | 185.9 ± 128.421 | 1.79 ± 0.768 | 0.465 ± 0.266 | 23.323 ± 3.077 | 13.777 ± 1.126 | 0.222 ± 0.132 | 0.06 ± 0.05 | 19.549 ± 2.414 | 14.903 ± 1.216 |
HP | BL | POD | PPO | Lut-S | ß-Car-S | YI-S | BI-S | Lut-P | ß-Car-P | BI-P | |
---|---|---|---|---|---|---|---|---|---|---|---|
BL | −0.10 | ||||||||||
p = 0.239 | |||||||||||
POD | −0.12 | 0.34 | |||||||||
p = 0.165 | p = 0.000 | ||||||||||
PPO | 0.09 | 0.37 | 0.71 | ||||||||
p = 0.265 | p = 0.000 | p = 0.000 | |||||||||
Lut-S | 0.05 | −0.23 | −0.27 | −0.20 | |||||||
p = 0.585 | p = 0.006 | p = 0.001 | p = 0.019 | ||||||||
ß-Car-S | 0.13 | −0.18 | −0.30 | −0.17 | 0.86 | ||||||
p = 0.118 | p = 0.033 | p = 0.000 | p = 0.036 | p = 0.00 | |||||||
YI-S | 0.30 | −0.07 | −0.14 | −0.06 | 0.66 | 0.71 | |||||
p = 0.000 | p = 0.389 | p = 0.085 | p = 0.513 | p = 0.00 | p = 0.00 | ||||||
BI-S | 0.19 | 0.32 | 0.24 | 0.28 | 0.09 | 0.23 | 0.33 | ||||
p = 0.022 | p = 0.000 | p = 0.003 | p = 0.001 | p = 0.261 | p = 0.007 | p = 0.000 | |||||
Lut-P | 0.19 | −0.23 | −0.12 | −0.10 | 0.50 | 0.43 | 0.50 | −0.03 | |||
p = 0.019 | p = 0.006 | p = 0.147 | p = 0.246 | p = 0.000 | p = 0.000 | p = 0.000 | p = 0.681 | ||||
ß-Car-P | 0.19 | −0.21 | −0.19 | −0.14 | 0.50 | 0.57 | 0.50 | 0.16 | 0.80 | ||
p = 0.026 | p = 0.013 | p = 0.022 | p = 0.091 | p = 0.000 | p = 0.000 | p = 0.000 | p = 0.052 | p = 0.00 | |||
BI-P | 0.10 | 0.26 | 0.21 | 0.21 | 0.06 | 0.22 | 0.35 | 0.93 | −0.04 | 0.19 | |
p = 0.229 | p = 0.002 | p = 0.013 | p = 0.010 | p = 0.440 | p = 0.009 | p = 0.000 | p = 0.00 | p = 0.635 | p = 0.026 | ||
YI-P | 0.26 | −0.08 | −0.14 | −0.09 | 0.64 | 0.66 | 0.93 | 0.21 | 0.53 | 0.45 | 0.23 |
p = 0.002 | p = 0.354 | p = 0.095 | p = 0.286 | p = 0.000 | p = 0.00 | p = 0.00 | p = 0.012 | p = 0.000 | p = 0.000 | p = 0.005 |
Dependent Variable | Source of Variation | df | Sum of Square | Mean Square | F | p-Value | Statistics | Value |
---|---|---|---|---|---|---|---|---|
YI-P | Regression | 2 | 715.281 | 357.641 | 464.089 | 0.000 | R | 0.932 |
Error | 141 | 108.659 | 0.771 | R2 | 0.868 | |||
Total | 143 | 823.940 | R2adj | 0.866 | ||||
Error of Model | 0.878 | |||||||
A univariate significance test for the YI-P variable of the subset of the best predictors chosen according to the Mallow Cp procedure | ||||||||
Intercept | 1 | 23.156 | 23.156 | 30.048 | 0.000 | |||
BI-S | 1 | 8.481 | 8.481 | 11.005 | 0.001 | |||
YI-S | 1 | 679.191 | 679.191 | 881.346 | 0.000 | |||
Error | 141 | 108.659 | 0.771 |
Predictors IN | Tolerance | VIF (Variance Inflation Factor) | R2 | B-Coefficient | β-Coefficient | Partial Correlation | Semi-Partial Correlation | t | p-Value |
---|---|---|---|---|---|---|---|---|---|
BI-S | 0.891 | 1.122 | 0.109 | −0.231 | −0.107 | −0.269 | −0.101 | −3.317 | 0.001 |
YI-S | 0.891 | 1.122 | 0.109 | 0.752 | 0.962 | 0.928 | 0.908 | 29.687 | 0.000 |
Durbin–Watson statistic (d) test for residual autocorrelation in the regression model (n = 144) | |||||||||
d lower tabulated | d value | d upper tabulated | Serial correlation | ||||||
1.468 | 1.723 | 1.767 | 0.137 |
Specific Performance Index (SPI; n = 18) for Negative (NV *) or Positive (PV *) Variable | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Specific Attributes | NV | NV | NV | NV | PV | PV | PV | NV | PV | PV | PV | NV | HPI |
Environment | HP | BL | POD | PPO | Lut-S | β-Car-S | YI-S | BI-S | Lut-P | β-Car-P | YI-P | BI-P | |
ENV3 | 7.03 | 4.93 | −0.03 | 2.00 | −0.48 | −0.35 | −0.23 | −0.20 | −0.90 | −0.58 | −0.20 | −0.2 | 10.80 |
ENV4 | 4.83 | 6.13 | 0.12 | 1.73 | −0.20 | −0.63 | −0.23 | −0.23 | −0.23 | −0.78 | −0.18 | −0.25 | 10.10 |
ENV7 | 4.38 | 3.78 | −0.08 | 1.75 | −0.20 | −0.20 | −0.18 | −0.23 | −0.70 | −1.68 | −0.23 | −0.25 | 6.17 |
ENV2 | 4.75 | 2.63 | 0.60 | 1.88 | −0.30 | −0.28 | −0.20 | −0.18 | −1.08 | −1.50 | −0.20 | −0.2 | 5.92 |
ENV8 | 3.38 | 5.00 | −0.23 | 1.30 | −1.15 | −1.10 | −0.20 | −0.28 | −0.25 | −1.13 | −0.30 | −0.175 | 4.88 |
ENV6 | 3.30 | 1.95 | −0.08 | 0.02 | −0.23 | −1.05 | −0.18 | −0.23 | −0.25 | −2.35 | −0.18 | −0.275 | 0.47 |
ENV1 | 2.98 | 0.33 | −0.20 | 1.38 | −0.18 | −0.23 | −0.23 | −0.23 | −0.55 | −2.88 | −0.20 | −0.25 | −0.25 |
ENV5 | 4.55 | 3.78 | 0.18 | −0.15 | −0.25 | −0.30 | −0.23 | −0.25 | −4.23 | −7.53 | −0.23 | −0.225 | −4.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troccoli, A.; Ficco, D.B.M.; Platani, C.; D’Egidio, M.G.; Borrelli, G.M. Prediction of Pasta Colour Considering Traits Involved in Colour Expression of Durum Wheat Semolina. Foods 2025, 14, 392. https://doi.org/10.3390/foods14030392
Troccoli A, Ficco DBM, Platani C, D’Egidio MG, Borrelli GM. Prediction of Pasta Colour Considering Traits Involved in Colour Expression of Durum Wheat Semolina. Foods. 2025; 14(3):392. https://doi.org/10.3390/foods14030392
Chicago/Turabian StyleTroccoli, Antonio, Donatella Bianca Maria Ficco, Cristiano Platani, Maria Grazia D’Egidio, and Grazia Maria Borrelli. 2025. "Prediction of Pasta Colour Considering Traits Involved in Colour Expression of Durum Wheat Semolina" Foods 14, no. 3: 392. https://doi.org/10.3390/foods14030392
APA StyleTroccoli, A., Ficco, D. B. M., Platani, C., D’Egidio, M. G., & Borrelli, G. M. (2025). Prediction of Pasta Colour Considering Traits Involved in Colour Expression of Durum Wheat Semolina. Foods, 14(3), 392. https://doi.org/10.3390/foods14030392