Mechanical and Thermal Properties and Moisture Sorption of Puffed Cereals Made from Brown Rice, Barley, Adlay, and Amaranth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Preparation of Puffed Cereals
2.3. Measurement of Moisture Content and Equilibrium Moisture Content
2.4. Moisture Sorption Isotherm and Measurement of Monomolecular Adsorption Moisture Content
A/(V(1 − A)) = (C − 1)/CVm·A + 1/(CVm)
- A: Water activity of food sample
- V: Moisture content of food sample (g/100 g dry matter)
- Vm: Monomolecular adsorption moisture content (g/100 g dry matter)
- C: Constant determined by the properties of the food sample and temperature
- A/V(1 − A) = A·(C − 1)/C·Vm + 1/C·Vm
- If A/V(1 − A) = y, A = x, (C − 1)/C·Vm = a, and 1/C·Vm = b
- This can be expressed by the linear equation y = ax + b.
- a = (C − 1)/C·Vm... Slope of the straight line
- b = 1/(C − 1)...y–intercept
- C = (b + a)/b
- Vm = 1/(b + a)
- ∴ Vm: monomolecular adsorption (g/100 g dry matter) was calculated
- ∗ The BET formula reportedly fits well in the 0.05–0.35 water activity range.
2.5. Rupture Properties of Puffed Cereals Following Moisture Sorption
2.6. Measurement of Glass Transition Temperature (Tg)
2.7. Observation of Tissue Structure
2.8. Statistical Processing
3. Results and Discussion
3.1. Moisture Sorption Characteristics
3.2. Monomolecular Adsorption Moisture Content
3.3. Rupture Properties of Puffs After Moisture Sorption (Rupture Force)
3.4. Microstructure of Puffed Cereals
3.5. Measurement of Tg
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Japan Society for Food Engineering (Ed.) Food Engineering; Asakura Publishing Co., Ltd.: Tokyo, Japan, 2012; pp. 94–111, 115–117, 120–125. [Google Scholar]
- Matsuno, R.; Yano, T. Physical Chemistry of Foods; Buneido Publishing Co., Ltd.: Tokyo, Japan, 1996; pp. 38–57, 82–98. [Google Scholar]
- Kubota, S.; Ishitani, T.; Sano, Y. Food and Water; Kourin Publishing Co., Ltd.: Tokyo, Japan, 2008; pp. 205–232, 276–279. [Google Scholar]
- Kato, H.; Kurata, T. Food Preservation Science; Buneido Publishing Co., Ltd.: Tokyo, Japan, 1999; pp. 135–149. [Google Scholar]
- Mohsenin, N.N. Physical Properties of Foods; Kourin Publishing Co., Ltd.: Tokyo, Japan, 1982; pp. 31–33. [Google Scholar]
- Noguchi, S. Food and Water Science; Saiwai Publishing Co., Ltd.: Tokyo, Japan, 1992; pp. 169–193. [Google Scholar]
- Japan Society for Food Engineering. Food Engineering Handbook; Asakura Publishing Co., Ltd.: Tokyo, Japan, 2006; pp. 455–456, 503–504, 600–603, 621–623. [Google Scholar]
- Sampaio, M.R.; Marcos, K.S.; Moraes, I.C.F.; Perez, V.H. Moisture adsorption behavior of biscuits formulated using wheat, oatmeal and passion fruit flour. J. Food Process Preserv. 2009, 33, 105–113. [Google Scholar] [CrossRef]
- Martínez-Navarrete, N.; Moraga, G.; Talens, P.; Chiralt, A. Water sorption and the plasticization effect in wafers. Int. J. Food Sci. Technol. 2004, 39, 555–562. [Google Scholar] [CrossRef]
- Van Hecke, E.; Allaf, K.; Bouvier, J.M. Texture and structure of crispy-puffed food products part II: Mechanical properties in puncture. J. Texture Stud. 1998, 29, 617–632. [Google Scholar] [CrossRef]
- Barrett, A.M.; Normand, M.D.; Peleg, M.; Ross, E. Characterization of the jagged stress-strain relationships of puffed extrudates using the fast Fourier transform and fractal analysis. J. Food Sci. 1992, 57, 227–232. [Google Scholar] [CrossRef]
- Norton, C.R.T.; Mitchell, J.R.; Blanshard, J.M.V. Fractal determination of crisp or crackly textures. J. Texture Stud. 1998, 29, 239–253. [Google Scholar] [CrossRef]
- Roopa, B.S.; Mazumder, P.; Bhattacharya, S. Fracture behavior and mechanism of puffed cereal during compression. J. Texture Stud. 2009, 40, 157–171. [Google Scholar] [CrossRef]
- Barrett, A.H.; Kaletunc, G. Quantitative description of fracturability changes in puffed corn extrudates affected by sorption of low levels of moisture. Cereal Chem. 1998, 75, 695–698. [Google Scholar] [CrossRef]
- Fujii, K. Development of a novel foam food made from wheat flour and soy protein isolate. Soy Protein Res. Jpn. 2002, 5, 51–57. [Google Scholar]
- Sato, Y.; Noguchi, S. Water sorption characteristics of dietary fibers. J. Home Econ. Jpn. 1993, 44, 625–631. [Google Scholar]
- Higo, A.; Wada, Y.; Sato, Y. Relationship between physical properties and water layers in commercial confectionary products during moisture sorption processing. J. Jpn. Soc. Food Sci. Technol. 2012, 59, 572–582. [Google Scholar] [CrossRef]
- Suzuki, T. Glassy states of food and its utilization. Food Technol. 2006, 426, 1–9. [Google Scholar]
- Kawai, K.; Kurosaki, K.; Suzuki, T. Analytical approach for the non-equilibrium state of glassy foods affected by its manufacturing process. Cryobiol. Cryotechnol. 2008, 54, 71–77. [Google Scholar]
- Li, Y.; Kloeppel, K.M.; Hsieh, F. Texture of glassy corn cakes as a function of moisture content. J. Food Sci. 1998, 63, 869–872. [Google Scholar] [CrossRef]
- Kagawa, Y. VII Food Ingredient List 2016; Kagawa Nutrition University Press: Tokyo, Japan, 2016; pp. 6, 12, 18. [Google Scholar]
- Takahashi, S.; Kuno, M.; Nishizawa, K.; Kainuma, K. New method for evaluating the texture and sensory attributes of cooked rice. J. Appl. Glycosci. 2000, 47, 343–353. [Google Scholar] [CrossRef]
- Ida, R. Adaptability of a moisture analyzer equipped with a halogen heater to the measurement of water content of unhulled rice. Jpn. J. Crop. Sci. 2016, 85, 173–177. [Google Scholar] [CrossRef]
- Goshima, G.; Aoyama, H.; Nishizawa, K.; Tsuge, H. Popping mechanism of popcorn grain. J. Jpn. Soc. Food Technol. 1988, 35, 147–153. [Google Scholar]
- Wada, Y.; Shimoda, Y.; Higo, A. Effect of absorped moisture on the textural properties of low-moisture foods. J. Home Econ. Jpn. 1997, 48, 597–606. [Google Scholar]
- Wada, Y.; Higo, A. Effect of moisture and temperature on the textural properties of commercial confectionery. J. Jpn. Soc. Food Sci. Technol. 2007, 54, 253–260. [Google Scholar] [CrossRef]
- Mazumder, P.; Roopa, B.S.; Bhattacharya, S. Textural attributes of a model snack food at different moisture contents. J. Food Eng. 2007, 79, 511–516. [Google Scholar] [CrossRef]
- Higo, A.; Wada, Y. Effect of modified wheat starches on the textural properties of baked products, such as cookies. J. Food Sci. Technol. 2008, 55, 224–232. [Google Scholar]
- Chang, Y.P.; Cheah, P.B.; Seow, C.C. Plasticizing-antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. J. Food Sci. 2000, 65, 445–451. [Google Scholar] [CrossRef]
- Katz, E.E.; Labuza, T.P. Effect of water activity on the sensory crispness and mechanical deformation of snack food products. J. Food Sci. 1981, 46, 403–409. [Google Scholar] [CrossRef]
- Chang, Y.P.; Cheah, P.B.; Seow, C.C. Variations in flexural and compressive fracture behavior of a brittle cellular food (dried bread) in response to moisture sorption. J. Texture Stud. 2000, 31, 525–540. [Google Scholar] [CrossRef]
- Wada, Y.; Ogawa, K.; Higo, A. Changes in breaking properties of commercial confectionery with moisture absorption and their factors. J. Jpn. Soc. Food Sci. Technol. 2002, 49, 771–781. [Google Scholar] [CrossRef]
- Higo, A.; Wada, Y.; Sato, Y. Relationship between physical properties and mono-and multilayer water contents of a white wheat baked product at various temperatures and relative humidity. J. Jpn. Soc. Food Sci. Technol. 2014, 61, 486–496. [Google Scholar] [CrossRef]
- Farroni, A.E.; Matiacevich, S.B.; Guerrero, S.; Alzamora, S.; Buera, M.D.P. Multi-level approach for the analysis of water effects in corn flakes. J. Agric. Food Chem. 2008, 56, 6447–6453. [Google Scholar] [CrossRef]
- Heidenreich, S.; Jaros, D.; Rohm, H.; Ziems, A. Relationship between water activity and crispness of extruded rice crisps. J. Texture Stud. 2004, 35, 621–633. [Google Scholar] [CrossRef]
- Takahashi, A.; Fujii, K. Examination of the mechanical properties of puffed cereals. J. Cookery Sci. Jpn. 2021, 54, 14–23. [Google Scholar]
- Masavang, S.; Roudaut, G.; Champion, D. Identification of complex glass transition phenomena by DSC in expanded ce-real-based food extrudates: Impact of plasticization by water and sucrose. J. Food Eng. 2019, 245, 43–52. [Google Scholar] [CrossRef]
Energy (kcal) | Protein (g) | Fat (g) | Carbo- Hydrate (g) | Potassium (mg) | Calcium (mg) | Iron (mg) | Dietary- Fiber (g) | |
---|---|---|---|---|---|---|---|---|
Brown rice | 356 | 6.5 | 3.3 | 74.3 | 160 | 13 | 1 | 3.1 |
Barley | 343 | 7 | 2.1 | 76.2 | 170 | 17 | 1.2 | 8.7 |
Adlay | 360 | 13.3 | 1.3 | 72.2 | 85 | 6 | 0.4 | 0.6 |
Amaranth | 358 | 12.7 | 6 | 64.9 | 600 | 160 | 9.4 | 7.4 |
0.7 MPa | 0.9 MPa | 1.1 MPa | ||
---|---|---|---|---|
15 °C | Brown rice | 14.6 | 17.3 | 16.6 |
Barley | 14.7 | 16.3 | 17.2 | |
Adley | 15.6 | 15.3 | 15.8 | |
Amaranth | 14.4 | 14.6 | 13.6 | |
25 °C | Brown rice | 15.1 | 13.2 | 16.0 |
Barley | 12.7 | 13.2 | 12.5 | |
Adley | 9.72 | 14.4 | 13.7 | |
Amaranth | 13.0 | 10.2 | 17.8 | |
35 °C | Brown rice | 12.3 | 16.8 | 13.6 |
Barley | 16.5 | 14.5 | 13.9 | |
Adley | 16.1 | 16.2 | 13.2 | |
Amaranth | 10.6 | 12.7 | 13.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, A.; Fujii, K. Mechanical and Thermal Properties and Moisture Sorption of Puffed Cereals Made from Brown Rice, Barley, Adlay, and Amaranth. Foods 2025, 14, 189. https://doi.org/10.3390/foods14020189
Takahashi A, Fujii K. Mechanical and Thermal Properties and Moisture Sorption of Puffed Cereals Made from Brown Rice, Barley, Adlay, and Amaranth. Foods. 2025; 14(2):189. https://doi.org/10.3390/foods14020189
Chicago/Turabian StyleTakahashi, Atsuko, and Keiko Fujii. 2025. "Mechanical and Thermal Properties and Moisture Sorption of Puffed Cereals Made from Brown Rice, Barley, Adlay, and Amaranth" Foods 14, no. 2: 189. https://doi.org/10.3390/foods14020189
APA StyleTakahashi, A., & Fujii, K. (2025). Mechanical and Thermal Properties and Moisture Sorption of Puffed Cereals Made from Brown Rice, Barley, Adlay, and Amaranth. Foods, 14(2), 189. https://doi.org/10.3390/foods14020189