Effects of Acorn Flour Addition on Baking Characteristics of Wheat Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis of Water Absorption
- a—mass of the test tube with wet sediment (g);
- b—mass of the empty centrifuge tube (g);
- w—mass of the weighed sample (g).
2.3. Analysis of Fermentographic Properties
2.4. Analysis of Amylographic Properties
2.5. Analysis of Farinographic Properties
2.6. Analysis of Extensographic Properties
2.7. Bread Making
2.8. Analysis of Technological Properties and Nutritional Value of Bread
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of Acorn Flour Addition on Fermentographic Properties of Wheat Flour
3.2. Effect of Acorn Flour Addition on Farinographic Parameters of Wheat Flour
3.3. Effect of Acorn Flour Addition on Extensographic Parameters of Wheat Flour
3.4. Effect of Acorn Flour Addition on Technological Properties of Wheat Dough and Bread
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oyeyinka, S.A.; Bassey, I.A.V. Composition, functionality, and baking quality of flour from four brands of wheat flour. J. Culin. Sci. Technol. 2023, 1–21. [Google Scholar] [CrossRef]
- Dziki, D.; Krajewska, A.; Findura, P. Particle size as an indicator of wheat flour quality: A review. Processes 2024, 12, 2480. [Google Scholar] [CrossRef]
- Das, R.S.; Tiwari, B.K.; Garcia-Vaquero, M. The Fundamentals of bread making: The science of bread. In Traditional European Breads. An Illustrative Compendium of Ancestral Knowledge and Cultural Heritage; Garcia-Vaquero, M., Pastor, K., Orhun, G.E., McElhatton, A., Rocha, J.M.F., Eds.; Springer: Cham, Switzerland, 2023; pp. 1–40. [Google Scholar] [CrossRef]
- Sun, X.; Koksel, F.; Scanlon, M.G.; Nickerson, M.T. Effects of water, salt, and mixing on the rheological properties of bread dough at large and small deformations: A review. Cereal Chem. 2022, 99, 709–723. [Google Scholar] [CrossRef]
- Baráth, N.; Ungai, D.K.; Kovács, B. Overview of test methods used to classify wheat flour and bread samples–REVIEW. Acta Agrar. Debreceniensis 2023, 2, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ajo, R.Y. Effect of acorn flour substitution on Arabic bread properties. Pak. J. Agric. Sci. 2018, 55, 913–919. [Google Scholar]
- Torabi, S.; Mohtarami, F.; Dabbagh Mazhary, M.R. The influence of acorn flour on physico-chemical and sensory properties of gluten free biscuits. Food Sci. Technol. 2020, 16, 171–181. [Google Scholar] [CrossRef]
- Beltrão Martins, R.; Nunes, M.C.; Ferreira, L.M.M.; Peres, J.A.; Barros, A.I.R.N.A.; Raymundo, A. Impact of acorn flour on gluten-free dough rheology properties. Foods 2020, 9, 560. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Borges, A.; Carvalho, A.P.; Monteiro, M.J.; Pintado, M.M.E. Nutritional characterization of acorn flour (a traditional component of the Mediterranean gastronomical folklore). J. Food Meas. Charact. 2016, 10, 584–588. [Google Scholar] [CrossRef]
- Akcan, T.; Gökçe, R.; Asensio, M.; Estévez, M.; Morcuende, D. Acorn (Quercus spp.) as a novel source of oleic acid and tocopherols for livestock and humans: Discrimination of selected species from Mediterranean forest. J. Food Sci. Technol. 2017, 54, 3050–3057. [Google Scholar] [CrossRef] [PubMed]
- Al-Rousan, W.M.; Ajo, T.Y.; Al-Ismail, K.M.; Shaker, R.R.; Osaili, T.M. Characterization of acorn fruit oils extracted from selected Mediterranean Quercus Species. Grasas Aceites 2013, 64, 554–560. [Google Scholar] [CrossRef]
- Hrušková, M.; Švec, I.; Kadlčíková, I. Effect of chestnut and acorn flour on wheat/wheat-barley flour properties and bread quality. Int. J. Food Stud. 2019, 8, 41–57. [Google Scholar] [CrossRef]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. The influence of acorn flour on rheological properties of gluten-free dough and physical characteristics of the bread. Eur. Food Res. Technol. 2015, 240, 1135–1143. [Google Scholar] [CrossRef]
- Purabdolah, H.; Sadeghi, A.; Ebrahimi, M.; Kasheninejad, M.; Tabarestani, H.S.; Mohamadzadeh, J. Techno-functional properties of the selected antifungal predominant LAB isolated from fermented acorn (Quercus persica). J. Food Meas. Charact. 2020, 14, 1754–1764. [Google Scholar] [CrossRef]
- Švec, I.; Hrušková, M.; Kadlčíková, I. Features of flour composites based on the wheat or wheat-barley flour combined with acorn and chestnut. Croat. J. Food Sci. Technol. 2018, 10, 89–97. [Google Scholar] [CrossRef]
- Gonzaga, M.; Batista, M.; Correia, P.; Guiné, R. Development and characterization of wheat breads with acorn flour. In Proceedings of the ICEUBI2015—International Conference of Engineering: Engineering for Society, Covilhã, Portugal, 2–4 December 2015. [Google Scholar]
- Park, J.Y.; Joo, J.I.; Kim, J.M. Changes in the quality changes of bread added with acorn flour during the storage periods. J. East Asian Soc. Diet. Life 2017, 27, 529–539. [Google Scholar] [CrossRef]
- Skendi, A.; Mouselemidou, P.; Papageorgiou, M.; Papastergiadis, E. Effect of acorn meal-water combinations on technological properties and fine structure of gluten-free bread. Food Chem. 2018, 253, 119–126. [Google Scholar] [CrossRef]
- Mousavi, B.; Ghaderi, S.; Hesarinejad, M.A.; Pourmahmoudi, A. Effect of varying levels of acorn flour on antioxidant, staling and sensory properties of Iranian toast. Int. J. Food Stud. 2021, 10, 322–333. [Google Scholar] [CrossRef]
- Rashid, R.M.S.; Sabir, D.A.; Hawramee, O.K. Effect of sweet acorn flour of common oak (Quercus aegilops L.) on locally Iraqi pastry (kulicha) products. J. Zankoy Sulaimani-Part A 2014, 16, 244–249. [Google Scholar] [CrossRef]
- Korus, A.; Gumul, D.; Krystyjan, M.; Juszczak, L.; Korus, J. Evaluation of the quality, nutritional value and antioxidant activity of gluten—Free biscuits made from corn—Acorn flour or corn– hemp flour biscuits. Eur. Food Res. Technol. 2017, 243, 1429–1438. [Google Scholar] [CrossRef]
- Beltrão Martins, R.; Gouvinhas, I.; Nunes, M.C.; Ferreira, L.M.M.; Peres, J.A.; Raymundo, A.; Barros, A.I.R.N.A. Acorn flour from holm oak (Quercus rotundifolia): Assessment of nutritional, phenolic, and technological profile. Curr. Res. Food Sci. 2022, 5, 2211–2218. [Google Scholar] [CrossRef]
- AOAC Official Methods. Official Methods of Analysis of Association of Official Analytical Chemists, 22nd ed.; AOAC Official Methods: Washington, DC, USA, 2023. [Google Scholar]
- ICC Standard Methods. International Association for Cereal Science and Technology (ICC); Standard Methods of the International Association for Cereal Science and Technology: Detmold, Germany, 2001. [Google Scholar]
- AACC Method 56-20.01. Hydration capacity of pregelatinized cereal products. In Approved Methods of Analysis, 11th ed.; American Association of Cereal Chemists International: St. Paul, MN, USA, 1999.
- Sobczyk, A.; Pycia, K.; Jaworska, G.; Kaszuba, J. Comparison of fermentation strength of the flours obtained from the grain of old varieties and modern breeding lines of spelt (Triticum aestivum ssp. spelta). J. Food Process. Preserv. 2017, 41, e13293. [Google Scholar] [CrossRef]
- Polish Standard PN-EN ISO 7973:2016-01; Cereal Grains and Cereal Preparations—Determination of Stickiness of Flour—Method Using an Amylograph. The Polish Committee for Standardization: Warsaw, Poland, 2016.
- Polish Standard PN-EN ISO 5530-1:2015-01; Wheat Flour—Physical Characteristics of Dough. Part 1. Determination of Water Absorption and Rheological Properties Using a Farinograph. The Polish Committee for Standardization: Warsaw, Poland, 2015.
- Polish Standard PN-EN ISO 5530-2:2015-01; Wheat Flour—Physical Characteristics of Dough. Part 1. Determination of Water Absorption and Rheological Properties Using an Extensograph. The Polish Committee for Standardization: Warsaw, Poland, 2015.
- Mohammadi, M.; Sadeghnia, N.; Azizi, M.H.; Neyestani, T.R.; Mortazavian, A.M. Development of gluten-free flat bread using hydrocolloids: Xanthan and CMC. J. Ind. Eng. Chem. 2014, 20, 1812–1818. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Cini, E. A systematic review of gluten-free dough and bread: Dough rheology, bread characteristics, and improvement strategies. Appl. Sci. 2020, 10, 6559. [Google Scholar] [CrossRef]
- Correia, P.R.; Nunes, M.C.; Beirão-da-Costa, M.L. The effect of starch isolation method on physical and functional properties of Portuguese nut starches. II. Q. rotundifolia Lam. and Q. suber Lam. acorns starches. Food Hydrocoll. 2013, 30, 448–455. [Google Scholar] [CrossRef]
- Taib, M.; Bouyazza, L. Composition, physicochemical properties, and uses of Acorn starch. J. Chem. 2021, 1–9. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, H.; Chen, F.; Tong, P.; Cao, W.; Jiang, Y. Study on structural changes of starches with different amylose content during gelatinization process. Starch-Stärke 2022, 74, 2100269. [Google Scholar] [CrossRef]
- Cappai, M.G.; Alesso, G.A.; Nieddu, G.; Sanna, M.; Pinna, W. Electron microscopy and composition of raw acorn starch in relation to in vivo starch digestibility. Food Funct. 2013, 4, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Irinislimane, H.; Belhaneche-Bensemra, N. Extraction and characterization of starch from oak acorn, sorghum, and potato and adsorption application for removal of Maxilon Red GRL from wastewater. Chem. Eng. Commun. 2017, 204, 897–906. [Google Scholar] [CrossRef]
- Donmez, D.; Pinho, L.; Patel, B.; Desam, P.; Campanella, O.H. Characterization of starch–water interactions and their effects on two key functional properties: Starch gelatinization and retrogradation. Curr. Opin. Food Sci. 2021, 39, 103–109. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, X.; Wang, S.; Zhu, J. Amylose–Lipid Complex. In Starch Structure, Functionality and Application in Foods; Wang, S., Ed.; Springer: Singapore, 2020; pp. 57–76. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Sułek, A.; Wyzińska, M. Evaluation the baking value of passage flours. Res. Rural Dev. 2019, 2, 36–41. [Google Scholar] [CrossRef]
- Saleh, M.; Taibi, A.; AlKhamaiseh, A.M. Effect of wheat bran levels and particle size on the rheological properties of wheat flour dough. Jordan J. Agric. Sci. 2023, 19, 56–68. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Parol-Nadłonek, N.; Kalisz, S.; Krajewska, A.; Stępniewska, S. Wheat bread enriched with black chokeberry (Aronia melanocarpa L.) pomace: Physicochemical properties and sensory evaluation. Appl. Sci. 2023, 13, 6936. [Google Scholar] [CrossRef]
- Miś, A.; Krekora, M.; Niewiadomski, Z.; Dziki, D.; Nawrocka, A. Water redistribution between model bread dough components during mixing. J. Cereal Sci. 2020, 95, 103035. [Google Scholar] [CrossRef]
- Verbeke, C.; Debonne, E.; Versele, S.; Van Bockstaele, F.; Eeckhout, M. Technological evaluation of fiber effects in wheat-based dough and bread. Foods 2024, 13, 2582. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, Z.; Törnük, F.; Durak, M.Z. Effect of oleaster flour addition as a source of dietary fiber on rheological properties of wheat dough. Eur. Food Sci. Eng. 2021, 2, 7–12. [Google Scholar]
- Xu, J.; Li, Y.; Zhao, Y.; Wang, D.; Wang, W. Influence of antioxidant dietary fiber on dough properties and bread qualities: A review. J. Funct. Foods 2021, 80, 104434. [Google Scholar] [CrossRef]
- Yazar, G.; Kokini, J.L.; Smith, B. Impact of endogenous lipids on mechanical properties of wheat gluten fractions, gliadin and glutenin, under small, medium, and large deformations. Lipidology 2024, 1, 30–51. [Google Scholar] [CrossRef]
- Dapčević Hadnađev, T.; Pojić, M.; Hadnađev, M.; Torbica, A. The role of empirical rheology in flour quality control. In Wide Spectra of Quality Control; Akyar, I., Ed.; IntechOpen: London, UK, 2011; pp. 335–360. [Google Scholar]
- Mirza Alizadeh, A.; Peivasteh Roudsari, L.; Tajdar Oranj, B.; Beikzadeh, S.; Barani Bonab, H.; Jazaeri, S. Effect of flour particle size on chemical and rheological properties of wheat flour dough. Iran. J. Chem. Chem. Eng. 2022, 41, 682–694. [Google Scholar] [CrossRef]
- Ma, W.; Yu, Z.; She, M.; Zhao, Y.; Islam, S. Wheat gluten protein and its impacts on wheat processing quality. Front. Agric. Sci. Eng. 2019, 6, 279–287. [Google Scholar] [CrossRef]
- Abd-El-Khalek, M. Combined effect of vital wheat gluten, ascorbic acid and emulsifier addition on the quality characteristics of whole grain barley bread. SVU Int. J. Agric. Sci. 2020, 2, 256–277. [Google Scholar] [CrossRef]
- Forouhar, A.; Saberian, H.; Kaykha, M.E.H. Optimization of producing baguette bread containing acorn flour and evaluating its characteristics. Iran. J. Food Sci. Ind. 2024, 21, 1–14. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, L.; Hong, Y.; Li, Z.; Li, C.; Gu, Z. Combined effects of wheat gluten and carboxymethylcellulose on dough rheological behaviours and gluten network of potato–wheat flour-based bread. Int. J. Food Sci. Technol. 2021, 56, 4149–4158. [Google Scholar] [CrossRef]
- Levent, A.; Aktaş, K. Nutritional composition and staling properties of gluten-free bread-added fermented acorn flour. Food Sci. Nutr. 2024, 12, 1955–1964. [Google Scholar] [CrossRef] [PubMed]
- Torbica, A.; Belović, M.; Popović, L.; Čakarević, J.; Jovičić, M.; Pavličević, J. Comparative study of nutritional and technological quality aspects of minor cereals. J. Food Sci. Technol. 2021, 58, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Sujka, K.; Koczoń, P.; Ceglińska, A.; Reder, M.; Ciemniewska-Żytkiewicz, H. The application of FT-IR spectroscopy for quality control of flours obtained from Polish producers. J. Anal. Methods Chem. 2017, 2017, 4315678. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Chen, W.; Huyan, Z.; Sherazi, S.T.H.; Yu, X. Impact of linolenic acid on oxidative stability of rapeseed oils. J. Food Sci. Technol. 2020, 57, 3184–3192. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhao, J.; Xin, Q.; Yuan, R.; Miao, Y.; Yang, M.; Mo, H.; Chen, K.; Cong, W. Protective effects of oleic acid and polyphenols in extra virgin olive oil on cardiovascular diseases. Food Sci. Hum. Wellness 2024, 13, 529–540. [Google Scholar] [CrossRef]
- Ajo, R.; Al-Rousan, W.M.; Rababah, T.M.; Maghaydah, S.; Angor, M.M.; Alomari, D.; Bartkute-Norkuniene, V. Physiochemical properties and nutritional profile of Mediterranean oak acorn. Afr. J. Food Agric. Nutr. Dev. 2020, 20, 16371–16385. [Google Scholar] [CrossRef]
- Rybicka, I.; Gliszczyńska-Świgło, A. Minerals in grain gluten—Free products. The content of calcium, potassium, magnesium, sodium, copper, iron, manganese and zinc. J. Food Compos. Anal. 2017, 59, 61–67. [Google Scholar] [CrossRef]
Quality Parameters | Wheat Flour (W) | Acorn Flour (A) | |
---|---|---|---|
Color parameters | L* | 92.42 | 50.92 |
a* | 0.21 | 6.81 | |
b* | 7.80 | 23.07 | |
Chemical composition | Water content (g/100 g) | 13.5 | 11.6 |
Carbohydrate content (g/100 g) | 68.7 | 61.8 | |
Protein content (g/100 g) | 12.6 | 4.1 | |
Fat content (g/100 g) | 1.8 | 3.7 | |
Total dietary fiber content (g/100 g) | 2.9 | 16.8 | |
Ash content (g/100 g) | 0.5 | 2.0 | |
Technological value | Wet gluten content (%) | 31 | n.d. |
Gluten spreadability (mm) | 2 | n.d. | |
Zeleny sedimentation index (cm3) | 36 | n.d. | |
Falling number (s) | 374 | n.d. | |
Acidity (cm3 sodium hydroxide/100 g) | 5.56 | n.d. |
Sample Type | Retained Gases (cm3) | Released Gases (cm3) | Volume at Critical Point (cm3) |
---|---|---|---|
W100 + A0 | 177.0 ± 3.6 a | 146.3 ± 7.6 a | 59.7 ± 6.7 a |
W95 + A5 | 175.0 ± 18.5 ab | 201.3 ± 25.0 b | 58.7 ± 5.5 a |
W90 + A10 | 172.3 ± 9.7 ab | 256.3 ± 29.7 c | 58.0 ± 1.5 a |
W85 + A15 | 163.0 ± 5.6 b | 275.3 ± 14.6 cd | 63.0 ± 7.0 a |
W80 + A20 | 113.3 ± 2.5 c | 279.7 ± 35.6 cd | 53.3 ± 5.5 a |
W75 + A25 | 86.3 ± 6.5 d | 339.6 ± 27.1 ef | 42.0 ± 4.4 b |
W70 + A30 | 64.0 ± 4.0 e | 351.3 ± 29.6 f | 37.0 ± 2.0 bc |
W60 + A40 | 50.0 ± 1.0 f | 309.3 ± 9.1 de | 31.7 ± 1.5 c |
W50 + A50 | 13.3 ± 1.5 g | 167.7 ± 5.9 ab | 24.7 ± 1.1 d |
W0 + A100 | 66.3 ± 2.5 e | 15.7 ± 3.2 g | 57.0 ± 4.4 a |
Sample Type | Start of Starch Pasting | End of Starch Pasting | ||
---|---|---|---|---|
Temperature (°C) | Viscosity (BU) | Temperature (°C) | Viscosity (BU) | |
W100 + A0 | 58.6 ± 0.2 a | 17.7 ± 0.6 ab | 85.3 ± 0.6 a | 744.7 ± 6.0 a |
W95 + A5 | 58.6 ± 0.2 a | 17.3 ± 0.6 ab | 86.7 ± 0.1 b | 730.7 ± 8.5 a |
W90 + A10 | 59.6 ± 0.7 ab | 17.3 ± 0.6 ab | 88.6 ± 1.1 c | 726.3 ± 16.0 ab |
W85 + A15 | 60.7 ± 2.2 b | 16.3 ± 2.1 b | 88.2 ± 0.1 c | 722.0 ± 12.0 ab |
W80 + A20 | 59.3 ± 0.2 ab | 18.3 ± 0.6 a | 88.6 ± 0.8 c | 720.0 ± 5.3 ab |
W75 + A25 | 60.5 ± 0.5 b | 17.7 ± 0.6 ab | 88.8 ± 0.6 c | 719.3 ± 17.0 ab |
W70 + A30 | 60.7 ± 0.4 b | 16.7 ± 0.6 ab | 88.5 ± 0.1 c | 694.0 ± 6.2 b |
W60 + A40 | 60.5 ± 0.6 b | 16.3 ± 0.6 b | 88.3 ± 0.4 c | 661.0 ± 7.8 c |
W50 + A50 | 61.3 ± 0.5 b | 17.3 ± 1.5 ab | 88.5 ± 0.5 c | 638.7 ± 3.1 c |
W0 + A100 | 69.7 ± 1.2 c | 16.7 ± 0.6 ab | 99.9 ± 0.1 d | 531.0 ± 4.3 d |
Sample Type | Consistency (FU) | Dough Development Time (min) | Dough Stability Time (min) | Degree of Softening (FU) | Quality Number |
---|---|---|---|---|---|
W100 + A0 | 499.3 ± 10.5 ab | 4.7 ± 0.1 a | 9.2 ± 0.2 a | 34.3 ± 1.1 a | 94.3 ± 2.1 a |
W95 + A5 | 483.0 ± 4.6 a, b | 5.7 ± 0.2 ab | 11.9 ± 0.6 b | 21.3 ± 2.5 b | 113.3 ± 6.5 ab |
W90 + A10 | 491.7 ± 3.2 ab | 7.0 ± 0.4 b | 13.5 ± 0.3 c | 13.3 ± 1.5 c | 123.0 ±1.0 b |
W85 + A15 | 513.0 ± 24.5 c | 7.5 ± 0.4 b | 10.6 ± 0.6 ab | 12.3 ± 2.5 c | 119.7 ± 4.5 b |
W80 + A20 | 494.7 ± 23.7 ab | 12.5 ± 1.0 c | 29.9 ± 2.4 d | 5.7 ± 1.5 d | 236.3 ± 32.6 c |
W75 + A25 | 476.0 ± 47.5 a | 22.4 ± 3.7 d | 36.1 ± 0.2 e | 34.3 ± 10.2 a | 319.7 ± 17.6 d |
Parameter/Time | W100 + A0 | W95 + A5 | W90 + A10 | W85 + A15 | W80 + A20 | W75 + A25 | |
---|---|---|---|---|---|---|---|
Total energy (cm2) | 30 min | 122.3 ± 11.4 a | 84.0 ± 4.6 b | 74.7 ± 7.6 bc | 63.7 ± 2.1 cd | 55.7 ± 4.5 d | 39.0 ± 3.0 e |
60 min | 185.0 ± 8.7 a | 132.0 ± 5.0 b | 82.3 ± 7.0 c | 69.7 ± 8.5 d | 63.3 ± 4.9 d | 43.0 ± 2.6 e | |
90 min | 154.0 ± 3.5 a | 121.3 ± 20.3 b | 70.0 ± 4.0 c | 69.3 ± 7.6 c | 57.3 ± 2.5 cd | 44.3 ± 3.2 d | |
Resistance of dough to extension (EU) | 30 min | 573.0 ± 64.5 a | 651.3 ± 26.1 ab | 773.0 ± 54.1 c | 707.7 ± 26.0 bc | 587.0 ± 60.3 a | 350.3 ± 35.4 d |
60 min | 942.3 ± 4.2 a | 1105.3 ± 15.3 b | 1047.7 ± 27.6 b | 776.0 ± 40.0 c | 529.3 ± 84.2 d | 445.3 ± 44.0 e | |
90 min | 990.0 ± 5.3 a | 1166.0 ± 10.8 b | 618.0 ± 82.5 c | 609.0 ± 88.9 c | 401.7 ± 23.6 d | 329.0 ± 98.6 d | |
Extensibility (mm) | 30 min | 128.7 ± 0.6 a | 95.7 ± 1.1 b | 73.7 ± 3.1 c | 67.3 ± 3.2 d | 59.3 ± 2.3 e | 59.33 ± 3.5 e |
60 min | 125.0 ± 3.6 a | 93.3 ± 4.2 b | 63.7 ± 3.2 c | 55.3 ± 4.7 d | 56.3 ± 1.5 d | 56.0 ± 3.0 d | |
90 min | 104.7 ± 2.1 a | 88.7 ± 3.5 b | 55.3 ± 0.6 c | 56.7 ± 1.5 c | 53.7 ± 1.5 c | 56.3 ± 3.1 c | |
Maximum resistance at breaking point (EU) | 30 min | 713.7 ± 70.1 ab | 665.3 ± 27.4 a | 776.3 ± 55.0 b | 762.0 ± 22.3 ab | 742.7 ± 47.7 ab | 442.0 ± 72.2 c |
60 min | 1137.7 ± 22.7 a | 1164.7 ± 5.5 a | 1257.0 ± 19.7 a | 1103.0 ± 68.1 a | 885.3 ± 19.2 b | 560.7 ± 40.8 c | |
90 min | 1224.7 ± 6.4 a | 1237.7 ± 13.9 a | 1122.0 ± 95.4 a | 1064.3 ± 77.7 a | 796.0 ± 20.9 b | 564.0 ± 26.5 c | |
Ratio number | 30 min | 4.4 ± 0.5 a | 6.8 ± 0.2 b | 10.5 ± 0.2 c | 10.5 ± 0.9 c | 9.9 ± 0.8 c | 5.9 ± 0.7 d |
60 min | 7.5 ± 0.1 a | 11.9 ± 0.7 b | 16.5 ± 0.52 c | 14.1 ± 0.9 d | 9.4 ± 1.7 e | 8.0 ± 1.0 ae | |
90 min | 9.5 ± 0.1 a | 13.1 ± 0.7 b | 11.1 ± 1.4 a | 10.7 ± 1.3 a | 7.3 ± 0.5 c | 5.8 ± 0.6 c |
Bread Samples | Dough Yield (%) | Bread Yield (%) | Bread Volume (cm3) | Oven Losses (%) | Total Losses (%) | Crumb Hardness (N) |
---|---|---|---|---|---|---|
W100 + A0 | 181.1 ± 1.0 a | 152.7 ± 2.8 a | 805.0 ± 7.1 a | 7.2 ± 1.1 a | 15.7 ± 1.1 a | 20.15 ± 0.56 a |
W90 + A10 | 189.7 ± 2.1 b | 158.0 ± 4.3 a | 668.0 ± 19.5 b | 9.5 ± 1.8 abc | 16.7 ± 1.8 a | 24.32 ± 1.41 b |
W80 + A20 | 200.4 ± 1.5 c | 168.6 ± 4.4 b | 571.8 ± 3.3 c | 7.7 ± 1.1 ab | 15.8 ± 2.5 a | 27.75 ± 0.67 c |
W70 + A30 | 208.7 ± 0.8 d | 174.0 ± 1.2 b | 484.9 ± 6.6 d | 10.3 ± 0.4 c | 16.6 ± 0.3 a | 29.15 ± 1.12 cd |
W60 + A40 | 215.6 ± 0.3 e | 182.1 ± 1.3 c | 435.9 ± 4.3 e | 8.1 ± 0.3 abc | 15.5 ± 0.5 a | 29.24 ± 1.02 cd |
W50 + A50 | 234.9 ± 1.8 f | 186.2 ± 5.1 c | 387.5 ± 15.1 f | 10.0 ± 1.8 bc | 20.7 ± 2.6 b | 30.57 ± 1.04 d |
Nutrient | Bread Samples | |
---|---|---|
W100 + A0 | W70 + A30 | |
Carbohydrate | 46.46 | 40.73 |
Protein | 8.69 | 6.31 |
Fat | 1.25 | 1.48 |
Ash | 0.34 | 0.58 |
Fiber | 2.10 | 4.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabłowska, E.; Tańska, M. Effects of Acorn Flour Addition on Baking Characteristics of Wheat Flour. Foods 2025, 14, 190. https://doi.org/10.3390/foods14020190
Szabłowska E, Tańska M. Effects of Acorn Flour Addition on Baking Characteristics of Wheat Flour. Foods. 2025; 14(2):190. https://doi.org/10.3390/foods14020190
Chicago/Turabian StyleSzabłowska, Emilia, and Małgorzata Tańska. 2025. "Effects of Acorn Flour Addition on Baking Characteristics of Wheat Flour" Foods 14, no. 2: 190. https://doi.org/10.3390/foods14020190
APA StyleSzabłowska, E., & Tańska, M. (2025). Effects of Acorn Flour Addition on Baking Characteristics of Wheat Flour. Foods, 14(2), 190. https://doi.org/10.3390/foods14020190