Valorization of Onion By-Products Bioactive Compounds by Spray Drying Encapsulation Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Spray Drying
2.3. Moisture Content and Water Activity
2.4. Bulk Density, Bulk Tapped Density, Flowability and Cohesiveness
2.5. Water Solubility Index, Water Absorption Index
2.6. Phenol Extraction from Microparticles
2.7. Total Phenolic Content (TPC)
2.8. Total Flavonoids (TF)
2.9. FRAP
2.10. ABTS
2.11. Encapsulation Efficiency (EE%)
2.12. FT-IR Investigation
2.13. Scanning Electron Microscopy (SEM) Analysis
2.14. Storage Stability
2.15. Statistical Analysis
3. Results
3.1. Powders Physical Properties
3.1.1. Moisture Content and Water Activity
3.1.2. Bulk Density, Bulk Tapped Density, Flowability and Cohesiveness
3.1.3. Water Solubility Index, Water Absorption Index
3.1.4. Powders Microstructure
3.2. FT-IR
3.3. Total Flavonoids Content and Encapsulation Efficiency
3.4. Storage Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Union Fruit and Vegetable Production in 2022—Eurostat. Available online: https://ec.europa.eu/eurostat/fr/web/products-eurostat-news/-/ddn-20240301-1 (accessed on 14 December 2024).
- El Mashad, H.M.; Zhang, R.; Pan, Z. Onion and Garlic. In Integrated Processing Technologies for Food and Agricultural By-Products; Academic Press: Cambridge, MA, USA, 2019; pp. 273–296. [Google Scholar] [CrossRef]
- Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Onions—A Global Benefit to Health. Phytother. Res. 2002, 16, 603–615. [Google Scholar] [CrossRef]
- Celano, R.; Docimo, T.; Piccinelli, A.L.; Gazzerro, P.; Tucci, M.; Di Sanzo, R.; Carabetta, S.; Campone, L.; Russo, M.; Rastrelli, L. Onion Peel: Turning a Food Waste into a Resource. Antioxidants 2021, 10, 304. [Google Scholar] [CrossRef] [PubMed]
- Stoica, F.; Rațu, R.N.; Veleșcu, I.D.; Stănciuc, N.; Râpeanu, G. A Comprehensive Review on Bioactive Compounds, Health Benefits, and Potential Food Applications of Onion (Allium cepa L.) Skin Waste. Trends Food Sci. Technol. 2023, 141, 104173. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Radha; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; et al. Onion (Allium cepa L.) Peels: A Review on Bioactive Compounds and Biomedical Activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef] [PubMed]
- Imeneo, V.; De Bruno, A.; Piscopo, A.; Romeo, R.; Poiana, M. Valorization of ‘Rossa Di Tropea’ Onion Waste through Green Recovery Techniques of Antioxidant Compounds. Sustainability 2022, 14, 4387. [Google Scholar] [CrossRef]
- Almeida, A.F.; Borge, G.I.A.; Piskula, M.; Tudose, A.; Tudoreanu, L.; Valentová, K.; Williamson, G.; Santos, C.N. Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Compr. Rev. Food Sci. Food Saf. 2018, 17, 714–731. [Google Scholar] [CrossRef] [PubMed]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and Anti-Inflammatory Activities of Quercetin and Its Derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Osojnik Črnivec, I.G.; Skrt, M.; Šeremet, D.; Sterniša, M.; Farčnik, D.; Štrumbelj, E.; Poljanšek, A.; Cebin, N.; Pogačnik, L.; Smole Možina, S.; et al. Waste Streams in Onion Production: Bioactive Compounds, Quercetin and Use of Antimicrobial and Antioxidative Properties. Waste Manag. 2021, 126, 476–486. [Google Scholar] [CrossRef]
- Pérez-Gregorio, R.M.; García-Falcón, M.S.; Simal-Gándara, J.; Rodrigues, A.S.; Almeida, D.P.F. Identification and Quantification of Flavonoids in Traditional Cultivars of Red and White Onions at Harvest. J. Food Compos. Anal. 2010, 23, 592–598. [Google Scholar] [CrossRef]
- Sellappan, S.; Akoh, C.C. Flavonoids and Antioxidant Capacity of Georgia-Grown Vidalia Onions. J. Agric. Food Chem. 2002, 50, 5338–5342. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary Polyphenols as Potential Nutraceuticals in Management of Diabetes: A Review. J. Diabetes Metab. Disord. 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, G.; de la Rosa, L.A.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Inhibition of α-Amylase by Flavonoids: Structure Activity Relationship (SAR). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 437–447. [Google Scholar] [CrossRef]
- Borah, M.S.; Tiwari, A.; Sridhar, K.; Narsaiah, K.; Nayak, P.K.; Stephen Inbaraj, B. Recent Trends in Valorization of Food Industry Waste and By-Products: Encapsulation and In Vitro Release of Bioactive Compounds. Foods 2023, 12, 3823. [Google Scholar] [CrossRef]
- Prokopov, T.; Chonova, V.; Slavov, A.; Dessev, T.; Dimitrov, N.; Petkova, N. Effects on the Quality and Health-Enhancing Properties of Industrial Onion Waste Powder on Bread. J. Food Sci. Technol. 2018, 55, 5091–5097. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Pareek, S. Dough Rheology, Antioxidants, Textural, Physicochemical Characteristics, and Sensory Quality of Pizza Base Enriched with Onion (Allium cepa L.) Skin Powder. Sci. Rep. 2020, 10, 18669. [Google Scholar] [CrossRef]
- Imeneo, V.; Piscopo, A.; Santacaterina, S.; De Bruno, A.; Poiana, M. Sustainable Recovery of Antioxidant Compounds from Rossa Di Tropea Onion Waste and Application as Ingredient for White Bread Production. Sustainability 2023, 16, 149. [Google Scholar] [CrossRef]
- Bedrníček, J.; Kadlec, J.; Laknerová, I.; Mráz, J.; Samková, E.; Petrášková, E.; Hasoňová, L.; Vácha, F.; Kron, V.; Smetana, P. Onion Peel Powder as an Antioxidant-Rich Material for Sausages Prepared from Mechanically Separated Fish Meat. Antioxidants 2020, 9, 974. [Google Scholar] [CrossRef] [PubMed]
- Ucak, İ.; Khalily, R.; Abuibaid, A.K.M.; Ogunkalu, O.A. Maintaining the Quality of Rainbow Trout (Oncorhynchus mykiss) Fillets by Treatment of Red Onion Peel Extract during Refrigerated Storage: Assessment of Onion Peel Extract in Fish Quality. Prog. Nutr. 2018, 20, 672–678. [Google Scholar] [CrossRef]
- Michalak-Majewska, M.; Teterycz, D.; Muszyński, S.; Radzki, W.; Sykut-Domańska, E. Influence of Onion Skin Powder on Nutritional and Quality Attributes of Wheat Pasta. PLoS ONE 2020, 15, e0227942. [Google Scholar] [CrossRef]
- Marcillo-Parra, V.; Tupuna-Yerovi, D.S.; González, Z.; Ruales, J. Encapsulation of Bioactive Compounds from Fruit and Vegetable By-Products for Food Application–A Review. Trends Food Sci. Technol. 2021, 116, 11–23. [Google Scholar] [CrossRef]
- Buljeta, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Polysaccharides as Carriers of Polyphenols: Comparison of Freeze-Drying and Spray-Drying as Encapsulation Techniques. Molecules 2022, 27, 5069. [Google Scholar] [CrossRef]
- Stoica, F.; Condurache, N.N.; Horincar, G.; Constantin, O.E.; Turturică, M.; Stănciuc, N.; Aprodu, I.; Croitoru, C.; Râpeanu, G. Value-Added Crackers Enriched with Red Onion Skin Anthocyanins Entrapped in Different Combinations of Wall Materials. Antioxidants 2022, 11, 1048. [Google Scholar] [CrossRef]
- Stoica, F.; Condurache, N.N.; Aprodu, I.; Andronoiu, D.G.; Enachi, E.; Stănciuc, N.; Bahrim, G.E.; Croitoru, C.; Râpeanu, G. Value-Added Salad Dressing Enriched with Red Onion Skin Anthocyanins Entrapped in Different Biopolymers. Food Chem. X 2022, 15, 100374. [Google Scholar] [CrossRef] [PubMed]
- Milea, Ș.A.; Aprodu, I.; Enachi, E.; Barbu, V.; Râpeanu, G.; Bahrim, G.E.; Stănciuc, N. Whey Protein Isolate-Xylose Maillard-Based Conjugates with Tailored Microencapsulation Capacity of Flavonoids from Yellow Onions Skins. Antioxidants 2021, 10, 1708. [Google Scholar] [CrossRef] [PubMed]
- Elsebaie, E.M.; Essa, R.Y. Microencapsulation of Red Onion Peel Polyphenols Fractions by Freeze Drying Technicality and Its Application in Cake. J. Food Process Preserv. 2018, 42, e13654. [Google Scholar] [CrossRef]
- Cao, H.; Saroglu, O.; Karadag, A.; Diaconeasa, Z.; Zoccatelli, G.; Conte-Junior, C.A.; Gonzalez-Aguilar, G.A.; Ou, J.; Bai, W.; Zamarioli, C.M.; et al. Available Technologies on Improving the Stability of Polyphenols in Food Processing. Food Front. 2021, 2, 109–139. [Google Scholar] [CrossRef]
- Flamminii, F.; Di Mattia, C.D.; Sacchetti, G.; Neri, L.; Mastrocola, D.; Pittia, P. Physical and Sensory Properties of Mayonnaise Enriched with Encapsulated Olive Leaf Phenolic Extracts. Foods 2020, 9, 997. [Google Scholar] [CrossRef] [PubMed]
- Tatasciore, S.; Santarelli, V.; Neri, L.; González Ortega, R.; Faieta, M.; Di Mattia, C.D.; Di Michele, A.; Pittia, P. Freeze-Drying Microencapsulation of Hop Extract: Effect of Carrier Composition on Physical, Techno-Functional, and Stability Properties. Antioxidants 2023, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- González-Ortega, R.; Faieta, M.; Di Mattia, C.D.; Valbonetti, L.; Pittia, P. Microencapsulation of Olive Leaf Extract by Freeze-Drying: Effect of Carrier Composition on Process Efficiency and Technological Properties of the Powders. J. Food Eng. 2020, 285, 110089. [Google Scholar] [CrossRef]
- Saénz, C.; Tapia, S.; Chávez, J.; Robert, P. Microencapsulation by Spray Drying of Bioactive Compounds from Cactus Pear (Opuntia ficus-indica). Food Chem. 2009, 114, 616–622. [Google Scholar] [CrossRef]
- Robert, P.; Torres, V.; García, P.; Vergara, C.; Sáenz, C. The Encapsulation of Purple Cactus Pear (Opuntia ficus-indica) Pulp by Using Polysaccharide-Proteins as Encapsulating Agents. LWT-Food Sci. Technol. 2015, 60, 1039–1045. [Google Scholar] [CrossRef]
- Pieczykolan, E.; Kurek, M.A. Use of Guar Gum, Gum Arabic, Pectin, Beta-Glucan and Inulin for Microencapsulation of Anthocyanins from Chokeberry. Int. J. Biol. Macromol. 2019, 129, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.D.; Dang, T.T.; Nguyen, T.V.L.; Nguyen, T.T.D.; Nguyen, N.N. Microencapsulation of Roselle (Hibiscus sabdariffa L.) Anthocyanins: Effects of Different Carriers on Selected Physicochemical Properties and Antioxidant Activities of Spray-Dried and Freeze-Dried Powder. Int. J. Food Prop. 2022, 25, 359–374. [Google Scholar] [CrossRef]
- Milea, Ș.A.; Vasile, M.A.; Crăciunescu, O.; Prelipcean, A.M.; Bahrim, G.E.; Râpeanu, G.; Oancea, A.; Stănciuc, N. Co-Microencapsulation of Flavonoids from Yellow Onion Skins and Lactic Acid Bacteria Lead to Multifunctional Ingredient for Nutraceutical and Pharmaceutics Applications. Pharmaceutics 2020, 12, 1053. [Google Scholar] [CrossRef]
- Nunes, G.L.; Etchepare, M.d.A.; Cichoski, A.J.; Zepka, L.Q.; Jacob Lopes, E.; Barin, J.S.; Flores, É.M.d.M.; da Silva, C.d.B.; de Menezes, C.R. Inulin, Hi-Maize, and Trehalose as Thermal Protectants for Increasing Viability of Lactobacillus Acidophilus Encapsulated by Spray Drying. LWT 2018, 89, 128–133. [Google Scholar] [CrossRef]
- Fernandes, R.V.D.B.; Borges, S.V.; Botrel, D.A. Gum Arabic/Starch/Maltodextrin/Inulin as Wall Materials on the Microencapsulation of Rosemary Essential Oil. Carbohydr. Polym. 2014, 101, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.V.d.B.; Silva, E.K.; Borges, S.V.; de Oliveira, C.R.; Yoshida, M.I.; da Silva, Y.F.; do Carmo, E.L.; Azevedo, V.M.; Botrel, D.A. Proposing Novel Encapsulating Matrices for Spray-Dried Ginger Essential Oil from the Whey Protein Isolate-Inulin/Maltodextrin Blends. Food Bioprocess Technol. 2017, 10, 115–130. [Google Scholar] [CrossRef]
- Silva, C.R.d.P.; Figueiredo, J.d.A.; Campelo, P.H.; Silveira, P.G.; Souza, F.d.C.D.A.; Yoshida, M.I.; Borges, S.V. Spray Drying of Aqueous South American Sapote (Matisia cordata) Extract: Influence of Dextrose Equivalent and Dietary Fiber on Physicochemical Properties. Food Bioprocess Technol. 2025, 1–14. [Google Scholar] [CrossRef]
- Teo, A.; Lam, Y.; Lee, S.J.; Goh, K.K.T. Spray Drying of Whey Protein Stabilized Nanoemulsions Containing Different Wall Materials–Maltodextrin or Trehalose. LWT 2021, 136, 110344. [Google Scholar] [CrossRef]
- Millinia, B.L.; Mashithah, D.; Nawatila, R.; Kartini, K. Microencapsulation of Roselle (Hibiscus sabdariffa L.) Anthocyanins: Effects of Maltodextrin and Trehalose Matrix on Selected Physicochemical Properties and Antioxidant Activities of Spray-Dried Powder. Future Foods 2024, 9, 100300. [Google Scholar] [CrossRef]
- Jurmanović, S.; Jug, M.; Safner, T.; Radić, K.; Domijan, A.M.; Pedisić, S.; Šimić, S.; Jablan, J.; Čepo, D.V. Utilization of Olive Pomace as a Source of Polyphenols: Optimization of Microwave-Assisted Extraction and Characterization of Spray-Dried Extract. J. Food Nutr. Res. 2019, 58, 51–62. [Google Scholar]
- Aliakbarian, B.; Paini, M.; Casazza, A.A.; Perego, P. Effect of Encapsulating Agent on Physical-Chemical Characteristics of Olive Pomace Polyphenols-Rich Extracts. Chem. Eng. Trans. 2015, 43, 97–102. [Google Scholar] [CrossRef]
- Waterhouse, G.I.N.; Sun-Waterhouse, D.; Su, G.; Zhao, H.; Zhao, M. Spray-Drying of Antioxidant-Rich Blueberry Waste Extracts; Interplay Between Waste Pretreatments and Spray-Drying Process. Food Bioprocess Technol. 2017, 10, 1074–1092. [Google Scholar] [CrossRef]
- Zanoni, F.; Primiterra, M.; Angeli, N.; Zoccatelli, G. Microencapsulation by Spray-Drying of Polyphenols Extracted from Red Chicory and Red Cabbage: Effects on Stability and Color Properties. Food Chem. 2020, 307, 125535. [Google Scholar] [CrossRef]
- Edrisi Sormoli, M.; Langrish, T.A.G. The Use of a Plug-Flow Model for Scaling-up of Spray Drying Bioactive Orange Peel Extracts. Innov. Food Sci. Emerg. Technol. 2016, 37, 27–36. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Microencapsulation of Pineapple Peel Extract by Spray Drying Using Maltodextrin, Inulin, and Arabic Gum as Wall Matrices. Foods 2020, 9, 718. [Google Scholar] [CrossRef]
- Paini, M.; Aliakbarian, B.; Casazza, A.A.; Lagazzo, A.; Botter, R.; Perego, P. Microencapsulation of Phenolic Compounds from Olive Pomace Using Spray Drying: A Study of Operative Parameters. LWT-Food Sci. Technol. 2015, 62, 177–186. [Google Scholar] [CrossRef]
- Santarelli, V.; Neri, L.; Sacchetti, G.; Di Mattia, C.D.; Mastrocola, D.; Pittia, P. Response of Organic and Conventional Apples to Freezing and Freezing Pre-Treatments: Focus on Polyphenols Content and Antioxidant Activity. Food Chem. 2020, 308, 125570. [Google Scholar] [CrossRef] [PubMed]
- Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C. Encapsulation of Polyphenols and Anthocyanins from Pomegranate (Punica granatum) by Spray Drying. Int. J. Food Sci. Technol. 2010, 45, 1386–1394. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. [2] Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Flamminii, F.; Paciulli, M.; Di Michele, A.; Littardi, P.; Carini, E.; Chiavaro, E.; Pittia, P.; Di Mattia, C.D. Alginate-Based Microparticles Structured with Different Biopolymers and Enriched with a Phenolic-Rich Olive Leaves Extract: A Physico-Chemical Characterization. Curr. Res. Food Sci. 2021, 4, 698–706. [Google Scholar] [CrossRef]
- Wu, S.; Miao, S. Physical Properties and Stickiness of Spray-Dried Food Powders. In Spray Drying for the Food Industry: Unit Operations and Processing Equipment in the Food Industry; Woodhead Publishing: Sawston, UK, 2024; pp. 551–571. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Corke, H. Production and Properties of Spray-Dried Amaranthus Betacyanin Pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Goula, A.M.; Adamopoulos, K.G. A New Technique for Spray Drying Orange Juice Concentrate. Innov. Food Sci. Emerg. Technol. 2010, 11, 342–351. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, G.R.; González-García, R.; Grajales-Lagunes, A.; Ruiz-Cabrera, M.A.; Abud-Archila, M. Spray-Drying of Cactus Pear Juice (Opuntia streptacantha): Effect on the Physicochemical Properties of Powder and Reconstituted Product. Dry. Technol. 2005, 23, 955–973. [Google Scholar] [CrossRef]
- Bassani, A.; Carullo, D.; Rossi, F.; Fiorentini, C.; Garrido, G.D.; Reklaitis, G.V.R.; Bonadies, I.; Spigno, G. Modeling of a Spray-Drying Process for the Encapsulation of High-Added Value Extracts from Food by-Products. Comput. Chem. Eng. 2022, 161, 107772. [Google Scholar] [CrossRef]
- Quek, S.Y.; Chok, N.K.; Swedlund, P. The Physicochemical Properties of Spray-Dried Watermelon Powders. Chem. Eng. Process. Process Intensif. 2007, 46, 386–392. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Michalska-Ciechanowska, A.; Turkiewicz, I.P.; Lech, K.; Nowicka, P. Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules 2020, 25, 3801. [Google Scholar] [CrossRef]
- Dobroslavić, E.; Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Roje, M.; Dragović-Uzelac, V. Physicochemical Properties, Antioxidant Capacity, and Bioavailability of Laurus nobilis L. Leaf Polyphenolic Extracts Microencapsulated by Spray Drying. Foods 2023, 12, 1923. [Google Scholar] [CrossRef] [PubMed]
- Finney, J.; Buffo, R.; Reineccius, G.A. Effects of Type of Atomization and Processing Temperatures on the Physical Properties and Stability of Spray-Dried Flavors. J. Food Sci. 2002, 67, 1108–1114. [Google Scholar] [CrossRef]
- Quispe-Condori, S.; Saldaña, M.D.A.; Temelli, F. Microencapsulation of Flax Oil with Zein Using Spray and Freeze Drying. LWT-Food Sci. Technol. 2011, 44, 1880–1887. [Google Scholar] [CrossRef]
- Hadree, J.; Shahidi, F.; Mohebbi, M.; Abbaspour, M. Evaluation of Effects of Spray Drying Conditions on Physicochemical Properties of Pomegranate Juice Powder Enriched with Pomegranate Peel Phenolic Compounds: Modeling and Optimization by RSM. Foods 2023, 12, 2066. [Google Scholar] [CrossRef] [PubMed]
- Landillon, V.; Cassan, D.; Morel, M.H.; Cuq, B. Flowability, Cohesive, and Granulation Properties of Wheat Powders. J. Food Eng. 2008, 86, 178–193. [Google Scholar] [CrossRef]
- Leturia, M.; Benali, M.; Lagarde, S.; Ronga, I.; Saleh, K. Characterization of Flow Properties of Cohesive Powders: A Comparative Study of Traditional and New Testing Methods. Powder Technol. 2014, 253, 406–423. [Google Scholar] [CrossRef]
- Rocha, J.d.C.G.; de Barros, F.A.R.; Perrone, Í.T.; Viana, K.W.C.; Tavares, G.M.; Stephani, R.; Stringheta, P.C. Microencapsulation by Atomization of the Mixture of Phenolic Extracts. Powder Technol. 2019, 343, 317–325. [Google Scholar] [CrossRef]
- Hong, L.; Chen, L.; Ladika, M.; Li, Y.; Kim-Habermehl, L.; Bergman, R. Impact of Particle Size and Surface Charge Density on Redispersibility of Spray-Dried Powders. Colloids Surf. A Physicochem. Eng. Asp. 2014, 459, 274–281. [Google Scholar] [CrossRef]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Mensink, M.A.; Frijlink, H.W.; Van Der Voort Maarschalk, K.; Hinrichs, W.L.J. Inulin, a Flexible Oligosaccharide I: Review of Its Physicochemical Characteristics. Carbohydr. Polym. 2015, 130, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, E.C.Q.; Calado, V.M.D.A.; Monteiro, M.; Finotelli, P.V.; Torres, A.G.; Perrone, D. Starch, Inulin and Maltodextrin as Encapsulating Agents Affect the Quality and Stability of Jussara Pulp Microparticles. Carbohydr. Polym. 2016, 151, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Yáñez-Fernández, J. Use of Gelatin-Maltodextrin Composite as an Encapsulation Support for Clarified Juice from Purple Cactus Pear (Opuntia stricta). LWT-Food Sci. Technol. 2015, 62, 242–248. [Google Scholar] [CrossRef]
- Rashid, S.; Rakha, A.; Butt, M.S.; Asgher, M. Physicochemical and Techno-Functional Characterization of Inulin Extracted from Chicory Roots and Jerusalem Artichoke Tubers and Exploring Their Ability to Replace the Fat in Cakes. Prog. Nutr. 2018, 20, 191–202. [Google Scholar] [CrossRef]
- Cui, S.W.; Nie, S.; Roberts, K.T. Functional Properties of Dietary Fiber; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 4, ISBN 9780080885049. [Google Scholar]
- Walz, M.; Hirth, T.; Weber, A. Investigation of Chemically Modified Inulin as Encapsulation Material for Pharmaceutical Substances by Spray-Drying. Colloids Surf. A Physicochem. Eng. Asp. 2018, 536, 47–52. [Google Scholar] [CrossRef]
- Mousavi Kalajahi, S.E.; Ghandiha, S. Optimization of Spray Drying Parameters for Encapsulation of Nettle (Urtica dioica L.) Extract. LWT 2022, 158, 113149. [Google Scholar] [CrossRef]
- Mahmoudi, L.; Tavakoilpour, H.; Roozbeh-Nasiraie, L.; Kalbasi-Ashtari, A. Ultrasonication and Encapsulation of Butcher Broom (Ruscus hyrcanus L.) Extract and Its Bioactive Effects on Qualitative Properties, Oxidative Stability and Shelf Life of Cake. Sustain. Chem. Pharm. 2020, 17, 100295. [Google Scholar] [CrossRef]
- Faieta, M.; Corradini, M.G.; Di Michele, A.; Ludescher, R.D.; Pittia, P. Effect of Encapsulation Process on Technological Functionality and Stability of Spirulina Platensis Extract. Food Biophys. 2020, 15, 50–63. [Google Scholar] [CrossRef]
- Papoutsis, K.; Golding, J.B.; Vuong, Q.; Pristijono, P.; Stathopoulos, C.E.; Scarlett, C.J.; Bowyer, M. Encapsulation of Citrus By-Product Extracts by Spray-Drying and Freeze-Drying Using Combinations of Maltodextrin with Soybean Protein and ι-Carrageenan. Foods 2018, 7, 115. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Chen, X.; Quek, S.Y. Effect of Spray Drying on Phenolic Compounds of Cranberry Juice and Their Stability during Storage. J. Food Eng. 2020, 269, 109744. [Google Scholar] [CrossRef]
- Bernstein, A.; Noreña, C.P.Z. Encapsulation of Red Cabbage (Brassica oleracea L. var. capitata L. f. rubra) Anthocyanins by Spray Drying Using Different Encapsulating Agents. Braz. Arch. Biol. Technol. 2015, 58, 944–952. [Google Scholar] [CrossRef]
- Castel, V.; Rubiolo, A.C.; Carrara, C.R. Brea Gum as Wall Material in the Microencapsulation of Corn Oil by Spray Drying: Effect of Inulin Addition. Food Res. Int. 2018, 103, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, H.C.F.; Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Encapsulation Efficiency and Oxidative Stability of Flaxseed Oil Microencapsulated by Spray Drying Using Different Combinations of Wall Materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef]
- Flamminii, F.; Di Mattia, C.D.; Nardella, M.; Chiarini, M.; Valbonetti, L.; Neri, L.; Difonzo, G.; Pittia, P. Structuring Alginate Beads with Different Biopolymers for the Development of Functional Ingredients Loaded with Olive Leaves Phenolic Extract. Food Hydrocoll. 2020, 108, 105849. [Google Scholar] [CrossRef]
- Kacuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR Study of Plant Cell Wall Model Compounds: Pectic Polysaccharides and Hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Krysa, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman Fingerprints of Flavonoids—A Review. Food Chem. 2022, 393, 133430. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Martínez, C.V.; Medina-Torres, L.; González-Laredo, R.F.; Calderas, F.; Sánchez-Olivares, G.; Herrera-Valencia, E.E.; Gallegos Infante, J.A.; Rocha-Guzman, N.E.; Rodríguez-Ramírez, J. Study of Spray Drying of the Aloe Vera Mucilage (Aloe vera barbadensis Miller) as a Function of Its Rheological Properties. LWT-Food Sci. Technol. 2014, 55, 426–435. [Google Scholar] [CrossRef]
- Medina-Torres, L.; GarcÍa-Cruz, E.E.; Calderas, F.; González Laredo, R.F.; Sánchez-Olivares, G.; Gallegos-Infante, J.A.; Rocha-Guzmán, N.E.; RodrÍguez-RamÍrez, J. Microencapsulation by Spray Drying of Gallic Acid with Nopal Mucilage (Opuntia ficus indica). LWT-Food Sci. Technol. 2013, 50, 642–650. [Google Scholar] [CrossRef]
- Barrett, D.M.; Somogyi, L.; Ramaswamy, H.S. Processing Fruits: Science and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; ISBN 9780429117930. [Google Scholar]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Chen, Y.; Martynenko, A. Storage Stability of Cranberry Puree Products Processed with Hydrothermodynamic (HTD) Technology. LWT-Food Sci. Technol. 2017, 79, 543–553. [Google Scholar] [CrossRef]
- Saikia, S.; Mahnot, N.K.; Mahanta, C.L. Effect of Spray Drying of Four Fruit Juices on Physicochemical, Phytochemical and Antioxidant Properties. J. Food Process. Preserv. 2015, 39, 1656–1664. [Google Scholar] [CrossRef]
- Robert, P.; García, P.; Reyes, N.; Chávez, J.; Santos, J. Acetylated Starch and Inulin as Encapsulating Agents of Gallic Acid and Their Release Behaviour in a Hydrophilic System. Food Chem. 2012, 134, 1–8. [Google Scholar] [CrossRef]
- Singh, N.; Chawla, D.; Singh, J. Influence of Acetic Anhydride on Physicochemical, Morphological and Thermal Properties of Corn and Potato Starch. Food Chem. 2004, 86, 601–608. [Google Scholar] [CrossRef]
- Stevens, C.V.; Meriggi, A.; Booten, K. Chemical Modification of Inulin, a Valuable Renewable Resource, and Its Industrial Applications. Biomacromolecules 2001, 2, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Naczk, M. Phenolics in Food and Nutraceuticals; CRC Press: Boca Raton, FL, USA, 2003; pp. 1–559. [Google Scholar] [CrossRef]
- Ding, Z.; Tao, T.; Wang, X.; Prakash, S.; Zhao, Y.; Han, J.; Wang, Z. Influences of Different Carbohydrates as Wall Material on Powder Characteristics, Encapsulation Efficiency, Stability and Degradation Kinetics of Microencapsulated Lutein by Spray Drying. Int. J. Food Sci. Technol. 2020, 55, 2872–2882. [Google Scholar] [CrossRef]
- Chandra, A.; Nair, M.G.; Iezzoni, A.F. Isolation and Stabilization of Anthocyanins from Tart Cherries (Prunus cerasus L.). J. Agric. Food Chem. 1993, 41, 1062–1065. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Xu, C.; Deng, Y.; Wen, B.; Xie, P.; Huang, L. Effect of Geographical Location and Soil Fertility on Main Phenolic Compounds and Fatty Acids Compositions of Virgin Olive Oil from Leccino Cultivar in China. Food Res. Int. 2022, 157, 111207. [Google Scholar] [CrossRef] [PubMed]
- Flores, F.P.; Singh, R.K.; Kong, F. Physical and Storage Properties of Spray-Dried Blueberry Pomace Extract with Whey Protein Isolate as Wall Material. J. Food Eng. 2014, 137, 1–6. [Google Scholar] [CrossRef]
- Tsali, A.; Goula, A.M. Valorization of Grape Pomace: Encapsulation and Storage Stability of Its Phenolic Extract. Powder Technol. 2018, 340, 194–207. [Google Scholar] [CrossRef]
- Pokorný, J.; Schmidt, Š. The Impact of Food Processing in Phytochemicals: The Case of Antioxidants. In Phytochemical Functional Foods; Woodhead Publishing: Sawston, UK, 2003; pp. 298–314. [Google Scholar] [CrossRef]
- Zhu, L.; Du, Q.; Shi, T.; Huang, J.; Deng, J.; Li, H.; Cai, F.; Chen, Q. Analysis of Total Flavonoid Variation and Other Functional Substances in RILs of Tartary Buckwheat, with Near-Infrared Model Construction for Rapid Non-Destructive Detection. Agronomy 2024, 14, 1826. [Google Scholar] [CrossRef]
- Fracassetti, D.; Del Bo’, C.; Simonetti, P.; Gardana, C.; Klimis-Zacas, D.; Ciappellano, S. Effect of Time and Storage Temperature on Anthocyanin Decay and Antioxidant Activity in Wild Blueberry (Vaccinium angustifolium) Powder. J. Agric. Food Chem. 2013, 61, 2999–3005. [Google Scholar] [CrossRef]
- Zorić, Z.; Dragović-Uzelac, V.; Pedisić, S.; Kurtanjek, Ž.; Elez Garofulić, I. Kinetics of the Degradation of Anthocyanins, Phenolic Acids and Flavonols During Heat Treatments of Freeze-Dried Sour Cherry Marasca Paste. Food Technol. Biotechnol. 2014, 52, 101–108. [Google Scholar]
- Zorić, Z.; Pelaić, Z.; Pedisić, S.; Elez Garofulić, I.; Bursać Kovačević, D.; Dragović–Uzelac, V. Effect of Storage Conditions on Phenolic Content and Antioxidant Capacity of Spray Dried Sour Cherry Powder. LWT-Food Sci. Technol. 2017, 79, 251–259. [Google Scholar] [CrossRef]
- Shakoor, A.; Zhang, C.; Xie, J.; Yang, X. Maillard Reaction Chemistry in Formation of Critical Intermediates and Flavour Compounds and Their Antioxidant Properties. Food Chem. 2022, 393, 133416. [Google Scholar] [CrossRef] [PubMed]
MCE 25 | |
---|---|
Protocatechic acid (mL L−1) | 21.56 ± 1.48 |
Rutin (mL L−1) | 33.29 ± 3.12 |
Quercetin-3-O-glucoside (mL L−1) | 102.16 ± 9.23 |
Quercetin (mL L−1) | 155.28 ± 5.32 |
Isorhamnetin (mL L−1) | 6.04 ± 0.07 |
Isorhamnetin 3-O-glucoside (mL L−1) | 8.88 ± 1.08 |
TF (mg CE mL−1) | 1.32 ± 0.05 |
ABTS (µM TE mL−1) | 3.45 ± 0.53 |
DPPH (µM TE mL−1) | 1.61 ± 0.05 |
CI (%) | Flowability | HR | Cohesiveness |
---|---|---|---|
<15 | Very good | <1.2 | Low |
15–20 | Good | 1.2–1.4 | Intermediate |
20–35 | Fair | >1.4 | High |
35–45 | Bad | ||
>45 | Very bad |
MC% | aw | WAI | WSI | Bulk Density g mL−1 | Bulk Tapped Density g mL−1 | CI% | HR | |
---|---|---|---|---|---|---|---|---|
MD/TRb | 1.3 ± 0.05 b | 0.093 ± 0.002 b | 0.14 ± 0.03 bc | 98.65 ± 0.36 a | 0.44 ± 0.01 a | 0.54 ± 0.02 c | 17.63 ± 1.86 d | 1.21 ± 0.03 d |
MD/INUb | 2.3 ± 0.23 a | 0.095 ± 0.007 b | 0.30 ± 0.07 a | 93.33 ± 0.98 b | 0.45 ± 0.02 a | 0.58 ± 0.01 abc | 21.77 ± 1.87 cd | 1.28 ± 0.03 cd |
MD/TR/INUb | 1.7 ± 0.05 ab | 0.106 ± 0.003 b | 0.25 ± 0.08 abc | 95.68 ± 0.79 ab | 0.44 ± 0.01 a | 0.61 ± 0.03 abc | 27.32 ± 3.00 cd | 1.38 ± 0.06 c |
MD/TR | 1.8 ± 0.08 ab | 0.131 ± 0.010 a | 0.09 ± 0.02 c | 97.82 ± 2.57 a | 0.36 ± 0.01 b | 0.56 ± 0.03 bc | 35.74 ± 2.42 b | 1.56 ± 0.06 b |
MD/INU | 1.8 ± 0.13 ab | 0.122 ± 0.005 a | 0.28 ± 0.08 ab | 92.15 ± 2.62 b | 0.36 ± 0.01 b | 0.64 ± 0.02 a | 43.20 ± 0.95 a | 1.76 ± 0.03 a |
MD/TR/INU | 2.5 ± 0.06 a | 0.131 ± 0.005 a | 0.13 ± 0.02 bc | 95.36 ± 0.75 ab | 0.37 ± 0.01 b | 0.62 ± 0.01 ab | 40.24 ± 1.48 ab | 1.67 ± 0.04 ab |
Feed Solution mg QE g−1 dm * | Microparticles mg QE g−1 Powder | EE% | |
---|---|---|---|
MD/T | 0.23 ± 0.01 | 0.17 ± 0.01 | 75 ± 3 |
MD/INU | 0.24 ± 0.03 | 0.22 ± 0.01 | 89 ± 10 |
MD/T/INU | 0.22 ± 0.01 | 0.19 ± 0.01 | 88 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flamminii, F.; D’Alessio, G.; Chiarini, M.; Di Michele, A.; De Bruno, A.; Mastrocola, D.; Di Mattia, C.D. Valorization of Onion By-Products Bioactive Compounds by Spray Drying Encapsulation Technique. Foods 2025, 14, 425. https://doi.org/10.3390/foods14030425
Flamminii F, D’Alessio G, Chiarini M, Di Michele A, De Bruno A, Mastrocola D, Di Mattia CD. Valorization of Onion By-Products Bioactive Compounds by Spray Drying Encapsulation Technique. Foods. 2025; 14(3):425. https://doi.org/10.3390/foods14030425
Chicago/Turabian StyleFlamminii, Federica, Giulia D’Alessio, Marco Chiarini, Alessandro Di Michele, Alessandra De Bruno, Dino Mastrocola, and Carla Daniela Di Mattia. 2025. "Valorization of Onion By-Products Bioactive Compounds by Spray Drying Encapsulation Technique" Foods 14, no. 3: 425. https://doi.org/10.3390/foods14030425
APA StyleFlamminii, F., D’Alessio, G., Chiarini, M., Di Michele, A., De Bruno, A., Mastrocola, D., & Di Mattia, C. D. (2025). Valorization of Onion By-Products Bioactive Compounds by Spray Drying Encapsulation Technique. Foods, 14(3), 425. https://doi.org/10.3390/foods14030425