Plant-Based and Hybrid Patties with Healthy Fats and Broccoli Extract Fortification: More Balanced, Environmentally Friendly Alternative to Meat Prototypes?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients and Patty Preparation
2.2. Experimental Design and Treatments
2.3. Characterization of the Samples
2.3.1. Proximal Analysis of Samples
2.3.2. Microbiological Testing
2.3.3. Physicochemical Characterization of Samples: pH, Weight Loss and Colour
Determination of pH
Determination of Weight Loss
Determination of Colour
2.3.4. Instrumental Texture of Samples
2.3.5. Sensory Analysis of Samples
2.4. Carbon Footprint Characterization
2.5. Statistical Analysis
3. Results and Discussion
3.1. Proximate Analysis of Patties
3.2. Microbiological Testing
3.3. Physicochemical Characterization of Patties: pH, Colour, and Weight Loss
3.4. Instrumental Texture of Patties
3.5. Sensory Analysis of Patties
3.6. Carbon Footprint of Patties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Food and Agriculture Organization of the United Nations. La Agricultura Mundial en la Perspectiva del año 2050. Como Alimental al Mundo 2050, 12–13 October 2009. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/Issues_papers_SP/La_agricultura_mundial.pdf (accessed on 20 November 2024).
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Baune, M.-C.; Jeske, A.-L.; Profeta, A.; Smetana, S.; Broucke, K.; Van Royen, G.; Gibis, M.; Weiss, J.; Terjung, N. Effect of plant protein extrudates on hybrid meatballs—Changes in nutritional composition and sustainability. Future Foods 2021, 4, 100081. [Google Scholar] [CrossRef]
- Aviles, M.V.; Naef, E.F.; Abalos, R.A.; Lound, L.H.; Gómez, M.B.; Olivera, D.F. Use of a rice industry by-product as a meat replacer in a hybrid chicken patty: Technological and sensory impact. Int. J. Gastron. Food Sci. 2023, 31, 100674. [Google Scholar] [CrossRef]
- Van Dooren, C.; Marinussen, M.; Blonk, H.; Aiking, H.; Vellinga, P. Exploring dietary guidelines based on ecological and nutritional values: A comparison of six dietary patterns. Food Policy 2014, 44, 36–46. [Google Scholar] [CrossRef]
- Tijhuis, M.J.; Ezendam, J.; Westenbrink, S.; van Rossum, C.; Temme, L. Replacement of Meat and Dairy by More Sustainable Protein Sources in the Netherlands. Quality of the Diet. National Institute for Public Health and the Environment, RIVM Letter Report 350123001/2011, 2011. Available online: https://rivm.openrepository.com/entities/publication/b519bc8c-5eac-478c-ad1a-9b70d1ab91c3 (accessed on 20 November 2024).
- Grasso, S.; Asioli, D.; Smith, R. Consumer co-creation of hybrid meat products: A cross-country European survey. Food Qual. Prefer. 2022, 100, 104586. [Google Scholar] [CrossRef]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Butz, P.; Tauscher, B. Emerging technologies: Chemical aspects. Food Res. Int. 2002, 35, 279–284. [Google Scholar] [CrossRef]
- Cui, Z.; Yan, H.; Manoli, T.; Mo, H.; Bi, J.; Zhang, H. Advantages and challenges of sous vide cooking. Food Sci. Technol. Res. 2021, 27, 25–34. [Google Scholar] [CrossRef]
- Villaño, D.; Fernández-Pan, I.; Arozarena, Í.; Ibañez, F.C.; Vírseda, P.; Beriain, M.J. Revalorisation of broccoli crop surpluses and field residues: Novel ingredients for food industry uses. Eur. Food Res. Technol. 2023, 249, 3227–3237. [Google Scholar] [CrossRef]
- Connolly, E.L.; Sim, M.; Travica, N.; Marx, W.; Beasy, G.; Lynch, G.S.; Bondonno, C.P.; Lewis, J.R.; Hodgson, J.M.; Blekkenhorst, L.C. Glucosinolates from Cruciferous Vegetables and Their Potential Role in Chronic Disease: Investigating the Preclinical and Clinical Evidence. Front. Pharmacol. 2021, 12, 767975. [Google Scholar] [CrossRef] [PubMed]
- López-Chillón, M.T.; Carazo-Díaz, C.; Prieto-Merino, D.; Zafrilla, P.; Moreno, D.A.; Villaño, D. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin. Nutr. 2019, 38, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Nikmaram, N.; Roohinejad, S.; Khelfa, A.; Zhu, Z.; Koubaa, M. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing. Front. Nutr. 2016, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Zabot, G.L.; Schaefer Rodrigues, F.; Polano Ody, L.; Vinícius Tres, M.; Herrera, E.; Palacin, H.; Córdova-Ramos, J.S.; Best, I.; Olivera-Montenegro, L. Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers 2022, 14, 4194. [Google Scholar] [CrossRef]
- Eylen, D.V.; Oey, I.; Hendrickx, M.; Loey, A.V. Effects of pressure/temperature treatments on stability and activity of endogenous broccoli (Brassica oleracea L. cv. Italica) myrosinase and on cell permeability. J. Food Eng. 2008, 89, 178–186. [Google Scholar] [CrossRef]
- Penalver, J.G.; Aldaya, M.M.; Muez, A.M.; Martín Guindal, A.; Beriain, M.J. Carbon and water footprints of the revalorization of glucosinolates from broccoli by-products: Case study from Spain. Food Bioprod. Process. 2025; submitted. [Google Scholar]
- Janardhanan, R.; Olarte, C.; Sanz, S.; Rota, C.; Beriain, M.J. Combined Effect of High Hydrostatic Pressure, Sous-Vide Cooking, and Carvacrol on the Quality of Veal, Plant-Based, and Hybrid Patties during Storage. Foods 2023, 12, 289. [Google Scholar] [CrossRef] [PubMed]
- Janardhanan, R.; González-Diez, M.; Ibañez, F.C.; Beriain, M.J. Comparison of High Hydrostatic Pressure Processed Plus Sous-Vide Cooked Meat-Based, Plant-Based and Hybrid Patties According to Fat Replacement. Foods 2022, 11, 3678. [Google Scholar] [CrossRef] [PubMed]
- Janardhanan, R.; Virseda, P.; Huerta-Leidenz, N.; Beriain, M.J. Effect of high–hydrostatic pressure processing and sous-vide cooking on physicochemical traits of Biceps femoris veal patties. Meat Sci. 2022, 188, 108772. [Google Scholar] [CrossRef] [PubMed]
- Gonera, A.; Milford, A.B.; Prexl, K.-M.; Romm, J.; Berget, I.; Varela, P. Design-led innovation for more plant-based food: An interdisciplinary approach to more consumer-centric product development. Int. J. Food Des. 2024, 9, 101–128. [Google Scholar] [CrossRef]
- Lefranc-Millot, C.; Teichman-Dubois, V. Protein from Vegetable Sources: A Focus on Pea Protein. In Novel Proteins for Food, Pharmaceuticals and Agriculture; Hayes, M., Ed.; Wiley: Hoboken, NJ, USA, 2018; pp. 197–216. [Google Scholar] [CrossRef]
- Boukid, F.; Rosell, C.M.; Castellari, M. Pea protein ingredients: A mainstream ingredient to (re)formulate innovative foods and beverages. Trends Food Sci. Technol. 2021, 110, 729–742. [Google Scholar] [CrossRef]
- Shanthakumar, P.; Klepacka, J.; Bains, A.; Chawla, P.; Dhull, S.B.; Najda, A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022, 27, 5354. [Google Scholar] [CrossRef] [PubMed]
- Krefting, J. The Appeal of Pea Protein. J. Ren. Nutr. 2017, 27, e31–e33. [Google Scholar] [CrossRef]
- Maningat, C.C.; Jeradechachai, T.; Buttshaw, M.R. Textured wheat and pea proteins for meat alternative applications. Cereal Chem. 2022, 99, 37–66. [Google Scholar] [CrossRef]
- Poyato, C.; Ansorena, D.; Berasategi, I.; Navarro-Blasco, Í.; Astiasarán, I. Optimization of a gelled emulsion intended to supply ω-3 fatty acids into meat products by means of response surface methodology. Meat Sci. 2014, 98, 615–621. [Google Scholar] [CrossRef]
- Janardhanan, R.; Huerta-Leidenz, N.; Ibañez, F.C.; Beriain, M.J. High-pressure processing and sous-vide cooking effects on physicochemical properties of meat-based, plant-based and hybrid patties. LWT 2023, 173, 114273. [Google Scholar] [CrossRef]
- International Organization for Standardization. Meat and Meat Products—Determination of Moisture Content (Reference Method). 1997. Available online: https://www.iso.org/obp/ui/#iso:std:iso:1442:ed-2:v1:en (accessed on 20 November 2024).
- International Organization for Standardization. Meat and Meat Products—Determination of Nitrogen Content (Reference Method). 1978. Available online: https://www.iso.org/obp/ui/#iso:std:iso:937:ed-1:v1:en (accessed on 20 November 2024).
- International Organization for Standardization. Meat and Meat Products—Determination of Total Fat Content. 1973. Available online: https://www.iso.org/obp/ui/#iso:std:iso:1443:ed-1:v1:en (accessed on 20 November 2024).
- International Organization for Standardization. Meat and Meat Products—Determination of Total Ash. 1998. Available online: https://www.iso.org/obp/ui/#iso:std:iso:936:ed-2:v1:en (accessed on 20 November 2024).
- Bird, P.; Fisher, K.; Boyle, M.; Huffman, T.; Juenger, M.; Benzinger, M.J.; Bedinghaus, P.; Flannery, J.; Crowley, E.; Agin, J.; et al. Evaluation of VIDAS® UP Salmonella (SPT) Assay for the Detection of Salmonella in a Variety of Foods and Environmental Samples: Collaborative Study. J. AOAC Int. 2013, 96, 808–821. [Google Scholar] [CrossRef]
- International Organization for Standardization. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.—Part 1: Detection Method. 2017. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/03/60313.html (accessed on 20 November 2024).
- International Organization for Standardization. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 Degrees C Using 5-Bromo-4-Chloro-3-Indolyl Beta-D-Glucuronide (ISO Standard No. 16649-2:2001). 2001. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/98/29824.html (accessed on 20 November 2024).
- International Organization for Standardization. Meat and Meat Products—Measurement of pH—Reference Method. 1999. Available online: https://www.iso.org/obp/ui/#iso:std:iso:2917:ed-2:v1:en (accessed on 20 November 2024).
- Murphy, E.W.; Criner, P.E.; Gray, B.C. Comparisons of methods for calculating retentions of nutrients in cooked foods. J. Agric. Food Chem. 1975, 23, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.P. Color in Food Evaluation. In Encyclopedia of Earth Sciences Series; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Mittal, G.S.; Nadulski, R.; Barbut, S.; Negi, S.C. Textural profile analysis test conditions for meat products. Food Res. Int. 1992, 25, 411–417. [Google Scholar] [CrossRef]
- Jefatura del Estado. Ley Orgánica 3/2018, de 5 de Diciembre, de Protección de Datos Personales y Garantía de los Derechos Digitales. 2018. Available online: https://travesia.mcu.es/server/api/core/bitstreams/72d7e1c0-2b4d-47ed-afd7-f31550f3f35a/content (accessed on 20 November 2024).
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors, 2º Edition. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 14067:2018; Carbon Footprint of Products—Requirements and Guidelines for Quantification. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- Intergovernmental Panel on Climate Change (IPCC). Mitigation of Climate Change, Summary for Policymakers 2022. 2022. Available online: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf (accessed on 10 January 2025).
- Greenhouse Gas Protocol. World Business Council for Sustainable Development, World Resources Institute, Geneva, Switzerland, Revised Edition, 2005. Available online: http://www.ghgprotocol.org/ (accessed on 21 September 2022).
- MITECO, Huella de Carbono de una Explotación Agrícola. Alcance 1+2. Madrid, Spain. 2022. Available online: https://www.miteco.gob.es/content/dam/miteco/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/calculadora_hc_agri_tcm30-485620.xlsx (accessed on 20 August 2023).
- Domínguez-Lacueva, P.; Beriain, M.J.; Aldaya, M.M. The Water Footprint and Carbon Footprint of a Burger and Its Analogues of Plant Origin. Pamplona, Spain, 2022. Available online: https://academica-e.unavarra.es/entities/publication/d68f706f-e555-4077-9874-1bee20af41b4 (accessed on 20 November 2024).
- Tomé, D.; Cordella, C.; Dib, O.; Péron, C. Nitrogen and Protein Content Measurement and Nitrogen to Protein Conversion Factors for Dairy and Soy Protein-Based Foods: A Systematic Review and Modelling Analysis; World Health Organization and Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2019. [Google Scholar]
- Sahu, C.; Patel, S.; Tripathi, A.K. Effect of extrusion parameters on physical and functional quality of soy protein enriched maize based extruded snack. Appl. Food Res. 2022, 2, 100072. [Google Scholar] [CrossRef]
- Cutroneo, S.; Angelino, D.; Tedeschi, T.; Pellegrini, N.; Martini, D.; SINU Young Working Group. Nutritional Quality of Meat Analogues: Results from the Food Labelling of Italian Products (FLIP) Project. Front. Nutr. 2022, 9, 852831. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture, Fisheries and Food. Specifications of the PGI “Ternera de Navarra”. 2004. Available online: https://www.mapa.gob.es/images/es/ternera_de_navarra_2004_08_21_tcm30-209965.pdf (accessed on 16 November 2024).
- Publications Office of the European Union, Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: http://data.europa.eu/eli/reg/2005/2073/2020-03-08 (accessed on 16 November 2024).
- McArdle, R.; Marcos, B.; Kerry, J.P.; Mullen, A. Monitoring the effects of high pressure processing and temperature on selected beef quality attributes. Meat Sci. 2010, 86, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Tóth, A.J.; Dunay, A.; Battay, M.; Illés, C.B.; Bittsánszky, A.; Süth, M. Microbial Spoilage of Plant-Based Meat Analogues. Appl. Sci. 2021, 11, 8309. [Google Scholar] [CrossRef]
- Pang, B.; Bowker, B.; Zhuang, H.; Yang, Y.; Zhang, J. Research Note: Comparison of 3 methods used for estimating cook loss in broiler breast meat. Poult. Sci. 2020, 99, 6287–6290. [Google Scholar] [CrossRef]
- Vu, G.; Zhou, H.; McClements, D.J. Impact of cooking method on properties of beef and plant-based burgers: Appearance, texture, thermal properties, and shrinkage. J. Agric. Food Res. 2022, 9, 100355. [Google Scholar] [CrossRef]
- Jung, S.; Ghoul, M.; De Lamballerie-Anton, M. Influence of high pressure on the color and microbial quality of beef meat. LWT—Food Sci. Technol. 2003, 36, 625–631. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S. Testing of kinetic models: Usefulness of the multiresponse approach as applied to chlorophyll degradation in foods. Food Res. Int. 1999, 32, 261–269. [Google Scholar] [CrossRef]
- Bhuiyan, M.H.R.; Liu, L.; Samaranayaka, A.; Ngadi, M. Characterization of pea composites and feasibility of heat-modulated meat analogs production. Food Chem. 2025, 463, 141282. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-A.; Sheen, S.; Hsu, H.-Y. Combined effects of high pressure processing and sous-vide cooking on the tenderization of proteolytic enzyme-injected chicken breast. LWT 2024, 202, 116213. [Google Scholar] [CrossRef]
- Balny, C. Pressure effects on weak interactions in biological systems. J. Phys. Condens. Matter 2004, 16, S1245–S1253. [Google Scholar] [CrossRef]
- Hu, X.; Xu, X.; Jin, Z.; Tian, Y.; Bai, Y.; Xie, Z. Retrogradation properties of rice starch gelatinized by heat and high hydrostatic pressure (HHP). J. Food Eng. 2011, 106, 262–266. [Google Scholar] [CrossRef]
- Colmenero, F.J.; Carballo, J.; Fernández, P.; Barreto, G.; Solas, M.T. High-pressure-induced changes in the characteristics of low-fat and high-fat sausages. J. Sci. Food Agric. 1997, 75, 61–66. [Google Scholar] [CrossRef]
- Gómez, I.; Sarriés, M.V.; Ibañez, F.C.; Beriain, M.J. Quality Characteristics of a Low-Fat Beef Patty Enriched by Polyunsaturated Fatty Acids and Vitamin D3. J. Food Sci. 2018, 83, 454–463. [Google Scholar] [CrossRef]
- Afshari, R.; Hosseini, H.; Mousavi Khaneghah, A.; Khaksar, R. Physico-chemical properties of functional low-fat beef burgers: Fatty acid profile modification. LWT 2017, 78, 325–331. [Google Scholar] [CrossRef]
- Petracci, M.; Cavani, C. Muscle Growth and Poultry Meat Quality Issues. Nutrients 2011, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bakhsh, A.; Lee, S.-J.; Lee, E.-Y.; Hwang, Y.-H.; Joo, S.-T. Evaluation of Rheological and Sensory Characteristics of Plant-Based Meat Analog with Comparison to Beef and Pork. Food Sci. Anim. Resour. 2021, 41, 983–996. [Google Scholar] [CrossRef] [PubMed]
- Appiani, M.; Cattaneo, C.; Laureati, M. Sensory properties and consumer acceptance of plant-based meat, dairy, fish and eggs analogs: A systematic review. Front. Sustain. Food Syst. 2023, 7, 1268068. [Google Scholar] [CrossRef]
- Fiorentini, M.; Kinchla, A.J.; Nolden, A.A. Role of Sensory Evaluation in Consumer Acceptance of Plant-Based Meat Analogs and Meat Extenders: A Scoping Review. Foods 2020, 9, 1334. [Google Scholar] [CrossRef]
- Yang, Y.; Xiang, D. Effect of Coconut Protein and Xanthan Gum, Soybean Polysaccharide and Gelatin Interactions in Oil-Water Interface. Molecules 2022, 27, 2879. [Google Scholar] [CrossRef] [PubMed]
- Ye, A.; Singh, H. Heat stability of oil-in-water emulsions formed with intact or hydrolysed whey proteins: Influence of polysaccharides. Food Hydrocoll. 2006, 20, 269–276. [Google Scholar] [CrossRef]
- Pérez-Mateos, M.; Hurtado, J.L.; Montero, P.; Fernández-Martín, F. Interactions of k-carrageenan plus other hydrocolloids in fish myosystem. J. Food Sci. 2006, 66, 838–843. [Google Scholar] [CrossRef]
- Inguva, P.; Grasselli, S.; Heng, P.W.S. High pressure homogenization—An update on its usage and understanding. Chem. Eng. Res. Des. 2024, 202, 284–302. [Google Scholar] [CrossRef]
- Silas Souza, A.H.; Amorim, K.A.; Passos, L.P.; Galdino, M.L.S.; Marinho, J.F.U.; Marques, J.S.; Regalado, K.L.D.M.; Pinheiro, A.C.M. The impact of plant-based product denomination on consumer expectations and sensory perception: A study with vegan chocolate dessert. Food Res. Int. 2024, 196, 115069. [Google Scholar] [CrossRef]
- Baune, M.-C.; Broucke, K.; Ebert, S.; Gibis, M.; Weiss, J.; Enneking, U.; Profeta, A.; Terjung, N.; Heinz, V. Meat hybrids–An assessment of sensorial aspects, consumer acceptance, and nutritional properties. Front. Nutr. 2023, 10, 1101479. [Google Scholar] [CrossRef]
- Agence de la Transition Écologique. Base de Données Bilan Carbone. Base Carbone V11. Available online: https://agribalyse.ademe.fr/app (accessed on 16 November 2024).
- The International EPD® System. Environmental Product Declaration for Extra Virgin Olive Oil. Deoleo, Cordoba, Spain, Registration Number: S-P-08356, Mar. 2023. Available online: https://api.environdec.com/api/v1/EPDLibrary/Files/d7e05ffc-fb2d-41ca-265c-08db259f9365/Data (accessed on 16 November 2024).
- Botto, S.; Niccolucci, V.; Rugani, B.; Nicolardi, V.; Bastianoni, S.; Gaggi, C. Towards lower carbon footprint patterns of consumption: The case of drinking water in Italy. Environ. Sci. Policy 2011, 14, 388–395. [Google Scholar] [CrossRef]
- Vauchel, P.; Colli, C.; Pradal, D.; Philippot, M.; Decossin, S.; Dhulster, P.; Dimitrov, K. Comparative LCA of ultrasound-assisted extraction of polyphenols from chicory grounds under different operational conditions. J. Clean. Prod. 2018, 196, 1116–1123. [Google Scholar] [CrossRef]
- Desjardins, R.; Worth, D.; Vergé, X.; Maxime, D.; Dyer, J.; Cerkowniak, D. Carbon Footprint of Beef Cattle. Sustainability 2012, 4, 3279–3301. [Google Scholar] [CrossRef]
- Muthu, S.S. (Ed.) Assessment of Carbon Footprint in Different Industrial Sectors, Volume 1; EcoProduction; Springer: Singapore, 2014. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Ibañez, F.C.; Domínguez-Lacueva, P.; Murillo-Arbizu, M.T.; Rubio-Varas, M.; Soret, B.; Beriain, M.J. Indicators and Recommendations for Assessing Sustainable Healthy Diets. Foods 2021, 10, 999. [Google Scholar] [CrossRef] [PubMed]
- Ivanovich, C.C.; Sun, T.; Gordon, D.R.; Ocko, I.B. Future warming from global food consumption. Nat. Clim. Change 2023, 13, 297–302. [Google Scholar] [CrossRef]
- Schneider, H.; Samaniego, J.L. La Huella del Carbono en la Producción, Distribución y Consumo de Bienes y Servicios’, Comisión Económica para América Latina y el Caribe, Santiago de Chile, Mar. 2010. Available online: https://repositorio.cepal.org/server/api/core/bitstreams/f3677647-3a1c-4326-8342-5e10bfa2fc40/content (accessed on 20 November 2024).
- Heller, M.C.; Keoleian, G.A. Beyond Meat’s Beyond Burger Life Cycle Assessment: A Detailed Comparison Between a Plant-Based and an Animal-Based Protein Source. University of Michigan, Michigan, CSS18-10, Sep. 2018. Available online: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/192044/CSS18-10.pdf?sequence=1&isAllowed=y (accessed on 17 November 2024).
- CarbonCloud Data Base. Available online: https://apps.carboncloud.com/climatehub/agricultural-reports/benchmarks/0953b011-cd2a-4b0d-b8a3-c2d2ea5f83bf (accessed on 17 November 2024).
- Saget, S.; Porto Costa, M.; Santos, C.S.; Vasconcelos, M.; Styles, D.; Williams, M. Comparative life cycle assessment of plant and beef-based patties, including carbon opportunity costs. Sustain. Prod. Consum. 2021, 28, 936–952. [Google Scholar] [CrossRef]
- Fresán, U.; Mejia, M.A.; Craig, W.J.; Jaceldo-Siegl, K.; Sabaté, J. Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content. Sustainability 2019, 11, 3231. [Google Scholar] [CrossRef]
- Takacs, B.; Stegemann, J.A.; Kalea, A.Z.; Borrion, A. Comparison of environmental impacts of individual meals—Does it really make a difference to choose plant-based meals instead of meat-based ones? J. Clean. Prod. 2022, 379, 134782. [Google Scholar] [CrossRef]
- Aimutis, W.R.; Shirwaiker, R. A perspective on the environmental impact of plant-based protein concentrates and isolates. Proc. Natl. Acad. Sci. USA 2024, 121, e2319003121. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.A.; Domingo, N.G.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Image of High Hydrostatic Pressures Machinery of the Experimental Design Flow Chard. Available online: https://www.smartchain-platform.eu/de/innovation/high-hydrostatic-pressure (accessed on 12 November 2024).
- Image of Sous-Vide Machinery of the Experimental Design Flow Chard. Available online: https://frigeriahosteleria.com/cocedor-sous-vide/10165-maquina-coccion-al-vacio-25-litros-sousvide-25.html (accessed on 12 November 2024).
Ingredients (%) | Patties | ||
---|---|---|---|
Meat | Hybrid | Plant-Based | |
Beef meat | 72.6 | 36.3 | NA |
Pea meal | NA | 36.3 | 72.6 |
Emulsion | 21.3 | 21.3 | 21.3 |
Broccoli extract | 4.7 | 4.7 | 4.7 |
Salt | 1.4 | 1.4 | 1.4 |
Protein Matrix | Treatment | Moisture% | Ashes% | Protein% | Fat% |
---|---|---|---|---|---|
Hybrid samples | Raw | 53.13 (0.43) | 3.72 (0.07) a | 15.48 (0.23) a | 7.95 (0.15) |
HHP | 52.91 (0.42) | 2.87 (0.23) b | 14.72 (0.45) ab | 8.12 (0.31) | |
VC | 53.08 (0.18) | 2.74 (0.12) b | 14.27 (0.49) b | 8.36 (0.12) | |
HHP + VC | 52.77 (0.28) | 2.91 (0.10) b | 14.47 (0.34) b | 7.98 (0.28) | |
Meat samples | Raw | 68.44 (0.23) a | 2.39 (0.30) | 17.56 (0.19) ab | 7.09 (0.15) a |
HHP | 67.68 (0.51) b | 2.63 (0.12) | 16.90 (0.41) b | 6.99 (0.16) a | |
VC | 67.70 (0.33) b | 2.45 (0.16) | 17.69 (0.58) ab | 6.11 (0.35) b | |
HHP + VC | 68.45 (0.60) a | 2.57 (0.25) | 17.90 (0.60) a | 6.51 (0.20) ab | |
Plant-based samples | Raw | 37.86 (0.29) | 3.16 (0.07) | 11.87 (0.06) a | 7.53 (0.02) b |
HHP | 37.70 (0.36) | 2.78 (0.33) | 12.09 (0.06) a | 7.98 (0.10) a | |
VC | 38.59 (1.14) | 2.91 (0.25) | 11.44 (0.30) b | 7.86 (0.19) ab | |
HHP + VC | 38.12 (0.40) | 2.89 (0.07) | 11.98 (0.08) a | 7.52 (0.13) b |
Protein Matrix | Treatment | pH | Weight Loss% | Luminosity | Coordinate a* | Coordinate b* |
---|---|---|---|---|---|---|
Hybrid samples | Raw | 5.59 (0.04) b | 6.72 (2.00) | 43.89 (2.82) d | −0.54 (1.28) b | 36.38 (4.27) b |
HHP | 5.81 (0.07) b | 4.08 (3.54) | 47.08 (1.34) b | −1.67 (0.80) c | 37.71 (4.13) b | |
VC | 5.72 (0.09) b | 4.62 (1.05) | 45.80 (1.40) c | 0.35 (0.76) a | 43.41 (5.87) a | |
HHP + VC | 6.29 (0.48) a | 5.41 (1.54) | 48.83 (0.70) a | −0.84 (0.71) b | 45.11 (1.16) a | |
Meat samples | Raw | 5.29 (0.03) c | 5.77 (1.61) b | 32.06 (2.80) d | 16.79 (1.66) a | 27.33 (3.08) b |
HHP | 5.55 (0.04) b | 7.55 (2.64) ab | 44.17 (1.71) b | 10.50 (1.50) c | 27.11 (4.30) b | |
VC | 5.49 (0.05) bc | 3.42 (0.46) b | 40.83 (2.15) c | 13.42 (1.70) b | 30.45 (3.67) a | |
HHP + VC | 5.97 (0.47) a | 11.30 (5.08) a | 46.41 (2.71) a | 7.98 (1.33) d | 29.39 (2.62) ab | |
Plant-based samples | Raw | 5.75 (0.03) b | 5.65 (2.63) a | 38.19 (1.24) b | −10.68 (0.51) c | 49.87 (5.59) c |
HHP | 5.75 (0.05) b | 6.43 (6.22) a | 37.82 (1.23) b | −9.25 (1.19) b | 53.81 (7.80) c | |
VC | 5.71 (0.03) b | 1.01 (0.71) b | 41.01 (2.50) a | −7.35 (1.66) a | 57.59 (6.45) ab | |
HHP + VC | 6.11 (0.46) a | 1.85 (0.79) b | 40.82 (0.54) a | −7.25 (0.39) a | 61.98 (1.60) a |
Protein Matrix | Treatment | Hardness (N) | Springiness | Cohesiveness | Gumminess | Chewiness (N) |
---|---|---|---|---|---|---|
Hybrid samples | Raw | 0.35 (0.10) b | 0.77 (0.26) a | 0.46 (0.18) a | 0.16 (0.09) b | 0.13 (0.08) |
HHP | 0.33 (0.11) b | 0.86 (0.13) a | 0.50 (0.09) a | 0.18 (0.08) b | 0.15 (0.07) | |
VC | 1.13 (0.76) a | 0.44 (0.46) b | 0.29 (0.10) b | 0.28 (0.18) b | 0.24 (0.34) | |
HHP + VC | 1.48 (1.09) a | 0.40 (0.12) b | 0.31 (0.06) b | 0.45 (0.33) a | 0.18 (0.16) | |
Meat samples | Raw | 0.28 (0.05) ab | 0.78 (0.16) a | 0.44 (0.10) a | 0.12 (0.04) a | 0.10 (0.05) a |
HHP | 0.21 (0.07) b | 0.74 (0.18) a | 0.41 (0.10) b | 0.08 (0.03) bc | 0.07 (0.04) b | |
VC | 0.22 (0.05) ab | 0.47 (0.19) b | 0.31 (0.07) c | 0.07 (0.01) c | 0.03 (0.04) c | |
HHP + VC | 0.30 (0.25) a | 0.55 (0.23) b | 0.36 (0.08) b | 0.10 (0.08) ab | 0.05 (0.03) bc | |
Plant-based samples | Raw | 1.08 (0.52) c | 0.43 (0.63) a | 0.25 (0.13) a | 0.25 (0.17) b | 0.09 (0.14) b |
HHP | 2.65 (2.83) b | 0.33 (0.21) ab | 0.25 (0.10) a | 0.55 (0.69) b | 0.10 (0.06) b | |
VC | 2.07 (1.24) bc | 0.16 (0.8) b | 0.14 (0.07) b | 0.32 (0.30) b | 0.05 (0.06) b | |
HHP + VC | 4.24 (2.21) a | 0.24 (0.07) ab | 0.19 (0.05) ab | 0.88 (0.54) a | 0.22 (0.17) a |
Prototype | Ingredients | % | Quantity/Patty (150 g) | Emission Factor kg CO2 eq/kg | Reference | Origin | kg CO2 eq/1 ud of Meat Patty | kg CO2 eq/1 ud of Hybrid Patty | kg CO2 eq/1 ud of Plant-Based Patty |
---|---|---|---|---|---|---|---|---|---|
Meat patty | Meat | 72.63 | 108.94 | 13.93 | [47] | Navarra | 1.52 | - | - |
Plant-based patty | Green pea flour | 72.63 | 108.94 | 0.13 | Present study | Navarra | - | - | 0.014 |
Hybrid patty | Meat | 36.31 | 54.47 | 13.93 | [47] | Navarra | - | 0.76 | - |
Green pea flour | 36.31 | 54.47 | 0.13 | Present study | Navarra | - | 0.007 | - | |
Common ingredients | Broccoli extract | 4.69 | 7.03 | 9.91 | [17] | Navarra | 0.07 | 0.07 | 0.07 |
Salt | 1.41 | 2.11 | 0.60 | [76] | France | 0.001 | 0.001 | 0.001 | |
Olive oil | 5.07 | 7.60 | 2.22 | [77] | South Spain | 0.02 | 0.02 | 0.02 | |
Linseed oil | 3.38 | 5.07 | 3.54 | [76] | France | 0.02 | 0.02 | 0.02 | |
Water | 12.35 | 18.52 | 1.35 × 10−3 | [78] | Italy | 2.49 × 10−5 | 2.49 × 10−5 | 2.49 × 10−5 | |
Kappa-carrageenan | 0.32 | 0.48 | - | - | - | - | - | ||
Xanthan gum | 0.16 | 0.24 | - | - | - | - | - | ||
Polysorbate | 0.01 | 0.02 | - | - | - | - | - | ||
Processing | Meat | 0 | [46,47] | UPNA Navarra | 0 | 0 | 0 | ||
Plant-based | 0 | ||||||||
Hybrid | 0 | ||||||||
Total result | 1.62 | 0.87 | 0.12 |
Meat Patty (150 g) | Hybrid Patty (150 g) | Plant-Based Patty (150 g) | Source | Note | Plant-Protein Ingredient |
---|---|---|---|---|---|
1.62 | 0.87 | 0.12 | Present study | Navarra, Spain | Native Pea |
2.09 | 1.09 | 0.16 | [47] | Navarra, Spain | Extruded Soy |
4.81 | - | 0.53 | [85] 1 | North America | Isolated Pea |
4.67 | - | 0.2 | [86] 1 | Sweden | Isolated Pea |
8.76 | [87] 2 | Ireland Brazil United Kingdom | Mix of legumes | ||
5.97 | |||||
1.99 | |||||
- | 0.41 | 0.32 | [88] 2,3 | Global | Average of Soy-based products |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penalver, J.G.; Aldaya, M.M.; Villaño, D.; Vírseda, P.; Beriain, M.J. Plant-Based and Hybrid Patties with Healthy Fats and Broccoli Extract Fortification: More Balanced, Environmentally Friendly Alternative to Meat Prototypes? Foods 2025, 14, 472. https://doi.org/10.3390/foods14030472
Penalver JG, Aldaya MM, Villaño D, Vírseda P, Beriain MJ. Plant-Based and Hybrid Patties with Healthy Fats and Broccoli Extract Fortification: More Balanced, Environmentally Friendly Alternative to Meat Prototypes? Foods. 2025; 14(3):472. https://doi.org/10.3390/foods14030472
Chicago/Turabian StylePenalver, Josemi G., Maite M. Aldaya, Débora Villaño, Paloma Vírseda, and Maria Jose Beriain. 2025. "Plant-Based and Hybrid Patties with Healthy Fats and Broccoli Extract Fortification: More Balanced, Environmentally Friendly Alternative to Meat Prototypes?" Foods 14, no. 3: 472. https://doi.org/10.3390/foods14030472
APA StylePenalver, J. G., Aldaya, M. M., Villaño, D., Vírseda, P., & Beriain, M. J. (2025). Plant-Based and Hybrid Patties with Healthy Fats and Broccoli Extract Fortification: More Balanced, Environmentally Friendly Alternative to Meat Prototypes? Foods, 14(3), 472. https://doi.org/10.3390/foods14030472