Lipids in Clinical Nutrition and Health: Narrative Review and Dietary Recommendations
Abstract
:1. Introduction
Aims
2. Materials and Methods
3. Results and Discussion
3.1. Definition and Classification of Lipids
3.2. Biological Role of Lipids
3.3. Dietary Sources of Lipids
3.4. Lipid Metabolism
3.5. Lipids and Energy Homeostasis
3.6. Clinical Significance of Different Lipid Types and Mechanisms Affecting Health
3.7. Lipids in Therapeutic Diets
3.8. Debate on Saturated and Trans Fats
3.9. Lipid Supplements and Functional Foods
3.10. ESPEN Guidelines and Recommendation for Lipids
3.11. Implications of Lipids for Clinical Practice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhang, T.; Liang, Y.; Jiang, L.; Sui, X. Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. J. Agric. Food Chem. 2021, 69, 8929–8943. [Google Scholar] [CrossRef] [PubMed]
- Amin, K.A.; Homeida, A.M.; El Mazoudy, R.H.; Hashim, K.S.; Garelnabi, M. Dietary Lipids in Health and Disease. J. Lipids 2019, 2019, 5729498. [Google Scholar] [CrossRef] [PubMed]
- Castro-Alves, V.; Orešič, M.; Hyötyläinen, T. Lipidomics in Nutrition Research. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Hyötyläinen, T.; Bondia-Pons, I.; Orešič, M. Lipidomics in Nutrition and Food Research. Mol. Nutr. Food Res. 2013, 57, 1306–1318. [Google Scholar] [CrossRef]
- Raman, M.; Almutairdi, A.; Mulesa, L.; Alberda, C.; Beattie, C.; Gramlich, L. Parenteral Nutrition and Lipids. Nutrients 2017, 9, 388. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Liu, R.; Chang, M.; Wei, W.; Jin, Q.; Wang, X. New Perspective toward Nutritional Support for Malnourished Cancer Patients: Role of Lipids. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1381–1421. [Google Scholar] [CrossRef]
- Starace, E.; De Pasquale, G.; Morenghi, E.; Crippa, C.; Matteucci, S.; Pieri, G.; Soekeland, F.; Gibbi, S.M.; Lo Cricchio, G.; Reggiani, F.; et al. Hospital Malnutrition in the Medicine and Neurology Departments: A Complex Challenge. Nutrients 2023, 15, 5061. [Google Scholar] [CrossRef]
- Frydrych, A.; Krośniak, M.; Jurowski, K. The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients-Critical Review: State-of-the-Art. Nutrients 2023, 15, 1012. [Google Scholar] [CrossRef]
- Frydrych, A.; Frankowski, M.; Jurowski, K. The Toxicological Analysis and Assessment of Essential Elements (Cu, Fe, Mn, Zn) in Food for Special Medical Purposes (FSMP) Dedicated to Oncological Patients Available in Polish Pharmacies. Food Chem. Toxicol. 2024, 189, 114768. [Google Scholar] [CrossRef]
- Frydrych, A.; Frankowski, M.; Jurowski, K. The Toxicological Analysis and Safety Assessment of Heavy Metals (Hg, Pb, Cd, and As) in Food for Special Medical Purposes (FSMP) Available in Polish Pharmacies for Oncological Patients. Food Chem. Toxicol. 2024, 192, 114932. [Google Scholar] [CrossRef]
- Frydrych, A.; Frankowski, M.; Jurowski, K. The Toxicological Analysis of Problematic and Sophisticated Elements (Ni, Cr, and Se) in Food for Special Medical Purposes (FSMP) Using in Pharmacotherapy and Clinical Nutrition for Oncological Patients Available in Polish Pharmacies. Food Chem. Toxicol. 2024, 192, 114930. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Tang, N.; Liu, R.; Gong, M.; Wang, Z.; Guo, Y.; Wang, Y.; Zhang, Y.; Chang, M. The Relationship between Flavor Formation, Lipid Metabolism, and Microorganisms in Fermented Fish Products. Food Funct. 2021, 12, 5685–5702. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-W.; Lu, S.-F.; Chou, R.-H.; Wu, P.-S.; Ku, Y.-C.; Kuo, C.-S.; Chang, C.-C.; Tsai, Y.-L.; Wu, C.-H.; Huang, P.-H. Lipid Paradox in Patients with Acute Myocardial Infarction: Potential Impact of Malnutrition. Clin. Nutr. 2019, 38, 2311–2318. [Google Scholar] [CrossRef] [PubMed]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A Scale for the Quality Assessment of Narrative Review Articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Sitrin, M.D. Digestion and Absorption of Dietary Triglycerides. In The Gastrointestinal System: Gastrointestinal, Nutritional and Hepatobiliary Physiology; Leung, P.S., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 159–178. ISBN 978-94-017-8771-0. [Google Scholar]
- Luna-Castillo, K.P.; Olivares-Ochoa, X.C.; Hernández-Ruiz, R.G.; Llamas-Covarrubias, I.M.; Rodríguez-Reyes, S.C.; Betancourt-Núñez, A.; Vizmanos, B.; Martínez-López, E.; Muñoz-Valle, J.F.; Márquez-Sandoval, F.; et al. The Effect of Dietary Interventions on Hypertriglyceridemia: From Public Health to Molecular Nutrition Evidence. Nutrients 2022, 14, 1104. [Google Scholar] [CrossRef]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; et al. Triglycerides and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef]
- Zhang, R. Lipasin, a Novel Nutritionally-Regulated Liver-Enriched Factor That Regulates Serum Triglyceride Levels. Biochem. Biophys. Res. Commun. 2012, 424, 786–792. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Pan, Y.; Chen, S.; Zhao, Y.; Hu, Y. New Insights into the Role of Dietary Triglyceride Absorption in Obesity and Metabolic Diseases. Front. Pharmacol. 2023, 14, 1097835. [Google Scholar] [CrossRef]
- Li, R.; He, Z.; Yan, W.; Yu, H.; Yi, X.; Sha, Y.; Zhang, Q.; Cai, R.; Pang, W. Tricaprylin, a Medium-Chain Triglyceride, Aggravates High-Fat Diet-Induced Fat Deposition but Improves Intestinal Health. Food Funct. 2023, 14, 8797–8813. [Google Scholar] [CrossRef]
- Nosaka, N.; Tsujino, S.; Kato, K. Short-Term Ingestion of Medium-Chain Triglycerides Could Enhance Postprandial Consumption of Ingested Fat in Individuals with a Body Mass Index from 25 to Less than 30: A Randomized, Placebo-Controlled, Double-Blind Crossover Study. Nutrients 2022, 14, 1119. [Google Scholar] [CrossRef]
- Ros, E. Intestinal Absorption of Triglyceride and Cholesterol. Dietary and Pharmacological Inhibition to Reduce Cardiovascular Risk. Atherosclerosis 2000, 151, 357–379. [Google Scholar] [CrossRef] [PubMed]
- Mérida, I.; Avila-Flores, A.; Merino, E. Diacylglycerol Kinases: At the Hub of Cell Signalling. Biochem. J. 2008, 409, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Zhang, Z.; Lai, O.M.; Tan, C.P.; Wang, Y. Diacylglycerol in Food Industry: Synthesis Methods, Functionalities, Health Benefits, Potential Risks and Drawbacks. Trends Food Sci. Technol. 2020, 97, 114–125. [Google Scholar] [CrossRef]
- Ali, A.H.; Zou, X.; Abed, S.M.; Korma, S.A.; Jin, Q.; Wang, X. Natural Phospholipids: Occurrence, Biosynthesis, Separation, Identification, and Beneficial Health Aspects. Crit. Rev. Food Sci. Nutr. 2019, 59, 253–275. [Google Scholar] [CrossRef]
- Murota, K. Digestion and Absorption of Dietary Glycerophospholipids in the Small Intestine: Their Significance as Carrier Molecules of Choline and n-3 Polyunsaturated Fatty Acids. Biocatal. Agric. Biotechnol. 2020, 26, 101633. [Google Scholar] [CrossRef]
- Schverer, M.; O’Mahony, S.M.; O’Riordan, K.J.; Donoso, F.; Roy, B.L.; Stanton, C.; Dinan, T.G.; Schellekens, H.; Cryan, J.F. Dietary Phospholipids: Role in Cognitive Processes across the Lifespan. Neurosci. Biobehav. Rev. 2020, 111, 183–193. [Google Scholar] [CrossRef]
- Gimenez, M.S.; Oliveros, L.B.; Gomez, N.N. Nutritional Deficiencies and Phospholipid Metabolism. Int. J. Mol. Sci. 2011, 12, 2408–2433. [Google Scholar] [CrossRef]
- Tocher, D.R.; Bendiksen, E.Å.; Campbell, P.J.; Bell, J.G. The Role of Phospholipids in Nutrition and Metabolism of Teleost Fish. Aquaculture 2008, 280, 21–34. [Google Scholar] [CrossRef]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties. Molecules 2017, 22, 1964. [Google Scholar] [CrossRef]
- Ortega-Anaya, J.; Jiménez-Flores, R. Symposium Review: The Relevance of Bovine Milk Phospholipids in Human Nutrition—Evidence of the Effect on Infant Gut and Brain Development. J. Dairy Sci. 2019, 102, 2738–2748. [Google Scholar] [CrossRef]
- Piironen, V.; Lindsay, D.G.; Miettinen, T.A.; Toivo, J.; Lampi, A.-M. Plant Sterols: Biosynthesis, Biological Function and Their Importance to Human Nutrition. J. Sci. Food Agric. 2000, 80, 939–966. [Google Scholar] [CrossRef]
- Calpe-Berdiel, L.; Escolà-Gil, J.C.; Blanco-Vaca, F. New Insights into the Molecular Actions of Plant Sterols and Stanols in Cholesterol Metabolism. Atherosclerosis 2009, 203, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Cofán, M.; Ros, E. Use of Plant Sterol and Stanol Fortified Foods in Clinical Practice. Curr. Med. Chem. 2019, 26, 6691–6703. [Google Scholar] [CrossRef]
- Vanstone, C.A.; Raeini-Sarjaz, M.; Parsons, W.E.; Jones, P.J.H. Unesterified Plant Sterols and Stanols Lower LDL-Cholesterol Concentrations Equivalently in Hypercholesterolemic Persons. Am. J. Clin. Nutr. 2002, 76, 1272–1278. [Google Scholar] [CrossRef]
- Plat, J.; Baumgartner, S.; Vanmierlo, T.; Lütjohann, D.; Calkins, K.L.; Burrin, D.G.; Guthrie, G.; Thijs, C.; Te Velde, A.A.; Vreugdenhil, A.C.E.; et al. Plant-Based Sterols and Stanols in Health & Disease: “Consequences of Human Development in a Plant-Based Environment? ” Prog. Lipid Res. 2019, 74, 87–102. [Google Scholar] [CrossRef]
- Plösch, T.; Kruit, J.K.; Bloks, V.W.; Huijkman, N.C.A.; Havinga, R.; Duchateau, G.S.M.J.E.; Lin, Y.; Kuipers, F. Reduction of Cholesterol Absorption by Dietary Plant Sterols and Stanols in Mice Is Independent of the Abcg5/8 Transporter12. J. Nutr. 2006, 136, 2135–2140. [Google Scholar] [CrossRef]
- De Smet, E.; Mensink, R.P.; Plat, J. Effects of Plant Sterols and Stanols on Intestinal Cholesterol Metabolism: Suggested Mechanisms from Past to Present. Mol. Nutr. Food Res. 2012, 56, 1058–1072. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated Fat, Carbohydrate, and Cardiovascular Disease1234. Am. J. Clin. Nutr. 2010, 91, 502–509. [Google Scholar] [CrossRef]
- Praagman, J.; Vissers, L.E.T.; Mulligan, A.A.; Laursen, A.S.D.; Beulens, J.W.J.; van der Schouw, Y.T.; Wareham, N.J.; Hansen, C.P.; Khaw, K.-T.; Jakobsen, M.U.; et al. Consumption of Individual Saturated Fatty Acids and the Risk of Myocardial Infarction in a UK and a Danish Cohort. Int. J. Cardiol. 2019, 279, 18–26. [Google Scholar] [CrossRef]
- Stone, N.J.; Bilek, S.; Rosenbaum, S. Recent National Cholesterol Education Program Adult Treatment Panel III Update: Adjustments and Options. Am. J. Cardiol. 2005, 96, 53E–59E. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J.; American Heart Association. Nutrition Committee Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Trans Fatty Acids and Cardiovascular Disease. N. Engl. J. Med. 2006, 354, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Parton, R.G.; Simons, K. The Biology of Lipids. Cold Spring Harb. Perspect. Biol. 2024, 16, a041713. [Google Scholar] [CrossRef]
- Cockcroft, S. Mammalian Lipids: Structure, Synthesis and Function. Essays Biochem. 2021, 65, 813–845. [Google Scholar] [CrossRef]
- Kimura, T.; Jennings, W.; Epand, R.M. Roles of Specific Lipid Species in the Cell and Their Molecular Mechanism. Prog. Lipid Res. 2016, 62, 75–92. [Google Scholar] [CrossRef]
- Maxfield, F.R.; Tabas, I. Role of Cholesterol and Lipid Organization in Disease. Nature 2005, 438, 612–621. [Google Scholar] [CrossRef]
- Rustam, Y.H.; Reid, G.E. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal. Chem. 2018, 90, 374–397. [Google Scholar] [CrossRef]
- Gautam, T.; Rai, R.; Srivastava, A. Role of Lipids in Biological System. Res. Adv. Pharm. Life Sci. 2022, 4, 36–45. [Google Scholar] [CrossRef]
- De Carvalho, C.; Caramujo, M. The Various Roles of Fatty Acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef]
- Tan, S.T.; Ramesh, T.; Toh, X.R.; Nguyen, L.N. Emerging Roles of Lysophospholipids in Health and Disease. Prog. Lipid Res. 2020, 80, 101068. [Google Scholar] [CrossRef]
- Park, J.; Choi, J.; Kim, D.-D.; Lee, S.; Lee, B.; Lee, Y.; Kim, S.; Kwon, S.; Noh, M.; Lee, M.-O.; et al. Bioactive Lipids and Their Derivatives in Biomedical Applications. Biomol. Ther. 2021, 29, 465–482. [Google Scholar] [CrossRef]
- Garcia, C.; Andersen, C.J.; Blesso, C.N. The Role of Lipids in the Regulation of Immune Responses. Nutrients 2023, 15, 3899. [Google Scholar] [CrossRef] [PubMed]
- Lobasso, S.; Lobaccaro, J.-M.A.; Angelini, R. Editorial: The Multifaceted Roles of Lipids in Physiological and Pathophysiological States. Front. Physiol. 2022, 13, 930962. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Bagarolo, G.I.; Thoröe-Boveleth, S.; Jankowski, J. “Lipidomics”: Mass Spectrometric and Chemometric Analyses of Lipids. Adv. Drug Deliv. Rev. 2020, 159, 294–307. [Google Scholar] [CrossRef]
- Johnson, A.A.; Stolzing, A. The Role of Lipid Metabolism in Aging, Lifespan Regulation, and Age-Related Disease. Aging Cell 2019, 18, e13048. [Google Scholar] [CrossRef]
- Vaisali, C.; Charanyaa, S.; Belur, P.D.; Regupathi, I. Refining of Edible Oils: A Critical Appraisal of Current and Potential Technologies. Int. J. Food Sci. Technol. 2015, 50, 13–23. [Google Scholar] [CrossRef]
- Das, P.; Dutta, A.; Panchali, T.; Khatun, A.; Kar, R.; Das, T.K.; Phoujdar, M.; Chakrabarti, S.; Ghosh, K.; Pradhan, S. Advances in Therapeutic Applications of Fish Oil: A Review. Meas. Food 2024, 13, 100142. [Google Scholar] [CrossRef]
- Yang, W.; Jiang, F.; Yu, B.; Huang, Z.; Luo, Y.; Wu, A.; Zheng, P.; Mao, X.; Yu, J.; Luo, J.; et al. Effect of Different Dietary Lipid Sources on Growth Performance, Nutrient Digestibility, and Intestinal Health in Weaned Pigs. Animals 2023, 13, 3006. [Google Scholar] [CrossRef]
- Richard, N.; Mourente, G.; Kaushik, S.; Corraze, G. Replacement of a Large Portion of Fish Oil by Vegetable Oils Does Not Affect Lipogenesis, Lipid Transport and Tissue Lipid Uptake in European Seabass (Dicentrarchus labrax L.). Aquaculture 2006, 261, 1077–1087. [Google Scholar] [CrossRef]
- Ghazavi, N.; Rahimi, E.; Esfandiari, Z.; Shakerian, A. Accuracy of the Amount of Trans-Fatty Acids in Traffic Light Labelling of Traditional Sweets Distributed in Isfahan, Iran. ARYA Atheroscler. 2020, 16, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Yolci Omeroglu, P.; Ozdal, T. Fatty Acid Composition of Sweet Bakery Goods and Chocolate Products and Evaluation of Overall Nutritional Quality in Relation to the Food Label Information. J. Food Compos. Anal. 2020, 88, 103438. [Google Scholar] [CrossRef]
- Dinh, T.T.N.; To, K.V.; Schilling, M.W. Fatty Acid Composition of Meat Animals as Flavor Precursors. Meat Muscle Biol. 2021, 5, 34. [Google Scholar] [CrossRef]
- Schmid, A. The Role of Meat Fat in the Human Diet. Crit. Rev. Food Sci. Nutr. 2011, 51, 50–66. [Google Scholar] [CrossRef]
- Patton, S.; Kesler, E.M. Saturation in Milk and Meat Fats. Science 1967, 156, 1365–1366. [Google Scholar] [CrossRef]
- Yoon, H.; Shaw, J.L.; Haigis, M.C.; Greka, A. Lipid Metabolism in Sickness and in Health: Emerging Regulators of Lipotoxicity. Mol. Cell 2021, 81, 3708–3730. [Google Scholar] [CrossRef]
- Bartnikowska, E. Lecytyna-fosfolipidy o wielokierunkowych mozliwosciach zastosowania. Przegląd Piek. Cukier. 2003, 51, 2–6. [Google Scholar]
- Harayama, T.; Riezman, H. Understanding the Diversity of Membrane Lipid Composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef]
- Kazantzis, M.; Stahl, A. Fatty Acid Transport Proteins, Implications in Physiology and Disease. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2012, 1821, 852–857. [Google Scholar] [CrossRef]
- Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer Metabolism: Fatty Acid Oxidation in the Limelight. Nat. Rev. Cancer 2013, 13, 227–232. [Google Scholar] [CrossRef]
- Matoba, K.; Lu, Y.; Zhang, R.; Chen, E.R.; Sangwung, P.; Wang, B.; Prosdocimo, D.A.; Jain, M.K. Adipose KLF15 Controls Lipid Handling to Adapt to Nutrient Availability. Cell Rep. 2017, 21, 3129–3140. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Z.; Chen, Y.; Feng, T.; Zhou, Q.; Tian, X. Circadian Clock and Lipid Metabolism Disorders: A Potential Therapeutic Strategy for Cancer. Front. Endocrinol. 2023, 14, 1292011. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, D.A.; Kondakova, I.V.; Shashova, E.E. Modern Perspective on Metabolic Reprogramming in Malignant Neoplasms. Biochemistry 2019, 84, 1129–1142. [Google Scholar] [CrossRef] [PubMed]
- Louie, S.M.; Roberts, L.S.; Mulvihill, M.M.; Luo, K.; Nomura, D.K. Cancer Cells Incorporate and Remodel Exogenous Palmitate into Structural and Oncogenic Signaling Lipids. Biochim. Biophys. Acta 2013, 1831, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Kodde, I.F.; van der Stok, J.; Smolenski, R.T.; de Jong, J.W. Metabolic and Genetic Regulation of Cardiac Energy Substrate Preference. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 26–39. [Google Scholar] [CrossRef]
- Jaswal, J.; Lopaschuk, G. Partial Inhibition of Fatty Acid β-Oxidation with Trimetazidine—A Novel Approach to the Treatment of Ischemic Heart Disease. Arch. Med. Sci. Spec. Issues 2007, 2007, 9. [Google Scholar]
- Son, N.-H.; Basu, D.; Samovski, D.; Pietka, T.A.; Peche, V.S.; Willecke, F.; Fang, X.; Yu, S.-Q.; Scerbo, D.; Chang, H.R.; et al. Endothelial Cell CD36 Optimizes Tissue Fatty Acid Uptake. J. Clin. Investig. 2018, 128, 4329–4342. [Google Scholar] [CrossRef]
- Trent, C.M.; Yu, S.; Hu, Y.; Skoller, N.; Huggins, L.A.; Homma, S.; Goldberg, I.J. Lipoprotein Lipase Activity Is Required for Cardiac Lipid Droplet Production. J. Lipid Res. 2014, 55, 645–658. [Google Scholar] [CrossRef]
- Carley, A.N.; Bi, J.; Wang, X.; Banke, N.H.; Dyck, J.R.B.; O’Donnell, J.M.; Lewandowski, E.D. Multiphasic Triacylglycerol Dynamics in the Intact Heart during Acute in Vivo Overexpression of CD36. J. Lipid Res. 2013, 54, 97–106. [Google Scholar] [CrossRef]
- Umbarawan, Y.; Syamsunarno, M.R.A.A.; Koitabashi, N.; Obinata, H.; Yamaguchi, A.; Hanaoka, H.; Hishiki, T.; Hayakawa, N.; Sano, M.; Sunaga, H.; et al. Myocardial Fatty Acid Uptake through CD36 Is Indispensable for Sufficient Bioenergetic Metabolism to Prevent Progression of Pressure Overload-Induced Heart Failure. Sci. Rep. 2018, 8, 12035. [Google Scholar] [CrossRef]
- Li, D.; Xu, T.; Takase, H.; Tokimitsu, I.; Zhang, P.; Wang, Q.; Yu, X.; Zhang, A. Diacylglycerol-Induced Improvement of Whole-Body Insulin Sensitivity in Type 2 Diabetes Mellitus: A Long-Term Randomized, Double-Blind Controlled Study. Clin. Nutr. 2008, 27, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Alabdulkarim, B.; Bakeet, Z.A.N.; Arzoo, S. Role of Some Functional Lipids in Preventing Diseases and Promoting Health. J. King Saud Univ.-Sci. 2012, 24, 319–329. [Google Scholar] [CrossRef]
- Lin, D.; Grossfield, A. Thermodynamics of Micelle Formation and Membrane Fusion Modulate Antimicrobial Lipopeptide Activity. Biophys. J. 2015, 109, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, A.; Sokol, H. Gut Microbiota-Derived Metabolites as Key Actors in Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 223–237. [Google Scholar] [CrossRef]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The Role of Short-Chain Fatty Acids in Health and Disease. Adv. Immunol. 2014, 121, 91–119. [Google Scholar] [CrossRef]
- Macfarlane, S.; Macfarlane, G.T. Regulation of Short-Chain Fatty Acid Production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef]
- Roediger, W.E.; Moore, A. Effect of Short-Chaim Fatty Acid on Sodium Absorption in Isolated Human Colon Perfused through the Vascular Bed. Dig. Dis. Sci. 1981, 26, 100–106. [Google Scholar] [CrossRef]
- Chambers, E.S.; Preston, T.; Frost, G.; Morrison, D.J. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr. Nutr. Rep. 2018, 7, 198–206. [Google Scholar] [CrossRef]
- Ganapathy, V.; Thangaraju, M.; Prasad, P.D.; Martin, P.M.; Singh, N. Transporters and Receptors for Short-Chain Fatty Acids as the Molecular Link between Colonic Bacteria and the Host. Curr. Opin. Pharmacol. 2013, 13, 869–874. [Google Scholar] [CrossRef]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The Microbial Metabolite Butyrate Regulates Intestinal Macrophage Function via Histone Deacetylase Inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef]
- Vogt, S.L.; Peña-Díaz, J.; Finlay, B.B. Chemical Communication in the Gut: Effects of Microbiota-Generated Metabolites on Gastrointestinal Bacterial Pathogens. Anaerobe 2015, 34, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Kelly, C.J.; Battista, K.D.; Schaefer, R.; Lanis, J.M.; Alexeev, E.E.; Wang, R.X.; Onyiah, J.C.; Kominsky, D.J.; Colgan, S.P. Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor-Dependent Repression of Claudin-2. J. Immunol. 2017, 199, 2976–2984. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Gao, N.; Yan, D.; Shan, A. Sodium Butyrate Alleviates Mouse Colitis by Regulating Gut Microbiota Dysbiosis. Animals 2020, 10, 1154. [Google Scholar] [CrossRef] [PubMed]
- Duscha, A.; Gisevius, B.; Hirschberg, S.; Yissachar, N.; Stangl, G.I.; Dawin, E.; Bader, V.; Haase, S.; Kaisler, J.; David, C.; et al. Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell 2020, 180, 1067–1080.e16. [Google Scholar] [CrossRef]
- Luu, M.; Pautz, S.; Kohl, V.; Singh, R.; Romero, R.; Lucas, S.; Hofmann, J.; Raifer, H.; Vachharajani, N.; Carrascosa, L.C.; et al. The Short-Chain Fatty Acid Pentanoate Suppresses Autoimmunity by Modulating the Metabolic-Epigenetic Crosstalk in Lymphocytes. Nat. Commun. 2019, 10, 760. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Kiage, J.N.; Sampson, U.K.A.; Lipworth, L.; Fazio, S.; Mensah, G.A.; Yu, Q.; Munro, H.; Akwo, E.A.; Dai, Q.; Blot, W.J.; et al. Intake of Polyunsaturated Fat in Relation to Mortality among Statin Users and Non-Users in the Southern Community Cohort Study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 1016–1024. [Google Scholar] [CrossRef]
- Yamagata, K. Docosahexaenoic Acid Regulates Vascular Endothelial Cell Function and Prevents Cardiovascular Disease. Lipids Health Dis. 2017, 16, 118. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, T.; Yu, Y.; Hu, X.; Yang, B.; Li, D. Fish Consumption and CHD Mortality: An Updated Meta-Analysis of Seventeen Cohort Studies. Public Health Nutr. 2012, 15, 725–737. [Google Scholar] [CrossRef]
- Fleming, J.A.; Kris-Etherton, P.M. The Evidence for α-Linolenic Acid and Cardiovascular Disease Benefits: Comparisons with Eicosapentaenoic Acid and Docosahexaenoic Acid. Adv. Nutr. 2014, 5, 863S–876S. [Google Scholar] [CrossRef]
- Ibrahim, A.; Mbodji, K.; Hassan, A.; Aziz, M.; Boukhettala, N.; Coëffier, M.; Savoye, G.; Déchelotte, P.; Marion-Letellier, R. Anti-Inflammatory and Anti-Angiogenic Effect of Long Chain n-3 Polyunsaturated Fatty Acids in Intestinal Microvascular Endothelium. Clin. Nutr. 2011, 30, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.J.; Burton, J.R.; Sewell, R.P.; Spreckelsen, T.F.; Montgomery, P. Docosahexaenoic Acid for Reading, Cognition and Behavior in Children Aged 7–9 Years: A Randomized, Controlled Trial (The DOLAB Study). PLoS ONE 2012, 7, e43909. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.K.; Able, J.; Jandacek, R.; Rider, T.; Tso, P.; Eliassen, J.C.; Alfieri, D.; Weber, W.; Jarvis, K.; DelBello, M.P.; et al. Docosahexaenoic Acid Supplementation Increases Prefrontal Cortex Activation during Sustained Attention in Healthy Boys: A Placebo-Controlled, Dose-Ranging, Functional Magnetic Resonance Imaging Study. Am. J. Clin. Nutr. 2010, 91, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Neuringer, M.; Anderson, G.J.; Connor, W.E. The Essentiality of N-3 Fatty Acids for the Development and Function of the Retina and Brain. Annu. Rev. Nutr. 1988, 8, 517–541. [Google Scholar] [CrossRef]
- Cholewski, M.; Tomczykowa, M.; Tomczyk, M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018, 10, 1662. [Google Scholar] [CrossRef]
- Kolanowski, W. Długołańcuchowe Wielonienasycone Kwasy Tłuszczowe Omega-3-Znaczenie Zdrowotne w Obniżaniu Ryzyka Chorób Cywilizacyjnych. Bromat. Chem. Toksykol. 2007, 40, 229–237. [Google Scholar]
- Jelińska, M. Kwasy tłuszczowe-czynniki modyfikujące procesy nowotworowe. Prospect. Pharm. Sci. 2005, 3, 1–9. [Google Scholar] [CrossRef]
- Czumaj, A.; Śledziński, T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020, 12, 356. [Google Scholar] [CrossRef]
- Chew, H.S.J.; Soong, R.Y.; Teo, Y.Q.J.; Flølo, T.N.; Chong, B.; Yong, C.L.; Ang, S.H.; Ho, Y.; Chew, N.W.S.; So, J.B.Y.; et al. Anthropometric and Cardiometabolic Effects of Polyphenols in People with Overweight and Obesity: An Umbrella Review. Nutr. Rev. 2024, 82, 1556–1593. [Google Scholar] [CrossRef]
- Gassull, M.A.; Fernández-Bañares, F.; Cabré, E.; Papo, M.; Giaffer, M.H.; Sánchez-Lombraña, J.L.; Richart, C.; Malchow, H.; González-Huix, F.; Esteve, M.; et al. Fat Composition May Be a Clue to Explain the Primary Therapeutic Effect of Enteral Nutrition in Crohn’s Disease: Results of a Double Blind Randomised Multicentre European Trial. Gut 2002, 51, 164–168. [Google Scholar] [CrossRef]
- Houttu, V.; Csader, S.; Nieuwdorp, M.; Holleboom, A.G.; Schwab, U. Dietary Interventions in Patients With Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 716783. [Google Scholar] [CrossRef]
- Kani, A.H.; Alavian, S.M.; Esmaillzadeh, A.; Adibi, P.; Azadbakht, L. Effects of a Novel Therapeutic Diet on Liver Enzymes and Coagulating Factors in Patients with Non-Alcoholic Fatty Liver Disease: A Parallel Randomized Trial. Nutrition 2014, 30, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Choi, Y.-J.; Tang, Y.; Bae, S.M.; Yang, H.P.; Kim, E.-K. Efficacy and Mechanism of Polymerized Anthocyanin from Grape-Skin Extract on High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease. Nutrients 2019, 11, 2586. [Google Scholar] [CrossRef] [PubMed]
- Monnard, A.; Moretti, D.; Zeder, C.; Steingötter, A.; Zimmermann, M.B. The Effect of Lipids, a Lipid-Rich Ready-to-Use Therapeutic Food, or a Phytase on Iron Absorption from Maize-Based Meals Fortified with Micronutrient Powders. Am. J. Clin. Nutr. 2017, 105, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Abuknesha, N.R.; Ibrahim, F.; Mohamed, I.N.; Salih, M.; Daak, A.A.; Elbashir, M.I.; Ghebremeskel, K. Plasma Fatty Acid Abnormality in Sudanese Drug-Resistant Epileptic Patients. Prostaglandins Leukot. Essent. Fatty Acids 2021, 167, 102271. [Google Scholar] [CrossRef]
- DeGiorgio, C.M.; Taha, A.Y. Omega-3 Fatty Acids (ῳ-3 Fatty Acids) in Epilepsy: Animal Models and Human Clinical Trials. Expert. Rev. Neurother. 2016, 16, 1141–1145. [Google Scholar] [CrossRef]
- Kim, Y.; Je, Y.; Giovannucci, E.L. Association between Dietary Fat Intake and Mortality from All-Causes, Cardiovascular Disease, and Cancer: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Clin. Nutr. 2021, 40, 1060–1070. [Google Scholar] [CrossRef]
- Clifton, P.M.; Keogh, J.B. A Systematic Review of the Effect of Dietary Saturated and Polyunsaturated Fat on Heart Disease. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1060–1080. [Google Scholar] [CrossRef]
- Clifton, P.M. Diet, Exercise and Weight Loss and Dyslipidaemia. Pathology 2019, 51, 222–226. [Google Scholar] [CrossRef]
- Zhuang, P.; Zhang, Y.; He, W.; Chen, X.; Chen, J.; He, L.; Mao, L.; Wu, F.; Jiao, J. Dietary Fats in Relation to Total and Cause-Specific Mortality in a Prospective Cohort of 521 120 Individuals With 16 Years of Follow-Up. Circ. Res. 2019, 124, 757–768. [Google Scholar] [CrossRef]
- Souza, R.J.d.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of Saturated and Trans Unsaturated Fatty Acids and Risk of All Cause Mortality, Cardiovascular Disease, and Type 2 Diabetes: Systematic Review and Meta-Analysis of Observational Studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [PubMed]
- Position Paper on Trans Fatty Acids. ASCN/AIN Task Force on Trans Fatty Acids. American Society for Clinical Nutrition and American Institute of Nutrition. Am. J. Clin. Nutr. 1996, 63, 663–670. [CrossRef] [PubMed]
- Schleifer, D. The Perfect Solution. How Trans Fats Became the Healthy Replacement for Saturated Fats. Technol. Cult. 2012, 53, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Sandner, G.; König, A.; Wallner, M.; Weghuber, J. Functional Foods—Dietary or Herbal Products on Obesity: Application of Selected Bioactive Compounds to Target Lipid Metabolism. Curr. Opin. Food Sci. 2020, 34, 9–20. [Google Scholar] [CrossRef]
- Langella, C.; Naviglio, D.; Marino, M.; Gallo, M. Study of the Effects of a Diet Supplemented with Active Components on Lipid and Glycemic Profiles. Nutrition 2015, 31, 180–186. [Google Scholar] [CrossRef]
- Destaillats, F. Formulating Functional Foods with Long-Chain Polyunsaturated Fatty Acids: Challenges and Opportunities. Eur. J. Lipid Sci. Technol. 2011, 113, 1293–1295. [Google Scholar] [CrossRef]
- Hunter, P.M.; Hegele, R.A. Functional Foods and Dietary Supplements for the Management of Dyslipidaemia. Nat. Rev. Endocrinol. 2017, 13, 278–288. [Google Scholar] [CrossRef]
- Omachi, D.O.; Aryee, A.N.A.; Onuh, J.O. Functional Lipids and Cardiovascular Disease Reduction: A Concise Review. Nutrients 2024, 16, 2453. [Google Scholar] [CrossRef]
- Wan, S.; Wu, W.; Zhang, Y.; He, J.; Wang, X.; An, P.; Luo, J.; Zhu, Y.; Luo, Y. Antioxidant Lipid Supplement on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 2213. [Google Scholar] [CrossRef]
- Mohd Rosmi, N.S.A.; Shafie, N.H.; Azlan, A.; Abdullah, M.A. Functional Food Mixtures: Inhibition of Lipid Peroxidation, HMGCoA Reductase, and ACAT2 in Hypercholesterolemia-Induced Rats. Food Sci. Nutr. 2021, 9, 875–887. [Google Scholar] [CrossRef]
- Wang, L.-L.; Zhang, P.-H.; Yan, H.-H. Functional Foods and Dietary Supplements in the Management of Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Front. Nutr. 2023, 10, 1014010. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Adolph, M.; Deutz, N.E.; Grau, T.; Innes, J.K.; Klek, S.; Lev, S.; Mayer, K.; Michael-Titus, A.T.; Pradelli, L.; et al. Lipids in the Intensive Care Unit: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2018, 37, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Berger, M.M.; Van den Berghe, G.; Biolo, G.; Calder, P.; Forbes, A.; Griffiths, R.; Kreyman, G.; Leverve, X.; Pichard, C. ESPEN Guidelines on Parenteral Nutrition: Intensive Care. Clin. Nutr. 2009, 28, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Wanten, G.J.; Calder, P.C. Immune Modulation by Parenteral Lipid Emulsions. Am. J. Clin. Nutr. 2007, 85, 1171–1184. [Google Scholar] [CrossRef]
- Lapillonne, A.; Fidler Mis, N.; Goulet, O.; van den Akker, C.H.P.; Wu, J.; Koletzko, B. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition ESPGHAN/ESPEN/ESPR/CSPEN Guidelines on Pediatric Parenteral Nutrition: Lipids. Clin. Nutr. 2018, 37, 2324–2336. [Google Scholar] [CrossRef]
- Pironi, L.; Cuerda, C.; Jeppesen, P.B.; Joly, F.; Jonkers, C.; Krznarić, Ž.; Lal, S.; Lamprecht, G.; Lichota, M.; Mundi, M.S.; et al. ESPEN Guideline on Chronic Intestinal Failure in Adults—Update 2023. Clin. Nutr. 2023, 42, 1940–2021. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo-Gonzalez, J.C.; Pichard, C.; Preiser, J.-C.; et al. ESPEN Practical and Partially Revised Guideline: Clinical Nutrition in the Intensive Care Unit. Clin. Nutr. 2023, 42, 1671–1689. [Google Scholar] [CrossRef]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.G.; et al. ESPEN Practical Guideline: Clinical Nutrition in Surgery. Clin. Nutr. 2021, 40, 4745–4761. [Google Scholar] [CrossRef]
- Cangelosi, G.; Grappasonni, I.; Nguyen, C.T.T.; Acito, M.; Pantanetti, P.; Benni, A.; Petrelli, F. Mediterranean Diet (MedDiet) and Lifestyle Medicine (LM) for Support and Care of Patients with Type II Diabetes in the COVID-19 Era: A Cross-Observational Study. Acta Biomed. 2023, 94, e2023189. [Google Scholar] [CrossRef]
- Frydrych, A.; Noga, M.; Milan, J.; Kondratowicz-Pietruszka, E.; Krośniak, M.; Jurowski, K. The Toxicological Analysis and Toxicological Risk Assessment of Chosen Elemental Impurities (Ag, Au, Co, Cr, Cs, Li, Mo, Se, and Sr) in Green Tea (Camellia Sinensis (L.)) Infusions. Nutrients 2023, 15, 1460. [Google Scholar] [CrossRef]
- Keshani, M.; Feizi, A.; Askari, G.; Sharma, M.; Bagherniya, M. Effects of Therapeutic Lifestyle Change Diets on Blood Lipids, Lipoproteins, Glycemic Parameters, and Blood Pressure: A Systematic Review and Meta-Analysis of Clinical Trials. Nutr. Rev. 2024, 82, 176–192. [Google Scholar] [CrossRef] [PubMed]
- Rydell, A.; Hellsten, M.; Lindow, M.; Iggman, D. Effectiveness of Written Dietary Advice for Improving Blood Lipids in Primary Care Adults-A Pragmatic Randomized Controlled Trial (MYDICLIN). Nutrients 2022, 14, 1022. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, C.F.; Sikand, G.; Petersen, K.S.; Anderson, C.A.M.; Aspry, K.E.; Bolick, J.P.; Kris-Etherton, P.M.; Maki, K.C. Nutrition Interventions for Adults with Dyslipidemia: A Clinical Perspective from the National Lipid Association. J. Clin. Lipidol. 2023, 17, 428–451. [Google Scholar] [CrossRef] [PubMed]
- Mancin, S.; Pipitone, V.; Testori, A.; Ferrante, S.; Soekeland, F.; Sguanci, M.; Mazzoleni, B. Clinical Nurse Specialists in Nutrition: A Systematic Review of Roles and Clinical Experiences. Int. Nurs. Rev. 2024, 71, 521–530. [Google Scholar] [CrossRef]
- O’Donnell, V.B.; Ekroos, K.; Liebisch, G.; Wakelam, M. Lipidomics: Current State of the Art in a Fast Moving Field. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1466. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frydrych, A.; Kulita, K.; Jurowski, K.; Piekoszewski, W. Lipids in Clinical Nutrition and Health: Narrative Review and Dietary Recommendations. Foods 2025, 14, 473. https://doi.org/10.3390/foods14030473
Frydrych A, Kulita K, Jurowski K, Piekoszewski W. Lipids in Clinical Nutrition and Health: Narrative Review and Dietary Recommendations. Foods. 2025; 14(3):473. https://doi.org/10.3390/foods14030473
Chicago/Turabian StyleFrydrych, Adrian, Kamil Kulita, Kamil Jurowski, and Wojciech Piekoszewski. 2025. "Lipids in Clinical Nutrition and Health: Narrative Review and Dietary Recommendations" Foods 14, no. 3: 473. https://doi.org/10.3390/foods14030473
APA StyleFrydrych, A., Kulita, K., Jurowski, K., & Piekoszewski, W. (2025). Lipids in Clinical Nutrition and Health: Narrative Review and Dietary Recommendations. Foods, 14(3), 473. https://doi.org/10.3390/foods14030473