Effect of Diet on CPFAs Used as Markers in Milk for the Detection of Silage in the Ration of Dairy Cows
Abstract
:1. Introduction
1.1. Hay Milk Definition and Relevance in the Agricultural Practice
1.2. Hay Milk Authentication and the Role of CPFAs
1.3. Knowledge Gaps Concerning the Use of CPFAs as Authentication Tools
1.4. Aim of the Study
2. Materials and Methods
2.1. On-Farm Sampling Plan
2.2. Experimental Design
2.3. Chemicals and Reagents
2.4. Sample Preparation and Analysis via GC-MS
2.4.1. Milk Fat Extraction
2.4.2. Silage Fat Extraction
2.4.3. Milk Fat Transesterification
2.4.4. Silage Fat Transesterification
2.4.5. Analysis of Cyclopropane Fatty Acids
2.5. Feed Analysis
2.6. Computation of Metrics to Quantify the CPFAs Intake with Silage in the Diet
- The percentage of silage in the diet on a dry matter basis (Figure S4a), assessed as described above.
- The mean daily silage intake per cow on a dry matter basis (Figure S4b), assessed in the same way.
- The daily dietary CPFAs intake from the silage per cow (Figure S4e). To this aim, the CPFAs concentration in the silage’s fat (determined as described above) was multiplied by the mean daily silage intake per cow and by a reference value of lipid content of silages. This was estimated using reference values [40]: for maize silage, an average of the values between the beginning and end of waxy maturity (2.65%, range: 2.4–2.8%) was used. For grass silage, the average of values given for all phenological stages (3.02%, range: 2.9–3.1%) was used. For mixed silages, a weighted average based on the percentage of silage as declared by the farmers was calculated.
- The dietary CPFAs intake from the silage per kg of milk produced (Figure S4f). The daily CPFAs intake per cow was divided by the mean daily milk yield. The latter was obtained by dividing the mean annual milk yield of the respective farm (provided by the milk plant and rounded at 500 litre, Figure S4b) by a theoretical lactation period of 305 days.
- The dietary CPFAs intake from the silage per kg of fat produced with the milk (Figure S4g). To this aim, the daily CPFAs intake per cow was divided by the product of the mean daily milk yield and the milk fat content at the time of the milk sampling event (Figure S4d).
2.7. Statistical Analysis
3. Results and Discussion
3.1. Changes in CPFAs Concentration in Milk After Silage Suspension
3.2. Variability of CPFAs in Silages and Milk
3.3. Relationship Between Dietary CPFA Intakes from Silages and Milk CPFA Content
3.4. Sources of Uncertainty of CPFAs Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPFAs | Cyclopropane fatty acids |
DHSA | Dihydrosterculic acid |
FA | Fatty acid |
FAME | Fatty acid methyl esters |
GS | Grass silage |
GSM | Grass silage milk |
GC-MS | Gas chromatography–mass spectrometry |
HM | Hay milk |
LAB | Lactic acid bacteria |
LBA | Lactobacillic acid |
MS | Maize silage |
MSM | Maize silage milk |
References
- European Commission. Commission Implementing Regulation (EU) 2016/304 of 2 March 2016—Entering a name in the register of traditional specialities guaranteed (Heumilch/Haymilk/Latte fieno/Lait de foin/Leche de heno (TSG)). Off. J. Eur. Union 2016, 58, 28–34. [Google Scholar]
- Busch, G.; Kühl, S.; Gauly, M. Consumer expectations regarding hay and pasture-raised milk in South Tyrol. Austrian J. Agric. Econ. Rural Stud. 2018, 27, 79–86. [Google Scholar]
- ASTAT. 7. Landwirtschaftszählung 2020. Bozen: Autonome Provinz Bozen—Südtirol. Available online: https://astat.provinz.bz.it/de/7-landwirtschaftszaehlung-2021.asp (accessed on 18 December 2024).
- Sennereiverband Südtirol. Tätigkeitsbericht. Bozen. 2023. Available online: https://www.suedtirolermilch.com/CustomerData/655/Files/Documents/2023_taetigkeitsbericht_sennereiverband_suedtirol.pdf (accessed on 18 December 2024).
- Tata, A.; Massaro, A.; Riuzzi, G.; Lanza, I.; Bragolusi, M.; Negro, A.; Novelli, E.; Piro, R.; Gottardo, F.; Segato, S. Ambient mass spectrometry for rapid authentication of milk from Alpine or lowland forage. Sci. Rep. 2022, 12, 7360. [Google Scholar] [CrossRef]
- van den Oever, S.P.; Mayer, H.K. Analytical assessment of the intensity of heat treatment of milk and dairy products. Int. Dairy J. 2021, 121, 105097. [Google Scholar] [CrossRef]
- Wölk, M.; Milkovska-Stamenova, S.; Schröter, T.; Hoffmann, R. Influence of seasonal variation and processing on protein glycation and oxidation in regular and hay milk. Food Chem. 2021, 337, 127690. [Google Scholar] [CrossRef]
- Marseglia, A.; Caligiani, A.; Comino, L.; Righi, F.; Quarantelli, A.; Palla, G. Cyclopropyl and ω-cyclohexyl fatty acids as quality markers of cow milk and cheese. Food Chem. 2013, 140, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Caligiani, A.; Nocetti, M.; Lolli, V.; Marseglia, A.; Palla, G. Development of a Quantitative GC-MS Method for the Detection of Cyclopropane Fatty Acids in Cheese as New Molecular Markers for Parmigiano Reggiano Authentication. J. Agric. Food Chem. 2016, 64, 158–4164. [Google Scholar] [CrossRef] [PubMed]
- Caligiani, A.; Lolli, V. Cyclic fatty acids in food: An under investigated class of fatty acids. In Biochemistry and Health Benefits of Fatty Acids; Waisundara, V., Ed.; IntechOpen Book Series Biochemistry, 1; IntechOpen: Rijeka, Croatia, 2018; pp. 31–50. [Google Scholar]
- Caligiani, A.; Marseglia, A.; Palla, G. An overview on the presence of cyclopropane fatty acids in milk and dairy products. J. Agric. Food Chem. 2014, 62, 7828–7832. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L.; Ross, T.; McMeekin, T.A.; Nichols, P.D. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int. J. Food Microbiol. 1997, 37, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-Y.; Cronan, J.E. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol. 1999, 33, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Grogan, D.W.; Cronan, J.E. Cyclopropane Ring Formation in Membrane Lipids of Bacteria. Microbiol. Mol. Biol. Rev. 1997, 61, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Lolli, V.; Caligiani, A.; Gachiuta, O.; Pizzamiglio, V.; Bani, P. Study on the Effect of Ensiling Process and Ruminal Digestion on the Synthesis and Release of Cyclopropane Fatty Acids in Cow Feeding. J. Agric. Food Chem. 2021, 69, 11026–11032. [Google Scholar] [CrossRef] [PubMed]
- Montanari, C.; Sado Kamdem, S.L.; Serrazanetti, D.I.; Etoa, F.X.; Guerzoni, M.E. Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses. Food Microbiol. 2010, 27, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Shabala, L.; Ross, T. Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+. Res. Microbiol. 2008, 159, 458–461. [Google Scholar] [CrossRef]
- Russell, N.J.; Evans, R.I.; Ter Steeg, P.F.; Hellemons, J.; Verheul, A.; Abee, T. Membranes as a target for stress adaptation. Int. J. Food Microbiol. 1995, 28, 255–261. [Google Scholar] [CrossRef]
- Poger, D.; Mark, A.E. A ring to rule them all: The effect of cyclopropane fatty acids on the fluidity of lipid bilayers. J. Phys. Chem. B 2015, 119, 5487–5495. [Google Scholar] [CrossRef]
- Lolli, V.; Renes, E.; Caligiani, A.; De La Fuente, M.A.; Gómez-Cortés, P. Cyclopropane Fatty Acids as Quality Biomarkers of Cheeses from Ewes Fed Hay- and Silage-Based Diets. J. Agric. Food Chem. 2021, 69, 9654–9660. [Google Scholar] [CrossRef] [PubMed]
- Lolli, V.; Dall’Asta, M.; Del Rio, D.; Caligiani, A. In vitro digestibility of cyclopropane fatty acids in Grana Padano cheese: A study combining 1H NMR and GC-MS techniques. J. Food Eng. 2018, 237, 226–230. [Google Scholar] [CrossRef]
- Smith, C.R.J. Occurrence of unusual fatty acids in plants. In The Chemistry of Fats and Other Lipids; Holman, R.T., Ed.; Pergamon Press: Oxford, UK, 1971; Volume 11, pp. 137–177. [Google Scholar]
- Bao, X.; Katz, S.; Pollard, M.; Ohlrogge, J. Carbocyclic fatty acids in plants: Biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proc. Natl. Acad. Sci. USA 2002, 99, 7172–7177. [Google Scholar] [CrossRef] [PubMed]
- Ellmauer, T.; Mucina, L. Molinio-Arrhenatheretea. In Die Pflanzengesellschaften Österreichs. Teil I. Anthropogene Vegetation; Mucina, L., Grabherr, G., Ellmauer, T., Eds.; Gustav Fischer: Jena, Germany, 1993; pp. 297–385. [Google Scholar]
- Tasser, E.; Lüth, C.; Niedrist, G.; Tappeiner, U. Bestimmungsschlüssel für landwirtschaftlich genutzte Grünlandgesellschaften in Tirol und Südtirol. Gredleriana 2010, 10, 11–62. [Google Scholar]
- Scotton, M.; Pecile, A.; Franchi, R. I Tipi di Prato Permanente in Trentino. Tipologia Agroecologica Della Praticoltura con Finalità Zootecniche, Paesaggistiche e Ambientali, 1st ed.; Agrario Fondazione Edmund Mach: San Michele all’Adige, Italy, 2012; 200p. [Google Scholar]
- Fischer, M.A.; Oswald, K.; Adler, W. Exkursionsflora Für Österreich, Liechtenstein und Südtirol. 3., Verbesserte Auflage. 3te Verbesserte und Erweiterte Auflage der ‘Exkursionsflora von Österreich’; Land Oberösterreich, Biologiezentrum der OÖ Landesmuseen: Linz, Austria, 2008; 1392p. [Google Scholar]
- Lolli, V.; Marseglia, A.; Palla, G.; Zanardi, E.; Caligiani, A. Determination of Cyclopropane Fatty Acids in Food of Animal Origin by 1H NMR. J. Anal. Methods Chem. 2018, 2018, 8034042. [Google Scholar] [CrossRef] [PubMed]
- Lolli, V.; Zanardi, E.; Moloney, A.P.; Caligiani, A. An Overview on Cyclic Fatty Acids as Biomarkers of Quality and Authenticity in the Meat Sector. Foods 2020, 9, 1756. [Google Scholar] [CrossRef]
- Lolli, V.; Dall’Asta, M.; Caligiani, A.; Del Rio, D.; de la Fuente, M.A.; Gómez-Cortés, P. Detection of cyclopropane fatty acids in human breastmilk by GC-MS. J. Food Compos. Anal. 2022, 107, 104379. [Google Scholar] [CrossRef]
- Sledzinski, T.; Mika, A.; Stepnowski, P.; Proczko-Markuszewska, M.; Kaska, L.; Stefaniak, T.; Swierczynski, J. Identification of Cyclopropaneoctanoic Acid 2-Hexyl in Human Adipose Tissue and Serum. Lipids 2013, 48, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Lolli, V.; Dall’Asta, M.; Del Rio, D.; Palla, G.; Caligiani, A. Presence of cyclopropane fatty acids in foods and estimation of dietary intake in the Italian population. Int. J. Food Sci. Nutr. 2018, 70, 467–473. [Google Scholar] [CrossRef]
- Lolli, V.; Dall’Asta, M.; Del Rio, D.; Caligiani, A. Identification of Cyclopropane Fatty Acids in Human Plasma after Controlled Dietary Intake of Specific Foods. Nutrients 2020, 12, 3347. [Google Scholar] [CrossRef] [PubMed]
- Martini-Lösch, D.; Fava, F.; Peratoner, G.; Soini, E.; Robatscher, P.; Eisenstecken, D.; Österreicher, A.; Matteazzi, A.; Venir, E. Factors affecting the occurrence of cyclopropane fatty acids in grass silage. Anim. Feed Sci. Technol. 2025, 319, 116173. [Google Scholar] [CrossRef]
- Imperiale, S.; Kaneppele, E.; Morozova, K.; Fava, F.; Martini-Lösch, D.; Robatscher, P.; Peratoner, G.; Venir, E.; Eisenstecken, D.; Scampicchio, M. Authenticity of hay milk vs. Milk from maize or grass silage by lipid analysis. Foods 2021, 10, 2926. [Google Scholar] [CrossRef] [PubMed]
- Iannone, F.; Eltemur, D.; Morozova, K.; Fava, F.; Martini-Lösch, D.; Robatscher, P.; Ferrentino, G.; Asma, U.; Peratoner, G.; Venir, E.; et al. Establishing authenticity of hay milk: Detection of silage feeding through cyclopropane fatty acids analysis using 1H NMR spectroscopy. Food Chem. 2024, 438, 138048. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Lock, A.L.; Garnsworthy, P.C. Technical Note: A rapid lipid separation method for determining fatty acid composition of milk. J. Dairy Sci. 2004, 87, 3785–3788. [Google Scholar] [CrossRef]
- ISO 15884:2002; Milk Fat-Preparation of Fatty Acid Methyl Esters. International Organization for Standardization (ISO): Geneva, Switzerland, 2002.
- Naumann, C.; Bassler, R.; Seibold, R.; Barth, K. VDLUFA-Methodenbuch Band III, Die Chemische Untersuchung von Futtermitteln; VDLUFA: Darmstadt, Germany, 1997. [Google Scholar]
- Resch, R.; Guggenberger, T.; Gruber, L.; Ringdorfer, F.; Buchgraber, K.; Wiedner, G.; Kasal, A.; Wurm, K. Futterwerttabellen für das Grundfutter im Alpenraum. Der Fortschr. Landwirt 2006, 84, 1–20. [Google Scholar]
- Kozak, M.; Piepho, H.-P. What’s normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions. J. Agron. Crop Sci. 2018, 204, 86–98. [Google Scholar] [CrossRef]
- Rigby, R.A.; Stasinopoulos, D.M. Generalized Additive Models for Location, Scale and Shape. J. R. Stat. Soc. C-Appl. 2005, 54, 507–554. [Google Scholar] [CrossRef]
- Van Buuren, S.; Fredriks, M. Worm plot: A simple diagnostic device for modelling growth reference curves. Stat. Med. 2001, 20, 1259–1277. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000; 528p. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; SAGE: Thousand Oaks, CA, USA, 2019; 450p. [Google Scholar]
- Stasinopoulos, D.M.; Rigby, R.A. Generalized Additive Models for Location Scale and Shape (GAMLSS) in R. J. Stat. Softw. 2007, 23, 1–46. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; 182p. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 4. [Google Scholar]
- Body, D.R. The occurrence of cyclopropane fatty acids in the phospholipids of sheep rumen tissue. FEBS Lett. 1972, 1, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Sakurada, K.; Iwase, H.; Takatori, T.; Nagao, M.; Nakajima, M.; Niijima, H.; Matsuda, Y.; Kobayashi, M. Identification of cis-9,10-methylenehexadecanoic acid in submitochondrial particles of bovine heart. Biochim. Biophys. Acta 1999, 1437, 214–222. [Google Scholar] [CrossRef] [PubMed]
Source | dfn | dfd | F | p | E | SE |
---|---|---|---|---|---|---|
Intercept | 1 | 18 | 194.0 | <0.001 | 24.75 | 4.040 |
Silage type (SIL) | 1 | 4 | 11.1 | <0.001 | 74.56 | 5.712 |
Time since silage suspension (TSS) | 1 | 18 | 22.8 | <0.008 | −2.15 | 0.717 |
TSS × TSS | 1 | 18 | 6.2 | <0.001 | 0.06 | 0.032 |
TSS × TSS × TSS | 1 | 18 | 2.7 | <0.001 | −0.01 | 0.001 |
SIL × TSS | 1 | 18 | 6.7 | <0.001 | −5.24 | 1.011 |
SIL × TSS × TSS | 1 | 18 | 1.0 | 0.005 | 0.17 | 0.046 |
SIL × TSS × TSS × TSS | 1 | 18 | 1.1 | 0.004 | −0.01 | 0.001 |
Silage Type | Number of Samples Analysed | Concentration Range of CPFAs in Positive Samples (Min–Max) a | Positivity (%) |
---|---|---|---|
Maize silage | 32 | 18–1292 | 100.0 |
Grass silage | 35 | 10–461 | 77.1 |
Milk Type | Number of Samples Analysed | Concentration Range CPFAs in Positive Samples (Min–Max) a | Positivity (%) |
---|---|---|---|
Hay milk | 48 | / | 4.2 |
Grass silage milk | 99 | 9–186 | 79.8 |
Maize silage milk | 95 | 23–735 | 97.9 |
CPFAmilk | Silage% | Silageamount | CPFAdiet | CPFAdiet/ kg Milk | CPFAdiet/ kg Fat | |
---|---|---|---|---|---|---|
CPFAmilk | - | 0.380 (0.264–0.486) | 0.425 (0.313–0.526) | 0.805 (0.754–0.847) | 0.799 (0.747–0.842) | 0.802 (0.751–0.844) |
Silage% | <0.001 | - | 0.959 (0.947–0.968) | 0.484 (0.378–0.577) | 0.474 (0.366–0.569) | 0.476 (0.369–0.571) |
Silageamount | <0.001 | <0.001 | - | 0.526 (0.425–0.614) | 0.513 (0.410–0.602) | 0.516 (0.413–0.605) |
CPFAdiet | <0.001 | <0.001 | <0.001 | - | 0.994 (0.993–0.996) | 0.992 (0.990–0.994) |
CPFAdiet/ kg milk | <0.001 | <0.001 | <0.001 | <0.001 | - | 0.998 (0.998–0.999) |
CPFAdiet/ kg fat | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | - |
Term | Full Model | Final Model | ||||||
---|---|---|---|---|---|---|---|---|
EST | 95%-CI | p | EST | 95%-CI | p | |||
Lower Bound | Upper Bound | Lower Bound | Upper Bound | |||||
Intercept | 3.021 | 2.673 | 3.368 | <0.001 | 2.998 | 2.710 | 3.285 | <0.001 |
Year | −0.335 | −0.747 | 0.078 | 0.116 | ||||
Season (SE) | 0.090 | −0.294 | 0.475 | 0.646 | ||||
Silage type (ST) | 1.852 | 0.823 | 2.882 | 0.001 | 1.148 | 0.554 | 1.742 | <0.001 |
CPFAs intake (IN) | 0.044 | 0.006 | 0.081 | 0.025 | 0.044 | 0.008 | 0.081 | 0.021 |
ST × IN | −0.570 | −1.505 | 0.366 | 0.237 | ||||
ST × SE | −0.020 | −0.071 | 0.032 | 0.454 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fava, F.; Martini-Lösch, D.; Peratoner, G.; Robatscher, P.; Matteazzi, A.; Soini, E.; Österreicher, A.; Volgger, S.; de Andrade Moral, R.; Scampicchio, M.M.; et al. Effect of Diet on CPFAs Used as Markers in Milk for the Detection of Silage in the Ration of Dairy Cows. Foods 2025, 14, 476. https://doi.org/10.3390/foods14030476
Fava F, Martini-Lösch D, Peratoner G, Robatscher P, Matteazzi A, Soini E, Österreicher A, Volgger S, de Andrade Moral R, Scampicchio MM, et al. Effect of Diet on CPFAs Used as Markers in Milk for the Detection of Silage in the Ration of Dairy Cows. Foods. 2025; 14(3):476. https://doi.org/10.3390/foods14030476
Chicago/Turabian StyleFava, Federico, Demian Martini-Lösch, Giovanni Peratoner, Peter Robatscher, Aldo Matteazzi, Evelyn Soini, Andreas Österreicher, Simon Volgger, Rafael de Andrade Moral, Matteo Mario Scampicchio, and et al. 2025. "Effect of Diet on CPFAs Used as Markers in Milk for the Detection of Silage in the Ration of Dairy Cows" Foods 14, no. 3: 476. https://doi.org/10.3390/foods14030476
APA StyleFava, F., Martini-Lösch, D., Peratoner, G., Robatscher, P., Matteazzi, A., Soini, E., Österreicher, A., Volgger, S., de Andrade Moral, R., Scampicchio, M. M., Eisenstecken, D., & Venir, E. (2025). Effect of Diet on CPFAs Used as Markers in Milk for the Detection of Silage in the Ration of Dairy Cows. Foods, 14(3), 476. https://doi.org/10.3390/foods14030476