Trifolium pratense and T. repens (Leguminosae): Edible Flower Extracts as Functional Ingredients
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Extraction Procedure
Edible Flowers | Rutin | Quercetin | Luteolin | Kaempferol | Myricetin |
---|---|---|---|---|---|
Trifolium pratense | - | - | 16.7 ± 0.8 | 0.8 ± 0.02 | 0.5 ± 0.1 |
T. repens | 45.8 ± 1.1 | 10.3 ± 0.2 | - | 0.5 ± 0.03 | 1.4 ± 0.02 |
2.3. Determination of Total Phenols and Flavonoids Content
2.4. HPLC Analysis of Selected Flavonoids as Marker
2.5. Antioxidant Activity
2.5.1. Radical Scavenging (DPPH and ABTS) Activity Assays
2.5.2. β-carotene Bleaching Test
2.5.3. Ferric Reducing Activity Power (FRAP) Assay
2.6. α-Amylase and α-glucosidase Inhibitory Activity
2.7. Pancreatic Lipase Inhibitory Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Phenols and Flavonoids Content and HPLC Profile
3.2. Antioxidant Activity
ABTS Test IC50 (μg/mL) | DPPH Test IC50 (μg/mL) | β-carotene Bleaching Test IC50 (μg/mL) | FRAP Test μM Fe(II)/g | ||
---|---|---|---|---|---|
Edible flowers | 30 min | 60 min | |||
T. pratense | 149.8 ± 4.2 *** | 34.0 ± 1.6 *** | 7.9 ± 2.9 *** | 11.0 ± 1.1 *** | NA |
T. repens | 21.4 ± 2.5 *** | 10.3 ± 1.2 | 16.1 ± 2.4 *** | 18.4 ± 2.8 *** | 44.2 ± 4.5 *** |
Positive controls | |||||
Ascorbic acid | 1.7 ± 0.3 | 5.0 ± 0.8 | |||
Propyl gallate | 1.0 ± 0.04 | 1.0 ± 0.05 | |||
BHT | 63.2 ± 4.3 |
3.3. Inhibition of Key Enzyme Involved in Diabetes and Obesity
Edible Flowers | α-Amylase | α-Glucosidase | Lipase |
---|---|---|---|
T. pratense | 78.7 ± 2.1 *** | 70.8 ± 3.9 *** | 2.4 ± 0.1 *** |
T. repens | 25.0 ± 2.9 *** | 69.5 ± 3.1 *** | 1.3 ± 0.2 *** |
Positive control | |||
Acarbose | 50.0 ± 2.8 | 35.5 ± 1.2 | |
Orlistat | 0.018 ± 0.005 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sabudak, T.; Guler, N. Trifolium L.—A review on its phytochemical and pharmacological profile. Phytother. Res. 2009, 23, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Belsinger, S. Flowers in the Kitchen. Loveland; Interweave Press: San Jose, CA, USA, 1991. [Google Scholar]
- Kelley, K.M.; Behe, B.K.; Biernbaum, J.A.; Poff, K.L. Combinations of colors and species of containerized edible flowers: Effect on consumer preferences. Hortscience 2002, 37, 218–221. [Google Scholar]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- WHO. Diabetes. Fact Sheet N°312. Available online: http://www.who.int/mediacentre/factsheets/fs312/en/ (accessed on 12 November 2014).
- Vîrgolici, B.; Mohora, M.; Stoian, I.; Lixandru, D.; Găman, L.; Paveliu, F. A comparative oxidative stress study-obesity with and without diabetes mellitus. Rom. J. Intern. Med. 2005, 43, 261–268. [Google Scholar] [PubMed]
- Al-Goblan, A.S.; Al-Alfi, M.A.; Khan, M.Z. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes. 2014, 7, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Loizzo, M.R.; Statti, G.A.; Menichini, F. Inhibitory effects on the digestive enzyme alpha-amylase of three Salsola species (Chenopodiaceae) in vitro. Pharmazie 2007, 62, 473–475. [Google Scholar] [PubMed]
- Kazeem, M.I.; Adamson, J.O.; Ogunwande, I.A. Modes of Inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed. Res. Int. 2013, 527570, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Krauss, R.M. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 2004, 27, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Simonen, P.P.; Gylling, H.K.; Miettinen, T.A. Diabetes contributes to cholesterol metabolism regardless of obesity. Diabetes Care 2002, 25, 1511–1515. [Google Scholar] [CrossRef] [PubMed]
- De la Garza, A.L.; Milagro, F.I.; Boque, N.; Campión, J.; Martínez, J.A. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med. 2011, 77, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini-Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol. Nutr. Food Res. 2013, 57, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Ni, X.; Kai, G.; Chen, X. A review on structure-activity relationship of dietary polyphenols inhibiting α-amylase. Crit. Rev. Food Sci. Nutr. 2013, 53, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov. Today 2007, 12, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Loizzo, M.R.; Nicoletti, M.; Menichini, F.; Conforti, F. Inhibition of key enzymes linked to obesity by preparations from mediterranean dietary plants: Effects on α-amylase and pancreatic lipase activities. Plant Foods Hum. Nutr. 2013, 68, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of Sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Chiasson, J.L.; Josse, R.G.; Gomis, R.; Hanefeld, M.; Karasik, A.; Laakso, M.; STOP-NIDDM Trail Research Group. Acarbose for prevention of type 2 diabetes mellitus: The STOP-NIDDM randomised trial. Lancet 2002, 359, 2072–2077. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.K.; Lee, C.Y. Relative antioxidant and cytoprotective activities of common herbs. Food Chem. 2008, 106, 929–936. [Google Scholar] [CrossRef]
- Molyneux, P. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin. J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1996, 26, 1231–1237. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Bonesi, M.; Menichini, F.; Mastellone, V.; Avallone, L.; Menichini, F. Radical scavenging, antioxidant and metal chelating activities of Annona cherimola Mill. (cherimoya) peel and pulp in relation to their total phenolic and total flavonoid contents. J. Food Comp. Anal. 2012, 25, 179–184. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strains, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Statti, G.A.; Menichini, F. Influence of ripening stage on health benefits properties of Capsicum annuum var. acuminatum L.: In vitro studies. J. Med. Food 2008, 11, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Perri, V.; Menichini, F.; Marrelli, M.; Uzunov, D.; Statti, G.A.; Menichini, F. Wild Mediterranean dietary plants as inhibitors of pancreatic lipase. Phytother. Res. 2012, 26, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Yang, J.; Jiang, Y.; Lu, B.; Hu, Y.; Zhou, F.; Mao, S.; Shen, C. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. J. Food Sci. 2014, 79, C517–C525. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. F 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Vlaisavljevic, S.; Kaurinovic, B.; Popovic, M.; Djurendic-Brenesel, M.; Vasiljevic, B.; Cvetkovic, D.; Vasiljevic, S. Trifolium pratense L. as a potential natural antioxidant. Molecules 2014, 19, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Clarendon Press: Oxford, MS, USA, 1986; pp. 183–189. [Google Scholar]
- Singh, R.P.; Chidambara Murthy, K.N.; Jayaprakasha, G.K. Studies on the antioxidant activity of pomegranate (Punicagranatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 2002, 50, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Duh, P.D.; Du, P.C.; Yen, G.C. Action of methanolic extract of mung hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food Chem. Toxicol. 1999, 37, 1055–1061. [Google Scholar] [CrossRef]
- Lo Piparo, E.; Scheib, H.; Frei, N.; Williamson, G.; Grigorov, M.; Chou, C.J. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human alpha-amylase. J. Med. Chem. 2008, 51, 3555–3561. [Google Scholar] [CrossRef] [PubMed]
- Yuan, E.; Liu, B.; Wei, Q.; Yang, J.; Chen, L.; Li, Q. Structure activity relationships of flavonoids as potent alpha-amylase inhibitors. Nat. Prod. Commun. 2014, 9, 1173–1176. [Google Scholar] [PubMed]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-Glucosidase and α-Amylase by Flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawi, M. Effect of Trifolium sp. flowers extracts on the status of liver histology of streptozotocininduced diabetic rats. Saudi. J. Biol. Sci. 2014, 14, 21–28. [Google Scholar]
- Aly, T.A.A.; Fayed, S.A.; Ahmed, A.M.; El Rahim, E.A. Effect of egyptian radish and clover sprouts on blood sugar and lipid metabolisms in diabetic rats. Glob. J. Biotechnol. Biochem. 2015, 10, 16–21. [Google Scholar]
- Chedraui, P.; Miguel, G.S.; Hidalgo, L.; Morocho, N.; Ross, S. Effect of Trifolium pratense-derived isoflavones on the lipid profile of postmenopausal women with increased body mass index. Gynecol. Endocrinol. 2008, 24, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Németh, K.; Plumb, G.W.; Berrin, J.G.; Juge, N.; Jacob, R.; Naim, H.Y.; Williamson, G.; Swallow, D.M.; Kroon, P.A. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 2003, 42, 29–42. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tundis, R.; Marrelli, M.; Conforti, F.; Tenuta, M.C.; Bonesi, M.; Menichini, F.; Loizzo, M. Trifolium pratense and T. repens (Leguminosae): Edible Flower Extracts as Functional Ingredients. Foods 2015, 4, 338-348. https://doi.org/10.3390/foods4030338
Tundis R, Marrelli M, Conforti F, Tenuta MC, Bonesi M, Menichini F, Loizzo M. Trifolium pratense and T. repens (Leguminosae): Edible Flower Extracts as Functional Ingredients. Foods. 2015; 4(3):338-348. https://doi.org/10.3390/foods4030338
Chicago/Turabian StyleTundis, Rosa, Mariangela Marrelli, Filomena Conforti, Maria Concetta Tenuta, Marco Bonesi, Francesco Menichini, and Monica Loizzo. 2015. "Trifolium pratense and T. repens (Leguminosae): Edible Flower Extracts as Functional Ingredients" Foods 4, no. 3: 338-348. https://doi.org/10.3390/foods4030338
APA StyleTundis, R., Marrelli, M., Conforti, F., Tenuta, M. C., Bonesi, M., Menichini, F., & Loizzo, M. (2015). Trifolium pratense and T. repens (Leguminosae): Edible Flower Extracts as Functional Ingredients. Foods, 4(3), 338-348. https://doi.org/10.3390/foods4030338