Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth
Abstract
:1. Introduction
2. Material and Methods
2.1. Essential Oils
2.2. Antioxidant Activity
2.2.1. 2,2′-diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Method
2.2.2. ABTS Radical Cation (ABTS•+) Scavenging Activity Assay
2.2.3. Ferric Reducing Antioxidant Power
2.2.4. Ferrous Ion-Chelating Ability Assay
2.3. Microbial Strains
2.4. Antimicrobial Screening
2.4.1. Preparation of Meat Model Medium
2.4.2. Disc-Diffusion Method
2.5. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity
3.2. Antibacterial Activity
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Grunert, K.G. Future trends and consumer lifestyles with regard to meat consumption. Meat Sci. 2006, 74, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Alves-Silva, J.M.; Dias dos Santos, S.M.; Pintado, M.E.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Chemical composition and in vitro antimicrobial, antifungal and antioxidant properties of essential oils obtained from some herbs widely used in Portugal. Food Control 2013, 32, 371–378. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Spices as Functional Foods. Crit. Rev. Food Sci. Nutr. 2011, 51, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; El-Gendy, G.S.A.; Sendra, E.; Fernández-López, J.; Razik, K.A.A.; Omer, E.A.; Pérez-Alvarez, J.A. Chemical composition and antioxidant and anti-listeria activities of essential oils obtained from some Egyptian plants. J. Agric. Food Chem. 2010, 58, 9063–9070. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.F.; Hammer, K.A. Chemistry and bioactivity of EOs. In Lipids and EOs as Antimicrobial Agents; Thormar, H., Ed.; John Wiley & Sons, Ltd.: West Sussex, UK, 2011; pp. 307–335. [Google Scholar]
- Ruiz-Navajas, Y.; Viuda-Martos, M.; Sendra, E.; Perez-Alvarez, J.A.; Fernández-López, J. In vitro antioxidant and antifungal properties of essential oils obtained from aromatic herbs endemic to the southeast of Spain. Food Prot. 2013, 76, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Adrar, N.; Oukil, N.; Bedjou, F. Antioxidant and antibacterial activities of Thymus numidicus and Salvia officinalis essential oils alone or in combination. Ind. Crops Prod. 2015, 88, 112–119. [Google Scholar] [CrossRef]
- Majouli, K.; Besbes Hlila, M.; Hamdi, A.; Flamini, G.; Ben Jannet, H.; Kenani, A. Antioxidant activity and α-glucosidase inhibition by essential oils from Hertia cheirifolia (L.). Ind. Crops Prod. 2016, 82, 23–28. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernandez-Lopez, J.; Perez-Alvarez, J.A. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control 2008, 19, 1130–1138. [Google Scholar] [CrossRef]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009, 26, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Ballester-Costa, C.; Sendra, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical composition and in vitro antibacterial properties of essential oils of four Thymus species from organic growth. Ind. Crops Prod. 2013, 50, 304–311. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Leite, A.; Malta, L.G.; Riccio, M.F.; Eberlin, M.N.; Pastore, G.M.; Marostica Junior, M.R. Antioxidant potential of rat plasma by administration of freeze-dried jaboticaba peel (Myrciaria jaboticaba Vell Berg). J. Agric. Food Chem. 2011, 59, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction prepared from glucosamine. Jap. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Carter, P. Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal. Biochem. 1971, 40, 450–458. [Google Scholar] [CrossRef]
- Tepe, B.; Sokmen, M.; Sokmen, A.; Daferera, D.; Polissiou, M. Antimicrobial and antioxidative activity of essential oil and various extracts of Cyclotrichium origanifolium (Labill.) Manden. & Scheng. J. Food Eng. 2005, 69, 335–342. [Google Scholar]
- Djabou, N.; Lorenzi, V.; Guinoiseau, E.; Andreani, S.; Giuliani, M.C.; Desjobert, J.M.; Bolla, J.M.; Costa, J.; Berti, L.; Luciani, A.; et al. Phytochemical com-position of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control 2013, 30, 354–363. [Google Scholar] [CrossRef]
- Číž, M.; Čížová, H.; Denev, P.; Kratchanova, M.; Slavov, A.; Lojek, A. Different methods for control and comparison of the antioxidant properties of vegetables. Food Control 2010, 21, 518–523. [Google Scholar] [CrossRef]
- Kadri, A.; Zarai, Z.; Chobba, I.B.; Gharsallah, N.; Damak, M.; Békir, A. Chemical composition and in vitro antioxidant activities of Thymelaea hirsuta L: Essential oil from Tunisia. Afr. J. Biotechnol. 2013, 10, 2930–2935. [Google Scholar]
- Zouari, N.; Fakhfakh, N.; Zouarid, S.; Bougatef, A.; Karraya, A.; Neffati, M.; Ayadie, M.A. Chemical composition, angiotensin I-converting enzyme inhibitory, antioxidant and antimicrobial activities of essential oil of Tunisian Thymus algeriensis Boiss. et Reut. (Lamiaceae). Food Bioprod. Process. 2011, 89, 257–265. [Google Scholar] [CrossRef]
- Ozen, T.; Demirtas, I.; Aksit, H. Determination of antioxidant activities of various extracts and essential oil compositions of Thymus praecox subsp. skorpilii var. skorpilii. Food Chem. 2011, 124, 58–64. [Google Scholar] [CrossRef]
- Ali, I.B.E.; Chaouachi, M.; Bahri, R.; Chaieb, I.; Boussaïd, M.; Harzallah-Skhiri, F. Chemical composition and antioxidant, antibacterial, allelopathic and insecticidal activities of essential oil of Thymus algeriensis Boiss. et Reut. Ind. Crops Prod. 2015, 77, 631–639. [Google Scholar]
- Nikolić, M.J.; Glamočlija, I.C.F.R.; Ferreira, R.C.; Calhelha, Â.; Fernandes, T.; Marković, D.; Marković, A.; Giweli, M.; Soković, M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Sanchez-Zapata, E.; Fernández-López, J.; Pérez-Alvarez, J.A. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Fragr. J. 2010, 25, 13–19. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Yanishlieva, N.V. Inhibiting oxidation. In Antioxidants in Food: Practical Applications; Pokorny, J., Yanishlieva, N., Gordon, M., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2001; pp. 22–69. [Google Scholar]
- Bassolé, I.H.; Rodolfo-Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Navajas, Y.; Viuda-Martos, M.; Sendra, E.; Perez-Alvarez, J.A.; Fernández-López, J. Chemical characterization and antibacterial activity of Thymus moroderi and Thymus piperella essential oils, two Thymus endemic species from southeast of Spain. Food Control 2012, 27, 294–299. [Google Scholar] [CrossRef]
- Fatma, G.; Mouna, B.F.; Mondher, M.; Ahmed, L. In vitro assessment of antioxidant and antimicrobial activities of methanol extracts and essential oil of Thymus hirtus sp. Algeriensis. Lipids Health Dis. 2014, 13, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Tepe, B.; Sarikurkcu, C.; Berk, S.; Alim, A.; Akpulat, H.A. Chemical composition, radical scavenging and antimicrobial activity of the essential oils of Thymus boveii and Thymus hyemalis. Rec. Nat. Prod. 2011, 5, 208–220. [Google Scholar]
- De Martino, L.; Bruno, M.; Formisano, C.; De Feo, V.; Napolitano, F.; Rosselli, S. Chemical composition and antimicrobial activity of the essential oils from two species of Thymus growing wild in southern Italy. Molecules 2009, 14, 4614–4624. [Google Scholar] [CrossRef] [PubMed]
- Djenane, D.; Yangüela, J.; Montañés, L.; Djerbal, M.; Roncalés, P. Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: Efficacy and synergistic potential in minced beef. Food Control 2011, 22, 1046–1053. [Google Scholar] [CrossRef]
- Moon, H.; Rhee, M.S. Synergism between carvacrol or thymol increases the antimicrobial efficacy of soy sauce with no sensory impact. Int. J. Food Microbiol. 2016, 217, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.; Luís, A.; Oleastro, M.; Domingues, F.C. Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control 2016, 61, 115–122. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Horvathova, E.; Navarova, J.; Galova, E.; Sevcovicova, A.; Chodakova, L.; Snahnicanova, Z.; Melusova, M.; Kozics, K.; Slamenova, D. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil. J. Agric. Food Chem. 2014, 62, 663–6639. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Tian, C.; Lu, Y.; Xu, J.; Luo, J.; Guo, X. Essential oil composition and antimicrobial activity of Sphallerocarpus gracilis seeds against selected food-related bacteria. Food Control 2011, 22, 517–522. [Google Scholar] [CrossRef]
- Arques, J.L.; Rodriguez, E.; Nuñez, M.; Medina, M. Inactivation of gram-negative pathogens in refrigerated milk by reuterin in combination with nisin or the lactoperoxidase system. Eur. Food Res. Technol. 2008, 227, 77–82. [Google Scholar] [CrossRef]
- Xing, Y.; Xu, Q.; Li, X.; Che, Z.; Yun, J. Antifungal activities of clove against Rhizopus nigricans, Aspergillus flavus and Penicillium citrinum in vitro and in wounded fruit test. J. Food Saf. 2012, 32, 84–93. [Google Scholar] [CrossRef]
DPPH Assay | ABTS Assay | FIC Assay | FRAP Assay | |
---|---|---|---|---|
IC50 (mg/mL) | IC50 (mg/mL) | IC50 (mg/mL) | (mg TE/mL) | |
T. mastichina | 3.11 ± 0.11 b | 3.73 ± 0.14 b | 9.61 ± 0.19 b | 19.26 ± 0.10 c |
T. zygis | 0.90 ± 0.03 c | 2.07 ± 0.06 c | 4.95 ± 0.14 c | 49.56 ± 0.09 b |
T. vulgaris | 4.05 ± 0.09 a | 6.46 ± 0.11 a | 13.29 ± 0.18 a | 12.69 ± 0.03 d |
T. capitatus | 0.60 ± 0.02 d | 1.41 ± 0.05 d | 4.44 ± 0.16 d | 58.12 ± 0.25 a |
Diameter of Inhibition Zone (mm) Including Disc (9 mm) | ||||
---|---|---|---|---|
T. capitatus | T. mastichina | T. vulgaris | T. zygis | |
A. denitrificans | 28.37 ± 0.11 aD (++) | 11.29 ± 0.00 dE (−) | 19.82 ± 0.97 cB (+) | 23.92 ± 2.72 bD (++) |
A. faecalis | 35.12 ± 0.30 aA (+++) | 16.91 ± 1.17 dB (+) | 32.73 ± 0.33 cA (+++) | 33.85 ± 0.36 bB (+++) |
A. hydrophila | 30.69 ± 1.88 aC (+++) | 14.70 ± 0.98 dC (+) | 16.04 ± 0.11 cC (+) | 19.35 ± 0.07 bE (+) |
E. amnigenus | 16.80 ± 0.28 aE (+) | 10.97 ± 0.01 cF (−) | 12.43 ± 0.18 b (+) | 17.98 ± 1.67 aE (+) |
E. gergoviae | 13.78 ± 0.63 aF (+) | 10.82 ± 0.06 bF (−) | 10.77 ± 1.42 bE (−) | 13.92 ± 0.08 aF (+) |
L. innocua | 34.07 ± 1.68 bA (+++) | 34.98 ± 1.67 bA (+++) | 33.77 ± 3.35 bA (+++) | 45.37 ± 5.98 aA (+++) |
P. fluorescens | 29.36 ± 2.11 aCD (++) | 12.07 ± 1.10 cDE (+) | 19.91 ± 2.55 bB (+) | 27.72 ± 0.68 aC (++) |
P. fragi | 29.80 ± 2.16 aCD (++) | 11.61 ± 0.01 dE (−) | 16.23 ± 2.29 cCD (+) | 26.61 ± 1.90 bC (++) |
S. marcescens | 29.06 ± 1.10 aCD (++) | 11.84 ± 0.49 cE (−) | 16.84 ± 1.10 bCD (+) | 16.96 ± 0.05 bE (+) |
S. putrefaciens | 32.04 ± 0.01 aB (+++) | 13.09 ± 0.40 dD (+) | 15.34 ± 0.00 cD (+) | 20.85 ± 3.28 bDE (+) |
Diameter of Inhibition Zone (mm) Including Disc (9 mm) | ||||
---|---|---|---|---|
T. capitatus | T. mastichina | T. vulgaris | T. zygis | |
A. denitrificans | 14.70 ± 0.14 aE (+) | 13.29 ± 0.61bcB (+) | 13.59 ± 0.00 bE (+) | 13.11 ± 0.13 cE (+) |
A. faecalis | 32.25 ± 0.01 aA (+++) | 15.34 ± 0.70 cA (+) | 24.55 ± 1.44 bA (++) | 25.39 ± 1.96 bA (++) |
A. hydrophila | 14.49 ± 0.39 bE (+) | 12.13 ± 0.34 cC (+) | 14.74 ± 0.08 bD (+) | 18.51 ± 0.24 aB (+) |
E. amnigenus | 16.29 ± 0.50 aC (+) | 10.69 ± 0.37cE (−) | 10.87 ± 0.10 cF (−) | 15.08 ± 0.90 bD (+) |
E. gergoviae | 16.51 ± 1.73 aC (+) | 13.81 ± 0.28 cB (+) | 14.46 ± 0.20 bDE (+) | 17.32 ± 0.97 aC (+) |
L. innocua | 20.86 ± 0.59 bB (++) | 15.23 ± 1.22 cA (+) | 22.35 ± 0.40 aB (++) | 23.01 ± 0.78 aA (++) |
P. fluorescens | 17.71 ± 0.85 aC (+) | 12.86 ± 0.56 dC (+) | 13.93 ± 0.45 cE (+) | 15.48 ± 0.25 bD (+) |
P. fragi | 15.17 ± 0.15 bD (+) | 11.78 ± 0.06 dD (−) | 14.30 ± 0.64 cDE (+) | 16.68 ± 0.37 aC (+) |
S. marcescens | 16.59 ± 1.09 aC (+) | 12.69 ± 0.01 bC (+) | 15.95 ± 0.80 aC (+) | 15.15 ± 0.00 aD (+) |
S. putrefaciens | 13.75 ± 0.00 bF (+) | 14.34 ± 0.23 aA (+) | 9.77 ± 0.04 dG (−) | 12.98 ± 0.11 cE (+) |
Diameter of Inhibition Zone (mm) Including Disc (9 mm) | ||||
---|---|---|---|---|
T. capitatus | T. mastechina | T. vulgaris | T. zygis | |
A. denitrificans | 20.75 ± 1.57 aC (+) | 15.87 ± 1.10 bE (+) | 15.99 ± 1.03 b (+) | 20.63 ± 0.28 aC (+) |
A. faecalis | 9.00 ± 0.00 cE (−) | 16.03 ± 0.30 bE (+) | 21.38 ± 2.08 a (++) | 9.00 ± 0.00 cF (−) |
A. hydrophila | 38.18 ± 1.48 aA (+++) | 24.94 ± 0.11 cA (++) | 29.91 ± 5.12 b (++) | 40.72 ± 0.85 aB (+++) |
E. amnigenus | 9.00 ± 0.00 cE (−) | 17.31 ± 0.29 bC (+) | 19.19 ± 1.08 a (+) | 9.00 ± 0.00 cF (+−) |
E. gergoviae | 9.00 ± 0.00 bE (−) | 9.00 ± 0.00 bH (−) | 12.85 ± 0.44 a (+) | 9.00 ± 0.00 bF (−) |
L. innocua | 38.59 ± 1.37 bA (+++) | 19.45 ± 1.03 dB (+) | 22.82 ± 0.45 c (++) | 50.97 ± 5.17 aA (+++) |
P. fluorescens | 19.28 ± 0.15 aC (+) | 16.70 ± 0.33 cD (+) | 11.49 ± 0.19 d (−) | 18.99 ± 0.90 bD (+) |
P. fragi | 30.11 ± 0.02 aB (+++) | 14.19 ± 0.06 cF (+) | 13.26 ± 0.66 d (+) | 18.49 ± 0.28 bD (+) |
S. marcescens | 16.60 ± 0.33 aD (+) | 11.49 ± 0.02 cG (−) | 14.82 ± 0.76 b (+) | 16.64 ± 0.10 aE (+) |
S. putrefaciens | 18.96 ± 0.88 aC (+) | 15.82 ± 0.08 bE (+) | 13.45 ± 1.66 c (+) | 18.87 ± 0.51 aD (+) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballester-Costa, C.; Sendra, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth. Foods 2017, 6, 59. https://doi.org/10.3390/foods6080059
Ballester-Costa C, Sendra E, Fernández-López J, Pérez-Álvarez JA, Viuda-Martos M. Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth. Foods. 2017; 6(8):59. https://doi.org/10.3390/foods6080059
Chicago/Turabian StyleBallester-Costa, Carmen, Esther Sendra, Juana Fernández-López, Jose A. Pérez-Álvarez, and Manuel Viuda-Martos. 2017. "Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth" Foods 6, no. 8: 59. https://doi.org/10.3390/foods6080059
APA StyleBallester-Costa, C., Sendra, E., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2017). Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth. Foods, 6(8), 59. https://doi.org/10.3390/foods6080059