Carbon Stable-Isotope and Physicochemical Data as a Possible Tool to Differentiate between Honey-Production Environments in Uruguay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. Physicochemical Analyses
2.3. C Isotopic Composition
2.4. Statistical Analyses
3. Results and Discussion
3.1. Chemical Characterisation of Honeys
3.2. Discrimination of Honey Origin
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Groening, C.; Sarkis, J.; Zhu, Q. Green marketing consumer-level theory review: A compendium of applied theories and further research directions. J. Clean. Prod. 2018, 172, 1848–1866. [Google Scholar] [CrossRef]
- Schäufele, I.; Hamm, U. Consumers’ perceptions, preferences and willingness-to-pay for wine with sustainability characteristics: A review. J. Clean. Prod. 2017, 47, 379–394. [Google Scholar] [CrossRef]
- Bernabéu, R.; Díaz, M. Preference for olive oil consumption in the Spanish local market. Span. J. Agric. Res. 2017, 14, e0108. [Google Scholar] [CrossRef]
- Lazzarini, G.; Visschers, V.; Siegrist, M. Our own country is best: Factors influencing consumers’ sustainability perceptions of plant-based foods. Food Qual. Prefer. 2017, 60, 165–177. [Google Scholar] [CrossRef]
- Corbella, E.; Cozzolino, D. Classification of the floral origin of Uruguayan honeys by chemical and physical characteristics combined with chemometrics. LWT-Food Sci. Technol. 2006, 39, 534–539. [Google Scholar] [CrossRef]
- Soares, S.; Amaral, J.; Oliveira, M.B.; Mafra, I. Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef]
- Abu-Tarboush, H.; Al-Khahtani, H.; El-Sarrage, S. Floral-type identification and quality evaluation of some honey types. Food Chem. 1993, 46, 13–17. [Google Scholar] [CrossRef]
- Pérez-Arquillue, C.; Conchello, P.; Arino, A.; Juan, T.; Herrera, A. Physicochemical attributes and pollen spectrum of some unifloral Spanish honeys. Food Chem. 1995, 54, 167–172. [Google Scholar] [CrossRef]
- Conti, M.; Finoia, M.; Fontana, L.; Mele, G.; Botrè, F.; Iavicoli, I. Characterization of Argentine honeys on the basis of their mineral content and some typical quality parameters. Chem. Cent. J. 2014, 8, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbella, E.; Cozzolino, D. The Use of Visible and near Infrared Spectroscopy to Classify the Floral Origin of Honey Samples Produced in Uruguay. J. Near Infrared Spec. 2005, 13, 63–68. [Google Scholar] [CrossRef]
- Bontempo, L.; Camin, F.; Ziller, L.; Perini, M.; Nicolini, G.; Larcher, R. Isotopic and elemental composition of selected types of Italian honey. Measurement 2015, 98, 283–289. [Google Scholar] [CrossRef]
- Terrab, A.; González, G.; Díez, M.; Heredia, F. Characterisation of Moroccan unifloral honeys using multivariate analysis. Eur. Food Res. Technol. 2003, 218, 88–95. [Google Scholar] [CrossRef]
- Nozal-Nalda, M.; Yague, J.; Calva, J.; Gomez, M. Classifying honeys from the Soria Province of Spain via multivariate analysis. Anal. Bioanal. Chem. 2005, 382, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Harmonised Methods of the International. International Honey Commission. 2009. Available online: http://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 15 May 2018).
- White, J.W.; Winters, K. Honey protein as internal standard for stable carbon isotope ratio detection of adulteration of honey. J. AOAC 1989, 72, 907–911. [Google Scholar]
- Armanino, C.; De Acutis, R.; Festa, M. Wheat lipids to discriminate species, varieties, geographical origins and crop years. Anal. Chim. Acta 2002, 454, 315–326. [Google Scholar] [CrossRef]
- FAO Revised Codex Standard for Honey. Available online: ftp://ftp.fao.org/codex/Meetings/CCPFV/ccpfv22/pf22_03e.pdf (accessed on 15 May 2018).
- IMPO Identidad y Calidad de la Miel (Res. Nº 56/99). Available online: https://www.impo.com.uy/bases/decretos-internacional/105-2001 (accessed on 15 May 2018).
- Malacalza, N.; Caccavari, M.; Fagúndez, G.; Lupano, C. Unifloral hon-eys of the province of Buenos Aires, Argentine. J. Sci. Food Agric. 2005, 85, 1389–1396. [Google Scholar] [CrossRef]
- Baroni, M.; Arrua, C.; Nores, M.; Fayé, P.; Díaz, M.; Chiabrando, G. Composition of honey from Córdoba (Argentina): Assessment of North/South provenance by chemometrics. Food Chem. 2009, 114, 727–733. [Google Scholar] [CrossRef]
- Bath, P.; Singh, N. A comparison between Helianthus annuus and Eucalyptus lanceolatus honey. Food Chem. 1999, 67, 389–397. [Google Scholar] [CrossRef]
- Serrano, S.; Villarejo, M.; Espejo, R.; Jodral, M. Chemical and physical parameters of Andalusian honey: Classification of Citrus and Euca-lyptus honeys by discriminant analysis. Food Chem. 2004, 87, 619–625. [Google Scholar] [CrossRef]
- Chakir, A.; Romane, A.; Marcazzan, G.; Ferrazzi, P. Physicochemical properties of some honeys produced from different plants in Morocco. Arab. J. Chem. 2011, 9, S946–S954. [Google Scholar] [CrossRef]
- Silva, L.; Videira, R.; Monteiro, A.; Valentão, P.; Andrade, P. Honey from Luso region (Portugal): Physicochemical characteristics and mineral contents. Microchem. J. 2009, 93, 73–77. [Google Scholar] [CrossRef]
- Berriel, V.; Perdomo, C. Determination of high fructose corn syrup concentration in Uruguayan honey by 13C analyses. LWT-Food Sci. Technol. 2016, 73, 649–653. [Google Scholar] [CrossRef]
- Kivrak, S.; Kivrak, I.; Karababa, E. Characterization of Turkish honeys regarding of physicochemical properties, and their adulteration analysis. Food Sci. Technol. Camp. 2017, 37, 80–89. [Google Scholar] [CrossRef]
- Roßmann, A.; Lüllmann, C.; Schmidt, H.L. Massenspektrometrische Kohlenstoff und Wasserstoff-Isotopen-Verhältnismessung zur Authentiz-itätsprüfung bei Honigen. Zeitschrift Lebensmittel-Untersuchung Forschung 1992, 195, 307–311. [Google Scholar] [CrossRef]
- Antúnez, K.; Anido, M.; Branchiccela, B. Seasonal Variation of Honeybee Pathogens and its Association with Pollen Diversity in Uruguay. Microb. Ecol. 2015, 70, 522–534. [Google Scholar] [CrossRef] [PubMed]
- Antúnez, K.; Invernizzi, C.; Mendoza, Y. Honeybee colony losses in Uruguay during 2013–2014. Apidologie 2017, 48, 364–370. [Google Scholar] [CrossRef]
- Abbas, O.; Zadravec, M.; Baeten, V.; Mikuš, T.; Lešić, T.; Vulić, A.; Prpić, J.; Jemeršić, J.; Pleadin, J. Analytical methods used for the authentication of food of animal origin. Food Chem. 2018, 246, 6–17. [Google Scholar] [CrossRef] [PubMed]
Variable | Apiary Environment | ||
---|---|---|---|
Eucalyptus Forest (n = 5) | Native Forest (n = 5) | Grassland (n = 5) | |
Mean ± SD 1 | |||
pH | 3.50 ± 0.34 | 3.86 ± 0.41 | 3.26 ± 0.39 |
Moisture (%) | 17.84 ± 0.22 | 16.30 ± 0.54 | 15.96 ± 0.64 |
Free acidity (meq/kg) | 27.76 ± 5.79 | 21.38 ± 7.47 | 29.81 ± 5.78 |
Lactonic acidity (meq/kg) | 6.05 ± 3.03 | 3.42 ± 4.16 | 5.13 ± 2.72 |
Sugar content (°Brix) | 79.7 ± 0.27 | 80.8 ± 0.45 | 81.10 ± 0.55 |
δ13C Honey (‰) | −26.49 ± 0.53 | −25.90 ± 0.40 | −25.54 ± 0.45 |
δ13C Protein (‰) | −25.75 ± 0.91 | −25.72 ± 0.61 | −25.57 ± 0.87 |
Variable | Wilks’ Lambda | F | DF1 1 | DF2 | p-Value |
---|---|---|---|---|---|
δ13C Honey | 0.432 | 17.116 | 1 | 13 | 0.001 |
°Brix | 0.266 | 35.951 | 1 | 13 | <0.0001 |
Moisture | 0.192 | 54.853 | 1 | 13 | <0.0001 |
Function’s Components | Honey Origin | |
---|---|---|
E 1 | P 2 | |
Intercept | −1,311,343,810,475.940 | −708,935.543 |
δ13C Honey | 2.540 | 465.849 |
°Brix | 25,712,623,826.863 | 15,142.429 |
Moisture | 32,140,779,262.379 | 12,652.200 |
δ13C Honey × δ13C Honey | −2.865 | −2.763. |
°Brix × °Brix | −126,042,275.087 | −81.155 |
Moisture × Moisture | −196,941,054.823 | −57.487 |
δ13C Honey × °Brix | −2.712 | −6.633 |
δ13C Honey × Moisture | 3.390 | −4.404 |
Moisture × °Brix | −315,105,675.479 | −134.786 |
Method | Predicted Group Membership (%) | ||
---|---|---|---|
Honey Origin | |||
E 1 | P 2 | Overall | |
Original | 100 | 100 | 100 |
Cross-validation | 100 | 100 | 100 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berriel, V. Carbon Stable-Isotope and Physicochemical Data as a Possible Tool to Differentiate between Honey-Production Environments in Uruguay. Foods 2018, 7, 86. https://doi.org/10.3390/foods7060086
Berriel V. Carbon Stable-Isotope and Physicochemical Data as a Possible Tool to Differentiate between Honey-Production Environments in Uruguay. Foods. 2018; 7(6):86. https://doi.org/10.3390/foods7060086
Chicago/Turabian StyleBerriel, Verónica. 2018. "Carbon Stable-Isotope and Physicochemical Data as a Possible Tool to Differentiate between Honey-Production Environments in Uruguay" Foods 7, no. 6: 86. https://doi.org/10.3390/foods7060086
APA StyleBerriel, V. (2018). Carbon Stable-Isotope and Physicochemical Data as a Possible Tool to Differentiate between Honey-Production Environments in Uruguay. Foods, 7(6), 86. https://doi.org/10.3390/foods7060086