Lactic Acid Fermentation as a Pre-Treatment Process for Faba Bean Flour and Its Effect on Textural, Structural and Nutritional Properties of Protein-Enriched Gluten-Free Faba Bean Breads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fermentation of Faba Bean Flour with Lactic Acid Bacteria
2.2.1. Microorganisms and Culture Condition
2.2.2. Fermentation Procedure
2.2.3. Pasting Properties by Rapid Visco Analyzer
2.2.4. Baking of Gluten-Free Breads
2.3. Texture Profile Analysis
2.4. Volume Analysis
2.5. Sensory Analysis
2.6. Microstructural Analyses
2.6.1. X-ray Microtomography
2.6.2. Light Microscopy
2.7. Nutritional Properties
2.8. Statistics
3. Results and Discussion
3.1. Chemical and Physical Characterisation of Fermented and Native Faba Flour
3.2. Macro and Micro Structure of Bread
3.3. Textural Properties
3.4. Sensory Properties
3.5. Nutritional Characteristics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khalil, A.H.; Mansour, E.H. The effect of cooking, autoclaving and germination on the nutritional quality of faba beans. Food Chem. 1995, 54, 177–182. [Google Scholar] [CrossRef]
- Perez-Maldonado, R.A.; Mannion, P.F.; Farrell, D.J. Optimum inclusion of field pies, faba beans, chick peas and sweet lupins in poultry diets. I. Chemical composition and layer experiments. Brit. Poult. Sci. 1999, 4040, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, E. The nutritional value of whole pulses and pulse fractions. In Pulse Foods-Processing, Quality and Nutraceutical Applications; Tiwari, B.K., Gowen, A., McKenna, B., Eds.; Elsevier: London, UK, 2011; pp. 363–383. [Google Scholar]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel insights on the functional/nutritional features of the sourdough fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Duranti, M. Grain legume proteins and nutraceutical properties. Fitoterapia 2006, 77, 67–82. [Google Scholar] [CrossRef]
- Verni, M.; De Mastro, G.; De Cillis, F.; Gobbetti, M.; Rizzello, C.G. Lactic acid bacteria fermentation to exploit the nutritional potential of Mediterranean faba bean local biotypes. Food Res. Int. 2019, 125, 108571. [Google Scholar] [CrossRef]
- Coda, R.; Kianjam, M.; Pontonio, E.; Verni, M.; Di Cagno, R.; Katina, K.; Rizzello, C.G.; Gobbetti, M. Sourdough-type propagation of faba bean flour: Dynamics of microbial consortia and biochemical implications. Int. J. Food Microbiol. 2017, 248, 10–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Multari, S.; Stewart, D.; Russell, W.R. Potential of fava bean as future protein supply to partially replace meat intake in the human diet. Compr. Rev. Food Sci. Food 2015, 14, 511–522. [Google Scholar] [CrossRef]
- Miyake, K.; Tanaka, T.; McNeil, P.L. Lectin-based food poisoning: A new mechanism of protein toxicity. PLoS ONE 2007, 22, e687. [Google Scholar] [CrossRef]
- El-Shemy, H.; Abdel-Rahim, E.; Shaban, O.; Ragab, A.; Carnovale, E.; Fujita, K. Comparison of nutritional and antinutritional factors in soybean and faba bean seeds with or without cortex. Soil Sci. Plant Nutr. 2000, 4646, 515–524. [Google Scholar]
- Kosińska, A.; Karamać, M.; Penkacik, K.; Urbalewicz, A.; Amarowicz, R. Interactions between tannins and proteins isolated from broad bean seeds (Vicia faba Major) yield soluble and non-soluble complexes. Eur. Food Res. Technol. 2011, 233, 213–222. [Google Scholar] [CrossRef]
- Cardador-Martínez, A.; Maya-Ocaña, K.; Ortiz-Moreno, A.; Herrera-Cabrera, B.E.; Dávila-Ortiz, G.; Múzquiz, M.; Martín-Pedrosa, M.; Burbano, C.; Cuadrado, C.; Jiménez-Martínez, C. Effect of roasting and boiling on the content of vicine, convicine and L-3, 4-dihydroxyphenylalanine in vicia faba L. J. Food Qual. 2012, 35, 419–428. [Google Scholar] [CrossRef]
- Coda, R.; Melama, L.; Rizzello, C.G.; Curiel, J.A.; Sibakov, J.; Holopainen, U.; Pulkkinen, M.; Sozer, N. Effect of air classification and fermentation by Lactobacillus plantarum VTT E-133328 on faba bean (Vicia faba L.) flour nutritional properties. Int. J. Food Microbiol. 2015, 193, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Coda, R.; Varis, J.; Verni, M.; Rizzello, C.G.; Katina, K. Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT-Food Sci. Technol. 2017, 82, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Verni, M.; Wang, C.; Montemurro, M.; De Angelis, M.; Katina, K.; Rizzello, C.G.; Coda, R. Exploring the microbiota of faba bean: Functional characterization of lactic acid bacteria. Front. Microbiol. 2017, 8, 2461. [Google Scholar] [CrossRef] [PubMed]
- Hammes, W.P.; Brandt, M.J.; Francis, K.L.; Rosenheim, J.; Seitter, M.F.H.; Vogelmann, A. Microbiological ecology of cereal fermentations. Trends Food Sci. Technol. 2005, 16, 4–11. [Google Scholar] [CrossRef]
- Liao, W.; Wang, C.; Shyu, Y.; Yu, R.; Ho, K. Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J. Funct. Foods 2013, 5, 1108–1115. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Losito, I.; Facchini, L.; Katina, K.; Palmisano, F.; Gobbetti, M.; Coda, R. Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. Sci. Rep. 2016, 6, 32452. [Google Scholar] [CrossRef]
- Aguilar, N.; Albanell, E.; Miñarro, B.; Capellas, M. Chickpea and tiger nut flours as alternatives to emulsifier and shortening in gluten-free bread. LWT-Food Sci. Technol. 2015, 62, 225–232. [Google Scholar] [CrossRef]
- Miñarro, B.; Albanell, E.; Aguilar, N.; Guamis, B.; Capellas, M. Effect of legume flours on baking characteristics of gluten free bread. J. Cereal Sci. 2012, 56, 476–481. [Google Scholar] [CrossRef]
- Flander, L.; Suortti, T.; Katina, K.; Poutanen, K. Effects of wheat sourdough process on the quality of mixed oat-wheat bread. LWT-Food Sci. Technol. 2011, 44, 656–664. [Google Scholar] [CrossRef]
- Sozer, N.; Dogan, H.; Kokini, J.L. Textural properties and their correlation to cell structure in porous food materials. J. Agric. Food Chem. 2011, 59, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- Sozer, N.; Cicerelli, L.; Heiniö, R.L.; Poutanen, K. Effect of wheat bran addition on in vitro starch digestibility, physico-mechanical and sensory properties of biscuits. J. Cereal Sci. 2014, 60, 105–113. [Google Scholar] [CrossRef]
- Akeson, W.R.; Stahmann, M.A. A pepsin pancreatin digest index of protein quality evaluation. J. Nutr. 1964, 83, 257–261. [Google Scholar] [CrossRef]
- Weiss, W.; Vogelmeier, C.; Gorg, A. Electrophoretic characterization of wheat grain allergens from different cultivars involved in bakers’ asthma. Electrophoresis 1993, 14, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- (AOAC) Association of Official Analytical Chemists. Official Methods of Analysis, 6th ed.; AOAC: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Curiel, J.A.; Coda, R.; Limitone, A.; Katina, K.; Raulio, M.; Rizzello, C.G.; Gobbetti, M. Manufacture and characterization of pasta made with wheat flour rendered gluten-free using fungal proteases and selected sourdough lactic acid bacteria. J. Cereal Sci. 2014, 59, 79–87. [Google Scholar] [CrossRef]
- Pintér-Szakács, M.; Molnán-Perl, I. Determination of tryptophan in unhydrolysed food and feed stuff by the acid ninhydrin method. J. Agric. Food Chem. 1990, 38, 720–726. [Google Scholar] [CrossRef]
- Block, R.J.; Mitchel, H.H. The correlation of the amino acid composition of protein with their nutritive value. Nutr. Abstr. Rev. 1946, 16, 249–278. [Google Scholar]
- Oser, B.L. Protein and Amino Acid Nutrition; Albanese Academic Press: New York, NY, USA, 1946; pp. 281–291. [Google Scholar]
- Ihekoronye, A.I. A Rapid Enzymatic and Chromatographic Predictive Model for the in-vivo Rat-Based Protein Efficiency Ratio. Ph.D. Thesis, University of Missouri, Columbia, MO, USA, 1981. [Google Scholar]
- Crisan, E.V.; Sands, A. Biology and Cultivation of Edible Mushrooms; Academic Press: New York, NY, USA, 1978; pp. 137–142. [Google Scholar]
- Veena, A.; Urooj, A.; Puttaraj, S. Effect of processing on the composition of dietary fibre and starch in some legumes. Nahrung 1995, 39, 132–138. [Google Scholar] [CrossRef]
- Torres, A.; Frías, J.; Granito, M.; Vidal-Valverde, C. Fermented pigeon pea (Cajanus cajan) ingredients in pasta products. J. Agric. Food Chem. 2006, 54, 6685–6691. [Google Scholar] [CrossRef]
- Salmenkallio-Marttila, M.; Katina, K.; Autio, K. Effects of bran fermentation on quality and microstructure of high-fiber wheat bread. Cereal Chem. 2001, 78, 429–435. [Google Scholar] [CrossRef]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crop. Res 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Gobbetti, M.; Rizzello, C.G.; Di Cagno, R.; De Angelis, M. How the sourdough may affect the functional features of leavened baked goods. Food Microbiol. 2014, 37, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.H.; Lin, C.L.; Chen, J.C. Characteristics of mung bean starch isolated by using lactic acid fermentation solution as the steeping liquor. Food Chem. 2006, 99, 794–802. [Google Scholar] [CrossRef]
- Chuenkamol, B.; Puttanlek, C.; Rungsardthong, V.; Uttapap, D. Characterization of low-substituted hydroxypropylated canna starch. Food Hydrocol. 2007, 21, 1123–1132. [Google Scholar] [CrossRef]
- Makri, E.; Papalamprou, E.; Doxastakis, G. Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocol. 2005, 19, 583–594. [Google Scholar] [CrossRef]
- Chandra-Hioe, M.V.; Wong, C.H.; Arcot, J. The Potential Use of Fermented Chickpea and Faba Bean Flour as Food Ingredients. Plant Foods Hum. Nutr. 2016, 71, 90–95. [Google Scholar] [CrossRef]
- Ziobro, R.; Juszczak, L.; Witczak, M.; Korus, J. Non-gluten proteins as structure forming agents in gluten free bread. J. Food Sci. Technol. 2016, 53, 571–580. [Google Scholar] [CrossRef]
- Marco, C.; Rosell, C.M. Functional and rheological properties of protein enriched gluten free composite flours. J. Food Eng. 2008, 88, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Hartikainen, K.; Poutanen, K.; Katina, K. Influence of bioprocessed wheat bran on the physical and chemical properties of dough and on wheat bread texture. Cereal Chem. 2014, 91, 115–123. [Google Scholar] [CrossRef]
- Wolter, A.; Hager, A.S.; Zannini, E.; Arendt, E.K. In vitro starch digestibility and predicted glycaemic indexes of buckwheat, oat, quinoa, sorghum, teff and commercial gluten-free bread. J. Cereal Sci. 2013, 58, 431–436. [Google Scholar] [CrossRef]
- Moore, M.M.; Juga, B.; Schober, T.J.; Arendt, E.K. Effect of lactic acid bacteria on properties of gluten-free sourdoughs, batters, and quality and ultrastructure of gluten-free bread. Cereal Chem. 2007, 84, 357–364. [Google Scholar] [CrossRef]
- Fernández-Quintela, A.; Macarulla, M.T.; Del Barrio, A.S.; Martínez, J.A. Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods Hum. Nutr. 1997, 51, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Ribotta, P.D.; Ausar, S.F.; Morcillo, M.H.; Pérez, G.T.; Beltramo, D.M.; León, A.E. Production of gluten-free bread using soybean flour. J. Sci. Food Agric. 2004, 84, 1969–1974. [Google Scholar] [CrossRef]
- Sosulski, F.W.; McCurdy, A.R. Functionality of flours, protein fractions and isolates from field peas and faba bean. J. Food Sci. 1987, 52, 1010–1014. [Google Scholar] [CrossRef]
- Cepeda, E.; Villaran, M.C.; Aranguiz, N. Functional properties of faba bean (Vicia faba) protein flour dried by spray drying and freeze drying. J. Food Eng. 1998, 36, 303–310. [Google Scholar] [CrossRef]
- Shumoy, H.; Van Bockstaele, F.; Devecioglu, D.; Raes, K. Effect of sourdough addition and storage time on in vitro starch digestibility and estimated glycemic index of tef bread. Food Chem. 2018, 264, 34–40. [Google Scholar] [CrossRef] [PubMed]
Bread Samples | Average Cell Wall Thickness (µm) | Average Cell Diameter (µm) | Total Porosity (%) |
---|---|---|---|
S37 | 63 ± 9 d | 230 ± 54 a | 61 ± 2 a |
F50 | 87 ± 11 e | 690 ± 8 bc | 82 ± 2 c |
FF50 | 109 ± 29 f | 561 ± 61 b | 72 ± 4 b |
S37 | F50 | FF50 | |
---|---|---|---|
Appearance | |||
Evenness of bread | 2.2 ± 0.7 a | 3.6 ± 0.6 b | 3.5 ± 0.3 b |
Shape of bread | 2.4 ± 0.9 a | 3.7 ± 0.5 b | 3.8 ± 0.5 b |
Intensity of bread colour | 2.5 ± 0.4 a | 3.5 ± 0.2 b | 4.0 ± 0.3 b |
Texture of the crumb | |||
Crumbliness | 2.0 ± 0.1 a | 2.3 ± 0.4 a | 1.9 ± 0.4 a |
Evenness of the pore size | 3.5 ± 0.2 a | 3.3 ±0.3 a | 3.3 ± 0.2 a |
Softness of the crumb | 3.3 ± 0.3 ab | 4.2 ± 0.2 c | 3.0 ± 0.8 a |
Springiness of the crumb | 3.7 ± 0.7 a | 3.9 ± 0.4 a | 3.7 ± 0.5 a |
Toughness | 1.7 ± 0.3 a | 1.3 ± 0.3 a | 1.7 ± 0.7 a |
Crumb flavour and colour | |||
Intensity of the colour | 2.8 ± 0.5 ab | 2.5 ± 0.7 a | 3.5 ± 0.7 ab |
Intensity of the flavour | 2.8 ± 0.5 ab | 2.5 ± 0.8 a | 3.5 ± 0.7 ab |
S37 | F50 | FF50 | |
---|---|---|---|
In vitro protein digestibility (%) | 64.8 ± 0.1 c | 53.9 ± 0.2 d | 72.3 ± 0.2 b |
Chemical score (%) | |||
Histidine | 88 ± 2 b | 85 ± 1 c | 92 ± 2 a |
Isoleucine | 72 ± 2 a | 65 ± 2 b | 64 ± 2 b |
Leucine | 96 ± 1 a | 88 ± 2 b | 96 ± 2 a |
Lysine | 105 ± 2 b | 113 ± 3 a | 114 ± 1 a |
Cysteine | 35 ± 2 c | 33 ± 1 c | 51 ± 2 a |
Methionine | 27 ± 1 c | 29 ± 1 c | 32 ± 1 b |
Phenylalanine + Tyrosine | 58 ± 1 b | 49 ± 1 c | 63 ± 2 a |
Threonine | 74 ± 3 b | 78 ± 2 a | 78 ± 1 a |
Valine | 70 ± 2 a | 69 ± 2 a | 70 ± 2 a |
Tryptophan | 35 ± 1 c | 44 ± 1 b | 62 ± 2 a |
Sequence of limiting EAA | |||
Methionine | Methionine | Methionine | |
Cysteine | Cysteine | Cysteine | |
Tryptophan | Tryptophan | Tryptophan | |
Protein score (%) | 27 ± 2 c | 29 ± 1 c | 32 ± 2 b |
Essential Amino Acid Index (EAAI) | 61.5 ± 0.4 b | 58.4 ± 0.3 c | 63.4 ± 0.4 a |
Biological Value (BV) | 55.4 ± 0.3 b | 51.9 ± 0.1 c | 57.4 ± 0.4 a |
Protein Efficiency Ratio (PER) | 37.1 ± 0.4 a | 32.7 ± 0.3 c | 35.7 ± 0.4 b |
Nutritional Index (NI) | 2.1 ± 0.07 c | 1.57 ± 0.12 d | 2.47 ± 0.08 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sozer, N.; Melama, L.; Silbir, S.; Rizzello, C.G.; Flander, L.; Poutanen, K. Lactic Acid Fermentation as a Pre-Treatment Process for Faba Bean Flour and Its Effect on Textural, Structural and Nutritional Properties of Protein-Enriched Gluten-Free Faba Bean Breads. Foods 2019, 8, 431. https://doi.org/10.3390/foods8100431
Sozer N, Melama L, Silbir S, Rizzello CG, Flander L, Poutanen K. Lactic Acid Fermentation as a Pre-Treatment Process for Faba Bean Flour and Its Effect on Textural, Structural and Nutritional Properties of Protein-Enriched Gluten-Free Faba Bean Breads. Foods. 2019; 8(10):431. https://doi.org/10.3390/foods8100431
Chicago/Turabian StyleSozer, Nesli, Leena Melama, Selim Silbir, Carlo G. Rizzello, Laura Flander, and Kaisa Poutanen. 2019. "Lactic Acid Fermentation as a Pre-Treatment Process for Faba Bean Flour and Its Effect on Textural, Structural and Nutritional Properties of Protein-Enriched Gluten-Free Faba Bean Breads" Foods 8, no. 10: 431. https://doi.org/10.3390/foods8100431
APA StyleSozer, N., Melama, L., Silbir, S., Rizzello, C. G., Flander, L., & Poutanen, K. (2019). Lactic Acid Fermentation as a Pre-Treatment Process for Faba Bean Flour and Its Effect on Textural, Structural and Nutritional Properties of Protein-Enriched Gluten-Free Faba Bean Breads. Foods, 8(10), 431. https://doi.org/10.3390/foods8100431