Inhibition of Escherichia coli O157:H7 and Salmonella enterica Isolates on Spinach Leaf Surfaces Using Eugenol-Loaded Surfactant Micelles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Antimicrobial Micelles and Other Treatments
2.2. Revival of Bacterial Pathogens and Preliminary Assessment of Consistent Overnight Pathogen Growth for Pathogen Cocktail Preparation
2.3. Antimicrobial Activity Testing for Antimicrobial Treatments on Pathogens-Inoculated and Noninoculated Spinach Leaf Samples Held under Refrigeration
2.4. Statistical Analysis of Data
3. Results
3.1. Consistency of Overnight Growth of Salmonella Saintpaul and E. coli O157:H7 Organisms for Cocktail Preparation
3.2. Inhibition of Salmonella Saintpaul on Spinach Surfaces by Antimicrobial Treatments over 10 Days of Refrigerated Storage
3.3. Inhibition of E. coli O157:H7 on Spinach Surfaces by Antimicrobial Treatments over 10 Days of Refrigerated Storage
3.4. Inhibition of Naturally Occurring Microbial Hygiene Indicator Groups on Treated Spinach over 10 Days of Refrigerated Storage
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention (CDC). Burden of Foodborne Illness: Overview. Available online: http://www.cdc.gov/foodborneburden/estimates-overview.html (accessed on 4 November 2019).
- Painter, J.A.; Hoekstra, R.M.; Ayers, T.; Tauxe, R.V.; Braden, C.R.; Angulo, F.J.; Griffin, P.M. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Crowe, S.J.; Mahon, B.E.; Vieira, A.R.; Gould, L.H. Vital signs: Multistate foodborne outbreaks—United States, 2010–2014. Morb. Mortal. Wkly. Rep. 2015, 64, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- CDC. Preliminary Incidence and Trends of Infection with Pathogens Transmitted Commonly through Food—Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2006–2017. Available online: https://www.cdc.gov/mmwr/volumes/67/wr/mm6711a3.htm?s_cid=mm6711a3_w (accessed on 5 November 2019).
- Harris, L.J.; Farber, J.N.; Beuchat, L.R.; Parish, M.E.; Suslow, T.V.; Garrett, E.H.; Busta, F.F. Outbreaks associated with fresh produce: Incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2003, 2, 78–141. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of E. coli O157:H7 Infections Linked to Fresh Spinach (Final Update). Available online: http://www.cdc.gov/ecoli/2006/september/updates/100606.htm (accessed on 4 November 2019).
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Shiga Toxin-Producing Escherichia coli O157:H7 Infections Linked to Organic Spinach and Spring Mix Blend (Final Update). Available online: https://www.cdc.gov/ecoli/2012/o157h7-11-12/index.html (accessed on 4 November 2019).
- CDC. Outbreak of E. coli Infections Linked to Romaine Lettuce: FINAL UPDATE. Available online: https://www.cdc.gov/ecoli/2018/o157h7-11-18/index.html (accessed on 5 November 2019).
- Chaves, R.D.; Ruiz Martinez, R.C.; Bortolossi Rezende, A.C.; Rocha, M.D.; Oteiza, J.M.; Sant’Ana, A.S. Salmonella and Listeria monocytogenes in ready-to-eat leafy vegetables. In Food Hygiene and Toxicology in Ready-to-Eat Foods; Kotzekidou, P., Ed.; Academic Press: New York, NY, USA, 2016; pp. 123–149. [Google Scholar]
- Sapers, G.M.; Doyle, M.P. Scope of the produce contamination problem. In The Produce Contamination Problem, 2nd ed.; Matthews, K.R., Sapers, G.M., Gerba, C., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 3–20. [Google Scholar]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Seow, Y.; Yeo, C.; Chung, H.; Yuk, H.-G. Plant essential oils as active antimicrobial agents. CRC Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef]
- Weiss, J.; Gaysinsky, S.; Davidson, M.; McClements, D.J. Nanostructured encapsulation systems: Food antimicrobials. In Global Issues in Food Science and Technology; Barbosa-Cánovas, G., Mortimer, A., Lineback, D., Spiess, W., Buckle, K., Colonna, P., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 425–479. [Google Scholar]
- Bassole, I.H.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Eugenol, CID=3314. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Eugenol (accessed on 5 November 2019).
- Santos, M.I.S.; Martins, S.R.; Veríssimo, C.S.C.; Nunes, M.J.C.; Lima, A.I.G.; Ferreira, R.M.S.B.; Pedroso, L.; Sousa, I.; Ferreira, M.A.S.S. Essential oils as antibacterial agents against food-borne pathogens: Are they really as useful as they are claimed to be? J. Food Sci. Technol. 2017, 54, 4344–4352. [Google Scholar] [CrossRef]
- Park, J.-B.; Kang, J.-H.; Song, K.B. Antibacterial activities of a cinnamon essential oil with cetylpyridinium chloride emulsion against Escherichia coli O157:H7 and Salmonella Typhimurium in basil leaves. Food Sci. Biotechnol. 2018, 27, 47–55. [Google Scholar] [CrossRef]
- Gaysinsky, S.; Taylor, T.M.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Antimicrobial efficacy of eugenol microemulsions in milk against Listeria monocytogenes and Escherichia coli O157:H7. J. Food Prot. 2007, 70, 2631–2637. [Google Scholar] [CrossRef]
- Asker, D.; Weiss, J.; McClements, D.J. Formation and stabilization of antimicrobial delivery systems based on electrostatic complexes of cationic-non-ionic mixed micelles and anionic polysaccharides. J. Agric. Food Chem. 2011, 59, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Critzer, F.; Davidson, P.M.; Zhong, Q. Formulating essential oil microemulsions as washing solutions for organic fresh produce production. Food Chem. 2014, 165, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-H.; Park, S.-J.; Park, J.-B.; Song, K.B. Surfactant type affects the washing effect of cinnamon leaf essential oil emulsion on kale leaves. Food Chem. 2019, 271, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-H.; Song, K.B. Inhibitory effect of plant essential oil nanoemulsions against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium on red mustard leaves. Innov. Food Sci. Emerg. Technol. 2018, 45, 447–454. [Google Scholar] [CrossRef]
- Gaysinsky, S.; Davidson, P.M.; McClements, D.J.; Weiss, J. Formulation and characterization of phytophenol-carrying antimicrobial microemulsions. Food Biophys. 2008, 3, 54–65. [Google Scholar] [CrossRef]
- Florence, A.T.; Attwood, D. Surfactants. In Physicochemical Principles of Pharmacy, 4th ed.; Pharmaceutical Press: Grayslake, IL, USA, 2006; pp. 177–228. [Google Scholar]
- McClements, D.J. Food Emulsions Principles, Practices and Techniques, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 95–174. [Google Scholar]
- Landry, K.S.; Komaiko, J.; Wong, D.E.; Xu, T.; McClements, D.J.; McLandsborough, L. Inactivation of Salmonella on sprouting seeds using a spontaneous carvacrol nanoemulsion acidified with organic acids. J. Food Prot. 2016, 79, 1115–1126. [Google Scholar] [CrossRef]
- Ruengvisesh, S.; Oh, J.K.; Kerth, C.R.; Akbulut, M.; Taylor, T.M. Inhibition of bacterial human pathogens on tomato skin surfaces using eugenol-loaded surfactant micelles during refrigerated and abuse storage. J. Food Saf. 2019, 39, e12598. [Google Scholar] [CrossRef]
- Ruengvisesh, S.; Loquercio, A.; Castell-Perez, E.; Taylor, T.M. Inhibition of bacterial pathogens in medium and on spinach leaf surfaces using plant-derived antimicrobials loaded in surfactant micelles. J. Food Sci. 2015, 80, M2522–M2529. [Google Scholar] [CrossRef]
- Calix-Lara, T.F.; Rajendran, M.; Talcott, S.T.; Smith, S.B.; Miller, R.K.; Castillo, A.; Sturino, J.M.; Taylor, T.M. Inhibition of Escherichia coli O157:H7 and Salmonella enterica on spinach and identification of antimicrobial substances produced by a commercial Lactic Acid Bacteria food safety intervention. Food Microbiol. 2014, 38, 192–200. [Google Scholar] [CrossRef]
- Castillo, A.; Lucia, L.M.; Goodson, K.J.; Savell, J.W.; Acuff, G.R. Use of hot water for beef carcass decontamination. J. Food Prot. 1998, 61, 19–25. [Google Scholar] [CrossRef]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Yossa, N.; Patel, J.; Millner, P.; Lo, Y.M. Essential oils reduce Escherichia coli O157:H7 and Salmonella on spinach leaves. J. Food Prot. 2012, 75, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.M.; Tjeerdema, R.S. Fate and effects of the surfactant sodium dodecyl sulfate. Rev. Environ. Contam. Toxicol. 1993, 133, 95–149. [Google Scholar] [PubMed]
- Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 1972, 2, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Elliot, R.; Singhal, N.; Swift, S. Surfactants and bacterial bioremediation of polycyclic aromatic hydrocarbon contaminated soil—Unlocking the targets. Crit. Rev. Environ. Sci. Technol. 2010, 41, 78–124. [Google Scholar] [CrossRef]
- Arachea, B.T.; Sun, Z.; Potente, N.; Malik, R.; Isailovic, D.; Viola, R.E. Detergent selection for enhanced extraction of membrane proteins. Protein Expr. Purif. 2012, 86, 12–20. [Google Scholar] [CrossRef]
- Terjung, N.; Löffler, M.; Gibis, M.; Hinrichs, J.; Weiss, J. Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials. Food Funct. 2012, 3, 290–301. [Google Scholar] [CrossRef]
- Perez-Conesa, D.; Cao, J.; Chen, L.; McLandsborough, L.; Weiss, J. Inactivation of Listeria monocytogenes and Escherichia coli O157:H7 biofilms by micelle-encapsulated eugenol and carvacrol. J. Food Prot. 2011, 74, 55–62. [Google Scholar] [CrossRef]
- Ben Arfa, A.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 2006, 43, 149–154. [Google Scholar] [CrossRef]
- Zhang, M.; Oh, J.K.; Cisneros-Zevallos, L.; Akbulut, M. Bactericidal effects of nonthermal low-pressure oxygen plasma on S. typhimurium LT2 attached to fresh produce surfaces. J. Food Eng. 2013, 119, 425–432. [Google Scholar]
- Zhang, M.; Oh, J.K.; Huang, S.-Y.; Lin, Y.-R.; Liu, Y.; Mannan, M.S.; Cisneros-Zevallos, L.; Akbulut, M. Priming with nano-aerosolized water and sequential dip-washing with hydrogen peroxide: An efficient sanitization method to inactivate Salmonella Typhimurium LT2 on spinach. J. Food Eng. 2015, 161, 8–15. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, B.; Feng, H. Surface characteristics of fresh produce and their impact on attachment and removal of human pathogens on produce surfaces. In Decontamination of Fresh and Minimally Processed Produce, 1st ed.; Gómez-López, V.M., Ed.; John Wiley & Sons, Inc.: Ames, IA, USA, 2012; pp. 43–57. [Google Scholar]
- Lund, B.M. Ecosystems in vegetable foods. J. Appl. Bacteriol. 1992, 73, 115s–126s. [Google Scholar] [CrossRef] [PubMed]
- Heredia, A.; Dominguez, E. The plant cuticle: A complex lipid barrier between the plant and the environment. An overview. In Counteraction to Chemical and Biological Terrorism in East European Countries; Dishovsky, C., Pivovarov, A., Eds.; Springer Netherlends: Dordrecht, The Netherlands, 2009; pp. 109–116. [Google Scholar]
- Chaidez, C.; Campo, N.C.-d.; Heredia, J.B.; Contreras-Angulo, L.; González–Aguilar, G.; Ayala–Zavala, J.F. Chlorine. In Decontamination of Fresh and Minimally Processed Produce; Gomez-Lopez, V.M., Ed.; Wiley-Blackwell: Ames, IA, USA, 2012; pp. 121–133. [Google Scholar]
- Zhang, S.; Farber, J.M. The effects of various disinfectants against Listeria monocytogenes on fresh-cut vegetables. Food Microbiol. 1996, 13, 311–321. [Google Scholar] [CrossRef]
- Pan, X.; Nakano, H. Effects of chlorine-based antimicrobial treatments on the microbiological qualities of selected leafy vegetables and wash water. Food Sci. Technol. Res. 2014, 20, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Neo, S.Y.; Lim, P.Y.; Phua, L.K.; Khoo, G.H.; Kim, S.-J.; Lee, S.-C.; Yuk, H.-G. Efficacy of chlorine and peroxyacetic acid on reduction of natural microflora, Escherichia coli O157:H7, Listeria monocytogenes and Salmonella spp. on mung bean sprouts. Food Microbiol. 2013, 36, 475–480. [Google Scholar] [CrossRef]
- Vandekinderen, I.; Devlieghere, F.; De Meulenaer, B.; Ragaert, P.; Van Camp, J. Optimization and evaluation of a decontamination step with peroxyacetic acid for fresh-cut produce. Food Microbiol. 2009, 26, 882–888. [Google Scholar] [CrossRef]
- Erkmen, O. Antimicrobial effects of hypochlorite on Escherichia coli in water and selected vegetables. Foodborne Pathog. Dis. 2010, 7, 953–958. [Google Scholar] [CrossRef]
- Brecht, J. Chlorine use in produce packing lines. Am. Veg. Grower 2002, 50, 27. [Google Scholar]
- Flahaut, S.; Frere, J.; Boutibonnes, P.; Auffray, Y. Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis. Appl. Environ. Microbiol. 1996, 62, 2416–2420. [Google Scholar]
- Kramer, V.C.; Nickerson, K.W.; Hamlett, N.V.; O’Hara, C. Prevalence of extreme detergent resistance among the Enterobacteriaceae. Can. J. Microbiol. 1984, 30, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Thomas, O.R.; White, G.F. Metabolic pathway for the biodegradation of sodium dodecyl sulfate by Pseudomonas sp. C12B. Biotechnol. Appl. Biochem. 1989, 11, 318–327. [Google Scholar] [PubMed]
- Rodriguez, S.B.; Mahoney, N.E. Inhibition of aflatoxin production by surfactants. Appl. Environ. Microbiol. 1994, 60, 106–110. [Google Scholar] [PubMed]
- Wu, D.; Lu, J.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Influence of nonionic and ionic surfactants on the antifungal and mycotoxin inhibitory efficacy of cinnamon oil nanoemulsions. Foods Funct. 2019, 10, 2817–2827. [Google Scholar] [CrossRef]
- Park, J.-B.; Kang, J.-H.; Song, K.B. Clove bud essential oil emulsion containing benzethonium chloride inactivates Salmonella Typhimurium and Listeria monocytogenes on fresh-cut pak choi during modified atmosphere storage. Food Cont. 2019, 100, 17–23. [Google Scholar] [CrossRef]
- Parish, M.E.; Beuchat, L.R.; Suslow, T.V.; Harris, L.J.; Garrett, E.H.; Farber, J.N.; Busta, F.F. Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2003, 2, 161–173. [Google Scholar] [CrossRef]
Storage Period (Days) | Encap 1 | Free-Eug | SDS-Mic | 200 HOCl | DW | Control |
---|---|---|---|---|---|---|
0 | 2.8GH 2 | 1.8HI | 5.4ABCD | 2.0HI | 5.6ABC | 6.0A |
3 | 0.4K | 0.4K | 4.7CDEF | 0.7JK | 5.2ABCD | 5.8AB |
5 | 0.4K | 0.4K | 4.5DEF | 1.6IJ | 4.8BCDEF | 4.5CDEF |
7 | 0.4K | 0.5JK | 4.0EF | 0.9IJK | 4.8BCDE | 4.3DEF |
10 | 0.4K | 0.4K | 3.6FG | 0.5JK | 4.7BCDEF | 3.8EFG |
p ≤ 0.0001 | Pooled Standard Error = 0.2 |
Storage Period (Days) | Encap 1 | Free-Eug | SDS-Mic | 200 HOCl | DW | Control |
---|---|---|---|---|---|---|
0 | 3.1DEFG 2 | 2.3GHI | 5.0ABC | 2.7FGH | 5.3AB | 6.0A |
3 | 0.4K | 0.4K | 4.1CDE | 0.7JK | 4.7ABC | 5.9A |
5 | 0.4K | 0.4K | 3.8CDEF | 1.5IJK | 4.2BCD | 4.6BC |
7 | 0.4K | 0.6JK | 2.9EFGH | 0.8JI | 4.1CDE | 4.4BC |
10 | 0.4K | 0.4K | 1.7HIJ | 0.6JK | 3.9CDEF | 4.0CDE |
p > 0.0001 | Pooled Standard Error = 0.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruengvisesh, S.; Kerth, C.R.; Taylor, T.M. Inhibition of Escherichia coli O157:H7 and Salmonella enterica Isolates on Spinach Leaf Surfaces Using Eugenol-Loaded Surfactant Micelles. Foods 2019, 8, 575. https://doi.org/10.3390/foods8110575
Ruengvisesh S, Kerth CR, Taylor TM. Inhibition of Escherichia coli O157:H7 and Salmonella enterica Isolates on Spinach Leaf Surfaces Using Eugenol-Loaded Surfactant Micelles. Foods. 2019; 8(11):575. https://doi.org/10.3390/foods8110575
Chicago/Turabian StyleRuengvisesh, Songsirin, Chris R. Kerth, and T. Matthew Taylor. 2019. "Inhibition of Escherichia coli O157:H7 and Salmonella enterica Isolates on Spinach Leaf Surfaces Using Eugenol-Loaded Surfactant Micelles" Foods 8, no. 11: 575. https://doi.org/10.3390/foods8110575
APA StyleRuengvisesh, S., Kerth, C. R., & Taylor, T. M. (2019). Inhibition of Escherichia coli O157:H7 and Salmonella enterica Isolates on Spinach Leaf Surfaces Using Eugenol-Loaded Surfactant Micelles. Foods, 8(11), 575. https://doi.org/10.3390/foods8110575