Sensory Profile and Acceptability of HydroSOStainable Almonds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Irrigation Treatments
- ▪
- T1 was full irrigation treatment using 433 ± 26 mm of applied water throughout the season with a stress integral of SI = 54.2. Trees were irrigated to assure the estimated crop ET, and thus represented the control.
- ▪
- T2 were trees under regulated deficit irrigation (RDI) at optimum level (148 ± 24 mm; SI = 91.7). For irrigation scheduling, midday stem water potential (SWP) and maximum daily shrinkage (MDS) measurements were done. Then, in stage IV (kernel filling) of the almond growing cycle, the trees were irrigated when SWP was lower than −1.5 MPa or when MDS signal was above 1.75. The rest of the stages were irrigated to the SWP proposed by McCutchan and Shackel (1992) or MDS equal 1 [19].
- ▪
- T3 trees were also irrigated under regulated deficit irrigation but in more severe conditions (103 ± 13 mm; SI = 94.9). Thus, the stage IV trees were irrigated when SWP was lower than −2 MPa or MSD signal above 2.75, and similar conditions as previously described for T2 were applied for the rest of the period.
- ▪
- T4 trees were irrigated under sustained deficit irrigation (SDI) conditions (114 ± 13 mm; SI = 74.7). Water was applied gradually throughout the growing season.
2.2. Descriptive Sensory Analysis
2.3. Affective Sensory Analysis
2.4. Consumer Willingness to Pay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Descriptive Sensory Analysis
3.2. Affective Sensory Analysis
3.3. Consumer Willingness to Pay
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- D’Ambrosio, E.; De Girolamo, A.M.; Rulli, M.C. Assessing sustainability of agriculture through water footprint analysis and in-stream monitoring activities. J. Clean. Prod. 2018, 200, 454–470. [Google Scholar] [CrossRef]
- Hogeboom, R.J.; Kamphuis, I.; Hoekstra, A.Y. Water sustainability of investors: Development and application of an assessment framework. J. Clean. Prod. 2018, 202, 642–648. [Google Scholar] [CrossRef]
- Lazzarini, G.A.; Visschers, V.H.M.; Siegrist, M. How to improve consumers’ environmental sustainability judgements of foods. J. Clean. Prod. 2018, 198, 564–574. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef]
- Lipan, L.; Sánchez-Rodríguez, L.; Collado González, J.; Sendra, E.; Burló, F.; Hernández, F.; Vodnar, D.-C.; Carbonell-Barrachina, A.A. Sustainability of the legal endowments of water in almond trees and a new generation of high quality hydrosustainable almonds—A review. Bull. UASVM Food Sci Technol. 2018, 75, 97–108. [Google Scholar] [CrossRef]
- Egea, G.; Nortes, P.A.; Domingo, R.; Baille, A.; Pérez-Pastor, A.; González-Real, M.M. Almond agronomic response to long-term deficit irrigation applied since orchard establishment. Irrig. Sci. 2013, 31, 445–454. [Google Scholar] [CrossRef]
- Goldhamer, D.A.; Viveros, M.; Salinas, M. Regulated deficit irrigation in almonds: Effects of variations in applied water and stress timing on yield and yield components. Irrig. Sci. 2005, 24, 101–114. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Girón, I.F.; Pleite, R.; Burló, F.; Corell, M.; Moriana, A.; Carbonell-Barrachina, A.A. Quality attributes of table olives as affected by regulated deficit irrigation. LWT Food Sci. Tech. 2015, 62, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Cano-Lamadrid, M.; Hernández, F.; Corell, M.; Burló, F.; Legua, P.; Moriana, A.; Carbonell-Barrachina, A.A. Antioxidant capacity, fatty acids profile, and descriptive sensory analysis of table olives as affected by deficit irrigation. J. Sci. Food Agric. 2016, 97, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Carbonell-Barrachina, A.A.; Memmi, H.; Noguera-Artiaga, L.; Gijón-López Mdel, C.; Ciapa, R.; Pérez-López, D. Quality attributes of pistachio nuts as affected by rootstock and deficit irrigation. J. Sci. Food Agric. 2015, 95, 2866–2873. [Google Scholar] [CrossRef]
- Egea, G.; González-Real, M.M.; Baille, A.; Nortes, P.A.; Sánchez-Bel, P.; Domingo, R. The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees. Agric. Water Manag. 2009, 96, 1605–1614. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, L.; Corell, M.; Hernández, F.; Sendra, E.; Moriana, A.; Carbonell-Barrachina, Á.A. Effect of Spanish-style processing on the quality attributes of HydroSOStainable green olives. J. Sci. Food Agric. 2019, 99, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- García-Esparza, M.J.; Abrisqueta, I.; Escriche, I.; Intrigliolo, D.S.; Álvarez, I.; Lizama, V. Volatile compounds and phenolic composition of skins and seeds of ‘Cabernet Sauvignon’ grapes under different deficit irrigation regimes. J. Grapevine Res. 2018, 57, 83–91. [Google Scholar]
- Zhu, Y.; Taylor, C.; Sommer, K.; Wilkinson, K.; Wirthensohn, M. Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis). Food Chem. 2015, 173, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Meilgaard, M.C.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 4th ed.; CRC Press: Boca Raton, FL, USA, 1987. [Google Scholar]
- Wei, S.; Ang, T.; Jancenelle, V.E. Willingness to pay more for green products: The interplay of consumer characteristics and customer participation. J. Retail. Consum. Serv. 2018, 45, 230–238. [Google Scholar] [CrossRef]
- Rajagopalan, P. A Study on Consumer’s Perception and Purchase Intentions towards Eco-Friendly Products. Asian J. Res. Soc. Sci. Humanit. 2016, 6, 1794–1802. [Google Scholar] [CrossRef]
- Noguera-Artiaga, L.; Lipan, L.; Vázquez-Araújo, L.; Barber, X.; Pérez-López, D.; Carbonell-Barrachina, Á.A. Opinion of Spanish Consumers on Hydrosustainable Pistachios. J. Food Sci. 2016, 81, S2559–S2565. [Google Scholar] [CrossRef]
- McCutchan, H.; Shackel, K.A. Stem-water Potential as a Sensitive Indicator of Water Stress in Prune Trees (Prunus domestica L. cv. French). J. Am. Soc. Hortic. Sci. 1992, 117. [Google Scholar] [CrossRef]
- Vázquez Araújo, L.; Chambers, D.; Carbonell-Barrachina, A. Development of a sensory lexicon and application by an industry trade panel for turrón, a European Protected Product. J. Sens. Stud. 2012, 27. [Google Scholar] [CrossRef]
- Nix Sensor Ltd. Need a Quick and Free Color Converter? 2018. Available online: https://www.nixsensor.com/free-color-converter/ (accessed on 23 December 2018).
- Cano-Lamadrid, M.; Lech, K.; Michalska, A.; Wasilewska, M.; Figiel, A.; Wojdyło, A.; Carbonell-Barrachina, A.A. Influence of osmotic dehydration pre-treatment and combined drying method on physico-chemical and sensory properties of pomegranate arils, cultivar Mollar de Elche. Food Chem. 2017, 232, 306–315. [Google Scholar] [CrossRef]
- Contador, L.; Robles, B.; Shinya, P.; Medel, M.; Pinto, C.; Reginato, G.; Infante, R. Characterization of texture attributes of raw almond using a trained sensory panel. Fruits 2015, 70, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Crisolar, Píldoras de Conocimiento: Los Calibres en Las Almendras. 2018. Available online: http://blog.crisolar.es/?p=483 (accessed on 23 December 2018).
- Vermeir, I.; Verbeke, W. Sustainable food consumption among young adults in Belgium: Theory of planned behaviour and the role of confidence and values. Ecol. Econ. 2008, 64, 542–553. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principle and Practices, 2nd ed.; Springer: New York, NY, USA, 2010; pp. 507–534. [Google Scholar]
- Reche, J.; Hernández, F.; Almansa, M.S.; Carbonell-Barrachina, Á.A.; Legua, P.; Amorós, A. Effects of organic and conventional farming on the physicochemical and functional properties of jujube fruit. LWT 2019, 99, 438–444. [Google Scholar] [CrossRef]
- Rinaldi, R.; Amodio, M.L.; Colelli, G.; Nanos, G.D.; Pliakoni, E. Effect of deficit irrigation on fruit and oil quality of ‘Konservolea’ olives. Acta Hortic. 2011, 924, 445–451. [Google Scholar] [CrossRef]
- Pérez-Sarmiento, F.; Miras-Avalos, J.M.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolás, E. Effects of regulated deficit irrigation on physiology, yield and fruit quality in apricot trees under Mediterranean conditions. Span. J. Agric. Res. 2016, 14, e1205. [Google Scholar] [CrossRef]
- Sotiropoulos, T.; Kalfountzos, D., II; Aleksiou, I., II; Kotsopoulos, S., II; Koutinas, N. Response of a clingstone peach cultivar to regulated deficit irrigation. Sci. Agric. 2010, 67, 2. [Google Scholar] [CrossRef]
- Doll, D. Impacts of Drought on Almond Production. West. Fruit Grow. 2014, 134, S8–S10. [Google Scholar]
- Cano-Lamadrid, M.; Galindo, A.; Collado-González, J.; Rodríguez, P.; Cruz, Z.N.; Legua, P.; Burló, F.; Morales, D.; Carbonell-Barrachina, Á.A.; Hernández, F. Influence of deficit irrigation and crop load on the yield and fruit quality in Wonderful and Mollar de Elche pomegranates. J. Sci. Food Agric. 2018, 98, 3098–3108. [Google Scholar] [CrossRef]
- Verdú, A.; Serrano-Megías, M.; Vázquez-Araújo, L.; Pérez-López, A.J.; Carbonell-Barrachina, A.A. Differences in Jijona turrón concepts between consumers and manufacturers. J. Sci. Food Agric. 2007, 87, 2106–2111. [Google Scholar] [CrossRef]
- Conesa, M.R.; de la Rosa, J.M.; Artés-Hernández, F.; Dodd, I.C.; Domingo, R.; Pérez-Pastor, A. Long-term impact of deficit irrigation on the physical quality of berries in ‘Crimson Seedless’ table grapes. J. Sci. Food. Agric. 2015, 95, 2510–2520. [Google Scholar] [CrossRef]
- Vallverdú, X.; Girona, J.; Echeverria, G.; Marsal, J.; Behboudian, M.H.; Lopez, G. Sensory Quality and Consumer Acceptance of ‘Tardibelle’ Peach are Improved by Deficit Irrigation applied during Stage II of Fruit Development. HortScience 2012, 47, 656–659. [Google Scholar] [CrossRef]
- Anderson, J.R. Concepts of Food Sustainability. In Encyclopedia of Food Security and Sustainability; Ferranti, P., Berry, E.M., Anderson, J.R., Eds.; Elsevier: Oxford, UK, 2019; pp. 1–8. [Google Scholar]
- Cano-Lamadrid, M.; Vázquez-Araújo, L.; Sánchez-Rodríguez, L.; Wodylo, A.; Carbonell-Barrachina, A.A. Consumers’ opinion on dried pomegranate arils to determine the best processing conditions. J. Food Sci. 2018, 83, 3085–3091. [Google Scholar] [CrossRef] [PubMed]
- Pagès, J.; Berthelo, S.; Brossier, M.; Gourret, D. Statistical penalty analysis. Food Qual. Preference 2014, 32, 16–23. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Anuario de Estadística Avance. 2019. Available online: https://www.mapa.gob.es/es/estadistica/temas/ (accessed on 11 February 2019).
Descriptor | Definition | Reference ‡ | Intensity |
---|---|---|---|
Appearance | |||
Color | The intensity of color from light to dark | L* = 51.3; a* = 20.6; b* = 38.8 | 1.0 |
L* = 51.3; a* = 20.6; b* = 38.8 | 5.0 | ||
L* = 51.3; a* = 20.6; b* = 38.8 | 10.0 | ||
Size | The visual width of the of the almond from side to side | 8–9 mm | 1.0 |
13–14 mm | 5.0 | ||
17–18 mm | 9.0 | ||
Roughness | The number of hills and valleys perceived by the human eye on the almond surface (visual measured) | 0% | 1.0 |
50% | 5.0 | ||
100% | 10.0 | ||
Basic Taste and Flavor | |||
Saltiness | The basic taste associated with a sodium chloride solution | 0.15% NaCl | 1.0 |
0.25% NaCl | 3.0 | ||
Sweetness | The basic taste associated with a sucrose solution | 1% sucrose | 3.0 |
2% sucrose | 5.0 | ||
Bitterness | The basic taste associated with a caffeine solution | 0.01% caffeine | 2.0 |
0.02% caffeine | 3.0 | ||
Astringency | A drying and puckering sensation on the mouth surface | 0.03% alum | 1.0 |
Unripe dates | 10.0 | ||
Overall nuts | Aromatics related to nuts in general | Mix of grinded Hacendado Nutget:hazelnut, 1:1 | 5.5 |
Almond ID | Aromatics reminiscent of almond | Marcona almonds | 6.5 |
Benzaldehyde like | Artificial almond or cherry aromatics | Aroma: almond extract Dr. Oetker | 10.0 |
Flavor: bitter almond | 10.0 | ||
Woody | The sweet, musty, dark, and dry aromatics associated with the tree bark | Hacendado walnuts | 3.0 |
Aftertaste | Longevity of key attributes intensity after swallow the sample | 30 s | 1.0 |
1 min | 3.0 | ||
1.5 min | 6.0 | ||
Texture | |||
Hardness | The force required to bite completely through the sample with molar teeth. Evaluated on the first bite down with the molars | Baby Bell light cheese | 3.0 |
Sugus chewy candy | 6.0 | ||
Hacendado almond | 7.5 | ||
Solano candy | 10.0 | ||
Cohesiveness | The degree to which the sample deforms prior to breaking apart when compressed between molars | Hochland cheese slices | 3.5 |
Hacendado raisins | 6.5 | ||
Sugus chewy candy | 8.0 | ||
Crispiness | The intensity of audible noise at first chew with molars | Nestlé cheerios | 5.5 |
Nestlé fitness | 7.0 | ||
Fracturability | The force needed to break the almond. The evaluation was done with the molars after first chew | Nestlé cheerios | 2.5 |
Nestlé fitness | 5.0 | ||
Adhesiveness | The effort needed to completely remove the sample from the teeth; measured after 5 chews | Kraft Miracle whip light dressing | 4.5 |
Marshmallow fluff | 6.5 | ||
Jif creamy peanut butter | 8.5 |
Irrigation Treatments | Color | Size | Roughness | Saltiness | Sweetness | Bitterness | Astringency | Overall Nuts | Almonds ID | Benzaldehyde-like | Woody | Aftertaste | Hardness | Cohesiveness | Crispiness | Fracturability | Adhesiveness |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ANOVA Test † | |||||||||||||||||
*** | * | *** | NS | * | NS | NS | NS | NS | NS | NS | NS | *** | NS | NS | NS | NS | |
Tukey Multiple Range Test ‡ | |||||||||||||||||
T1 | 4.0 c | 8.0 a | 5.3 b | 0.5 | 3.3 ab | 0.6 | 0.5 | 5.6 | 5.9 | 0.4 | 1.5 | 5.4 | 4.5 b | 3.0 | 3.3 | 2.1 | 6.7 |
T2 | 5.3 a | 8.0 a | 6.7 a | 0.5 | 3.5 a | 0.6 | 0.6 | 5.8 | 5.9 | 0.3 | 1.0 | 5.4 | 5.1 a | 2.7 | 3.7 | 2.5 | 6.6 |
T3 | 4.2 c | 7.7 b | 5.3 b | 0.5 | 3.5 a | 0.6 | 0.6 | 5.9 | 6.2 | 0.3 | 1.8 | 6.1 | 5.6 a | 3.3 | 4.0 | 2.1 | 6.5 |
T4 | 4.7 b | 7.6 b | 6.2 a | 0.4 | 2.7 b | 0.5 | 0.7 | 5.4 | 5.9 | 0.3 | 1.9 | 6.1 | 5.6 a | 3.3 | 4.2 | 2.5 | 6.4 |
Color | Size | Almond ID | Sweetness | Bitterness | Astringency | Firmness | Crispiness | Teeth Adhesion | Aftertaste | Overall | |
---|---|---|---|---|---|---|---|---|---|---|---|
ANOVA † | |||||||||||
Irrigation | NS | NS | NS | NS | NS | NS | NS | NS | NS | * | NS |
Country | *** | * | *** | *** | NS | NS | *** | *** | ** | *** | *** |
Irrigation × Country | NS | NS | *** | * | NS | NS | ** | *** | ** | *** | *** |
Tukey Multiple Range Test ‡ | |||||||||||
Irrigation | |||||||||||
T1 | 7.0 | 7.0 | 6.7 | 6.6 | 6.4 | 6.5 | 6.7 | 6.9 | 6.3 | 6.5 ab | 6.6 |
T2 | 7.0 | 7.2 | 6.8 | 6.6 | 6.5 | 6.5 | 6.5 | 6.9 | 6.2 | 6.2 b | 6.5 |
T3 | 7.2 | 7.1 | 7.0 | 6.7 | 6.5 | 6.6 | 6.9 | 7.1 | 6.5 | 6.6 ab | 6.9 |
T4 | 7.0 | 7.2 | 7.0 | 6.8 | 6.4 | 6.5 | 6.7 | 7.0 | 6.7 | 6.8 a | 7.0 |
Country | |||||||||||
Spain | 6.8 b | 6.9 b | 6.3 b | 6.3 b | 6.5 | 6.6 | 6.3 b | 6.4 b | 6.1 b | 6.0 b | 6.3 b |
Romania | 7.2 a | 7.3 a | 7.1 a | 6.9 a | 6.5 | 6.5 | 6.9 a | 7.3 a | 6.6 a | 6.7 a | 7.0 a |
Irrigation × Country | |||||||||||
Spain | |||||||||||
T1 | 6.7 | 6.9 | 6.2 b | 6.2 c | 6.6 | 6.6 | 6.2 ab | 6.3 d | 6.2 ab | 6.1 bc | 6.2 bc |
T2 | 6.6 | 6.8 | 6.1 b | 6.2 c | 6.4 | 6.3 | 6.0 b | 6.3 cd | 5.9 b | 5.6 c | 6.0 c |
T3 | 7.0 | 7.2 | 6.4 ab | 6.4 b | 6.4 | 6.8 | 6.5 ab | 6.6 abcd | 6.2 ab | 6.2 abc | 6.5 abc |
T4 | 6.8 | 6.9 | 6.5 ab | 6.3 bc | 6.4 | 6.6 | 6.4 ab | 6.4 bcd | 6.3 ab | 6.3 abc | 6.4 bc |
Romania | |||||||||||
T1 | 7.2 | 7.1 | 7.0 ab | 6.8 ab | 6.3 | 6.5 | 6.9 ab | 7.3 ab | 6.4 ab | 6.7 ab | 6.8 abc |
T2 | 7.1 | 7.5 | 7.1 a | 6.7 ab | 6.5 | 6.6 | 6.7 ab | 7.2 abc | 6.4 ab | 6.4 abc | 6.8 abc |
T3 | 7.3 | 7.1 | 7.2 a | 6.8 ab | 6.5 | 6.5 | 7.1 a | 7.4 a | 6.7 ab | 6.8 ab | 7.0 ab |
T4 | 7.1 | 7.4 | 7.3 a | 7.0 a | 6.5 | 6.5 | 6.9 ab | 7.4 a | 6.9 a | 7.1 a | 7.3 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipan, L.; Cano-Lamadrid, M.; Corell, M.; Sendra, E.; Hernández, F.; Stan, L.; Vodnar, D.C.; Vázquez-Araújo, L.; Carbonell-Barrachina, Á.A. Sensory Profile and Acceptability of HydroSOStainable Almonds. Foods 2019, 8, 64. https://doi.org/10.3390/foods8020064
Lipan L, Cano-Lamadrid M, Corell M, Sendra E, Hernández F, Stan L, Vodnar DC, Vázquez-Araújo L, Carbonell-Barrachina ÁA. Sensory Profile and Acceptability of HydroSOStainable Almonds. Foods. 2019; 8(2):64. https://doi.org/10.3390/foods8020064
Chicago/Turabian StyleLipan, Leontina, Marina Cano-Lamadrid, Mireia Corell, Esther Sendra, Francisca Hernández, Laura Stan, Dan Cristian Vodnar, Laura Vázquez-Araújo, and Ángel A. Carbonell-Barrachina. 2019. "Sensory Profile and Acceptability of HydroSOStainable Almonds" Foods 8, no. 2: 64. https://doi.org/10.3390/foods8020064
APA StyleLipan, L., Cano-Lamadrid, M., Corell, M., Sendra, E., Hernández, F., Stan, L., Vodnar, D. C., Vázquez-Araújo, L., & Carbonell-Barrachina, Á. A. (2019). Sensory Profile and Acceptability of HydroSOStainable Almonds. Foods, 8(2), 64. https://doi.org/10.3390/foods8020064