Validation of the Component Model for Prediction of Moisture Sorption Isotherms of Two Herbs and other Products
Abstract
:1. Introduction
2. The Component Model
2.1. Development of the Component Model
2.2. The Isotherm Equation of Each Component
2.2.1. The Vacuolar Component
2.2.2. Fiber Component
2.2.3. Starch Component
2.2.4. Protein Component
3. Materials and Methods
3.1. Materials
3.2. Temperature and RH Sensors
3.3. Calibration of Sensors
3.4. The Equilibrium Relative Humidity Method
3.5. Moisture Sorption Isotherm Models
3.6. Comparison Criteria for Sorption Models
4. Results and Discussion
4.1. Sorption Isotherm of C. Morifolium Flowers
4.2. Sorption Isotherm of A. Formosanus HAYATA
4.3. Predictive Ability of Component Model for Two Herbs
4.4. Predictive Ability of Component Model for Other Products
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Basu, S.; Shivhare, U.S.; Mujumdar, A.S. Models for sorption isotherms for foods: A review. Dry. Technol. 2006, 24, 917–930. [Google Scholar] [CrossRef]
- Fleurat-Lessard, F. Integrated management of the risks of stored grain spoilage by seed borne fungi and contamination by storage mould mycotoxins—An update. J. Stored Prod. Res. 2017, 71, 22–40. [Google Scholar] [CrossRef]
- Mohamed, L.A.; Kouhila, M.; Lahsasni, S.; Jamali, A.; Idlimam, A.; Rhazi, M.; Aghfir, M.; Mahrouz, M. Equilibrium moisture content and heat of sorption of Gelidium sesquipedale. J. Stored Prod. Res. 2005, 41, 199–209. [Google Scholar] [CrossRef]
- Barrozo, M.A.S.; Silva, A.A.M.; Oliveira, D.T. The use of curvature and bias measures to discriminate among equilibrium moisture equations for mustard seed. J. Stored Prod. Res. 2008, 44, 65–70. [Google Scholar] [CrossRef]
- Oyelade, O.J.; Tunde-Akintunde, T.Y.; Igbeka, J.C.; Oke, M.O.; Raji, O.Y. Modelling moisture sorption isotherms for maize flour. J. Stored Prod. Res. 2008, 44, 179–185. [Google Scholar] [CrossRef]
- Chen, C. A rapid method to determine the sorption isotherms of peanuts. J. Agric. Eng. Res. 2000, 75, 401–408. [Google Scholar] [CrossRef]
- Chen, C.; Weng, Y. Moisture Sorption isotherms of Oolong tea. Food Bioprocess Technol. 2010, 3, 226–233. [Google Scholar] [CrossRef]
- Chen, H.; Chen, C. Equilibrium relative humidity method used to determine the sorption isotherm of autoclaved aerated concrete. Build. Environ. 2014, 81, 427–435. [Google Scholar] [CrossRef]
- Crapiste, G.H.; Rostein, E. Predicting of sorptional equilibrium data for starch containing foodstuffs. J. Food Sci. 1982, 47, 1501–1507. [Google Scholar] [CrossRef]
- Al-Muhtaseb, A.H.; McMinn, W.A.M.; Magee, T.R.A. Moisture sorption isotherm characteristics of food products: A review. Food Bioprod. Process. 2002, 80, 118–128. [Google Scholar]
- Bonner, I.J.; Kenney, K.L. Moisture sorption characteristics and modeling of energy sorghum (Sorghum bicolor (L.) Moench). J. Stored Prod. Res. 2013, 52, 128–136. [Google Scholar] [CrossRef]
- Argyropoulos, D.; Alex, R.; Kohler, R.; Müller, J. Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption. LWT-Food Sci. Technol. 2012, 47, 324–331. [Google Scholar] [CrossRef]
- Bahloul, N.; Boudhrioua, N.; Kechaou, N. Moisture desorption–adsorption isotherms and isostericheats of sorption of Tunisian olive leaves (Olea europaea L.). Ind. Crops Prod. 2008, 28, 162–176. [Google Scholar] [CrossRef]
- Choudhury, D.; Sahu, J.K.; Sharma, G.D. Moisture sorption isotherms, heat of sorption and properties of sorbed water of raw bamboo (Dendrocalamus longispathus) shoots. Ind. Crops Prod. 2011, 33, 211–216. [Google Scholar] [CrossRef]
- Hong, T.D.; Ellis, R.H.; Gunn, J.; Moore, D. Relative humidity, temperature, and the equilibrium moisture content of conidia of Beauveria bassiana (Balsamo) Vuillemin: A quantitative approach. J. Stored Prod. Res. 2002, 38, 33–41. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, H.J.; Lee, Y.S. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med. 2003, 69, 859–861. [Google Scholar] [PubMed]
- Shih, C.C.; Wu, Y.W.; Lin, W.C. Ameliorative effects of Anoectochilus formosanus extract on osteopenia in ovariectomized rats. J. Ethnopharmacol. 2001, 77, 233–238. [Google Scholar] [CrossRef]
- Ross, K.D. Estimation of water activity in intermediate moisture foods. Food Technol. 1975, 29, 26–34. [Google Scholar]
- Kelsey, K.E. The sorption of water vapour by wood. Aust. J. Appl. Sci. 1957, 8, 42–45. [Google Scholar]
- Chung, D.S.; Pfost, H.B. Adsorption and desorption of water vapour by cereal grains and their products. Part II. Hypothesis for explaining the hysteresis effect. Trans. ASAE 1967, 10, 552–555. [Google Scholar]
- Hermansson, A.M. Functional properties of proteins for foods—Water vapor sorption. J. Food Technol. 1977, 12, 177–187. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, C. Preparation of reference materials for rice kernels. Biosyst. Eng. 2007, 97, 41–49. [Google Scholar] [CrossRef]
- Organization Internationale De Metrologie Legale (OMIL). The Scale of Relative Humidity of Air Certified Against Saturated Salt Solutions; OMIL R 121; OMIL: Paris, France, 1996. [Google Scholar]
- Chen, C. Sorption isotherms of sweet potato slices. Biosyst. Eng. 2002, 83, 85–95. [Google Scholar] [CrossRef]
- Chen, C. Moisture sorption isotherms of pea seeds. J. Food Eng. 2002, 58, 45–51. [Google Scholar] [CrossRef]
- Henderson, S.M. A basic concept of equilibrium moisture. Agri. Eng. 1952, 33, 29–32. [Google Scholar]
- Halsey, G. Physical adsorbtion in non-uniform surfaces. J. Chem. Phys. 1948, 16, 931–937. [Google Scholar] [CrossRef]
- Oswin, C.R. The kinetics of package life. III. The isotherm. J. Chem. Soc. 1946, 65, 419–421. [Google Scholar] [CrossRef]
- Castillo, M.D.; Martinez, E.J.; Gonzalez, H.H.L.; Pacin, A.M.; Resnik, S.L. Study of mathematical models applied to sorption isotherms of Argentinean black bean varieties. J. Food Eng. 2003, 60, 343–348. [Google Scholar] [CrossRef]
- Berg, C.; Bruin, S. Water activity and its estimation in food systems: Theoretical aspects. In Water Activity: Influences on Food Quality; Rockland, L.B., Stewart, G.F., Eds.; Academic Press: New York, NY, USA, 1981; pp. 1–61. [Google Scholar]
- Myers, R.H. Classical and Modern Regression with Applications, 2nd ed.; Duxbury Press: Pacific Grove, CA, USA, 2000. [Google Scholar]
- Ghodake, H.M.; Goswami, T.K.; Chakraverty, A. Moisture sorption isotherms, heat of sorption and vaporization of withered leaves, black and green tea. J. Food Eng. 2007, 78, 827–835. [Google Scholar] [CrossRef]
- Heras, R.M.-L.; Heredia, A.; Castelló, M.L.; Andrés, A. Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Biosci. 2014, 7, 88–94. [Google Scholar] [CrossRef]
- Cervenka, L.; Kubinova, J.; Juszczak, L.; Witczak, M. Moisture sorption isotherms and glass transition temperature of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) roots at 25 °C. Food Sci. Technol. Int. 2012, 18, 81–91. [Google Scholar] [CrossRef]
- Chen, C. A Study of Equilibrium Relative Humidity for Yellow-Dent Corn Kernels. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 1988. [Google Scholar]
Specification | Temperature Sensor | RH Meter |
---|---|---|
Sensing element | RTD Pt 100 Ohm | Micro-molecule HP-MQ |
Operating range | 0–50 °C | 10–100 % RH |
Accuracy before calibrating | ±0.5 °C | ±2 % RH |
Precision | 0.1 °C | 0.1 % RH |
Accuracy after calibrating | ±0.15 °C | ±0.7 % RH |
Model | Equations | References |
---|---|---|
Henderson | Henderson [26] | |
Chung-Pfost | Chung and Pfost [20] | |
Halsey | Halsey [27] | |
Oswin | Oswin [28] | |
White & Eirig | Castillo et al. [29] | |
Caurie | Castillo et al. [29] | |
GAB | Van der Berg, [30] |
Temp. | 5 °C | 15 °C | 25 °C | 35 °C | 45 °C | |
---|---|---|---|---|---|---|
Henderson | a0 | 9.8934 | 10.1609 | 10.1559 | 10.4075 | 10.8141 |
a1 | 0.8358 | 0.9196 | 0.8595 | 0.9956 | 1.0105 | |
R2 | 0.9386 | 0.9788 | 0.9821 | 0.9806 | 0.9789 | |
s | 0.6393 | 0.8606 | 0.7764 | 0.7938 | 0.8120 | |
MRE | 6.0383 | 8.5932 | 8.7059 | 10.2933 | 10.0554 | |
PRESS | 4.9916 | 12.1870 | 8.1442 | 8.2361 | 8.9443 | |
Residual plot | Uniform | Uniform | Uniform | Uniform | Uniform | |
Chung-Pfost | b0 | 5.5080 | 5.7531 | 5.8960 | 5.9260 | 6.1290 |
b1 | −6.1120 | −6.4110 | −6.0820 | −6.6020 | −6.7451 | |
R2 | 0.9790 | 0.9531 | 0.9661 | 0.9361 | 0.9250 | |
s | 0.8660 | 1.2861 | 1.1630 | 1.4422 | 1.5306 | |
MRE | 13.0605 | 17.5566 | 16.5122 | 19.6941 | 21.4310 | |
PRESS | 11.7280 | 28.5011 | 23.4440 | 41.1900 | 52.1751 | |
Residualplot | Pattern | Pattern | Pattern | Pattern | Pattern | |
Halsey | c0 | 5.9427 | 5.7082 | 5.9209 | 5.4476 | 5.5654 |
c1 | 1.5704 | 0.6639 | 0.6126 | 0.7576 | 0.7842 | |
R2 | 0.9438 | 0.9536 | 0.9526 | 0.9764 | 0.9737 | |
s | 1.4243 | 1.2710 | 1.2632 | 0.8753 | 0.9080 | |
MRE | 19.2776 | 13.2668 | 13.9556 | 7.6251 | 7.5905 | |
PRESS | 25.6329 | 42.4362 | 27.9405 | 16.7586 | 17.7869 | |
Residual plot | Pattern | Pattern | Pattern | Pattern | Pattern | |
Oswin | d0 | 7.3971 | 7.3641 | 7.5094 | 7.2905 | 7.5193 |
d1 | 0.4731 | 0.5396 | 0.4994 | 0.6045 | 0.6214 | |
R2 | 0.9687 | 0.9702 | 0.9715 | 0.9826 | 0.9794 | |
s | 1.0622 | 1.0188 | 0.9788 | 0.7514 | 0.8034 | |
MRE | 11.8940 | 6.7995 | 7.5281 | 7.0538 | 8.7580 | |
PRESS | 14.4665 | 24.8822 | 16.3209 | 10.6988 | 11.9955 | |
Residual plot | Pattern | Pattern | Pattern | Pattern | Pattern | |
White & Eirig | e0 | 0.2472 | 0.2560 | 0.2483 | 0.2698 | 0.2648 |
e1 | −0.2208 | −0.2389 | −0.2263 | −0.2632 | −0.2116 | |
R2 | 0.9399 | 0.9397 | 0.9420 | 0.9576 | 0.9516 | |
s | 1.4737 | 1.4493 | 1.3964 | 1.1739 | 1.2312 | |
MRE | 22.6821 | 19.4736 | 18.9198 | 14.9920 | 15.3631 | |
PRESS | 24.9283 | 63.0580 | 31.8313 | 31.8209 | 34.7616 | |
Residual plot | Pattern | Pattern | Pattern | Pattern | Pattern | |
Caurie | f0 | 1.8739 | 1.6968 | 1.8784 | 1.5901 | 1.6464 |
f1 | 2.6012 | 2.7997 | 2.6398 | 2.9493 | 2.9602 | |
R2 | 0.9926 | 0.9862 | 0.9904 | 0.9908 | 0.9908 | |
s | 0.5195 | 0.6927 | 0.5697 | 0.5455 | 0.5370 | |
MRE | 8.8299 | 4.6566 | 3.8838 | 4.8482 | 4.2159 | |
PRESS | 3.3214 | 8.4673 | 4.8398 | 4.7978 | 5.1792 | |
Residual plot | Uniform | Uniform | Uniform | Uniform | Uniform | |
GAB | A | 6.1289 | 2.8515 | 2.8434 | 1.4477 | 3.1852 |
B | 1.3142 | 2.0917 | 2.1447 | 3.3973 | 1.9537 | |
C | 0.6442 | 0.7811 | 0.7457 | 0.8807 | 0.8257 | |
R2 | 0.9923 | 0.9805 | 0.9835 | 0.9833 | 0.9803 | |
s | 0.5634 | 0.8815 | 0.7959 | 0.786 | 0.839 | |
MRE | 6.7162 | 8.7490 | 9.3550 | 8.2197 | 9.4683 | |
PRESS | 3.7444 | 28.4023 | 10.4076 | 16.6284 | 16.3538 | |
Residual plot | Pattern | Pattern | Pattern | Pattern | Pattern |
Temp. | 5 °C | 15 °C | 25 °C | 35 °C | 45 °C | |
---|---|---|---|---|---|---|
Henderson | a0 | 11.1085 | 11.2013 | 11.7819 | 11.9449 | 12.1878 |
a1 | 1.0682 | 1.1939 | 1.0687 | 1.1718 | 1.1162 | |
R2 | 0.9771 | 0.9915 | 0.9841 | 0.9930 | 0.9876 | |
s | 1.0785 | 0.6406 | 0.8610 | 0.5601 | 0.7261 | |
MRE | 4.1659 | 4.3288 | 5.0736 | 6.4703 | 7.3331 | |
PRESS | 36.7479 | 8.3019 | 19.5555 | 4.7611 | 10.3204 | |
Residual plot | Uniform | Uniform | Uniform | Uniform | Uniform | |
Chung-Pfost | b0 | 4.1801 | 4.1701 | 5.1377 | 5.422 | 5.813 |
b1 | −9.5630 | −10.0561 | −9.328 | −9.368 | −8.993 | |
R2 | 0.9766 | 0.9711 | 0.9710 | 0.9540 | 0.9501 | |
s | 1.1071 | 1.1751 | 1.1800 | 1.4240 | 1.4502 | |
MRE | 10.3642 | 12.8435 | 13.0605 | 17.7778 | 19.8735 | |
PRESS | 17.5531 | 22.1391 | 21.831 | 37.8920 | 40.4921 | |
Residual plot | Pattern | Pattern | Pattern | Pattern | Pattern | |
Halsey | c0 | 6.3600 | 5.6542 | 6.2743 | 5.7114 | 5.9771 |
c1 | 0.6749 | 0.8224 | 0.7433 | 0.8781 | 0.8446 | |
R2 | 0.9200 | 0.9647 | 0.9411 | 0.9779 | 0.9638 | |
s | 2.0171 | 1.3065 | 1.6567 | 0.9920 | 1.2398 | |
MRE | 20.8838 | 14.0305 | 18.1594 | 10.9186 | 13.6242 | |
PRESS | 189.6994 | 54.1043 | 11.6067 | 28.4231 | 54.7304 | |
Residual plot | Pattern | Pattern | Pattern | Pattern | Pattern | |
Oswin | d0 | 7.9799 | 7.5396 | 8.1977 | 7.8989 | 8.1917 |
d1 | 0.5792 | 0.6871 | 0.6177 | 0.7013 | 0.6802 | |
R2 | 0.9045 | 0.9795 | 0.9634 | 0.9890 | 0.9791 | |
s | 2.0171 | 0.9951 | 1.3052 | 0.6993 | 0.9417 | |
MRE | 15.8019 | 9.1047 | 12.1321 | 5.3923 | 7.0749 | |
PRESS | 119.8241 | 29.7879 | 63.4608 | 13.2440 | 28.1725 | |
Residual plot | Pattern | Pattern | Pattern | Pattern | Pattern | |
White & Eirig | e0 | 0.2248 | 0.2476 | 0.2266 | 0.2492 | 0.2394 |
e1 | −0.2099 | −0.2434 | −0.2172 | −0.2522 | −0.2396 | |
R2 | 0.9161 | 0.9435 | 0.9220 | 0.9423 | 0.9304 | |
s | 2.0653 | 1.6539 | 1.9283 | 1.5002 | 1.7178 | |
MRE | 24.0033 | 20.7259 | 24.6922 | 20.7785 | 24.2669 | |
PRESS | 268.41 | 106.2321 | 206.2235 | 77.7422 | 149.9925 | |
Residual plot | Pattern | Pattern | Pattern | Pattern | Pattern | |
Caurie | f0 | 1.3805 | 1.1989 | 1.5561 | 1.3618 | 1.5218 |
f1 | 3.2662 | 3.5179 | 3.1850 | 3.4184 | 3.2744 | |
R2 | 0.9864 | 0.9938 | 0.9884 | 0.9956 | 0.9905 | |
s | 0.8298 | 0.5459 | 0.7366 | 0.4442 | 0.6335 | |
MRE | 6.5503 | 4.7103 | 6.3682 | 4.6476 | 5.6618 | |
PRESS | 18.0125 | 5.1170 | 14.0032 | 3.2240 | 8.8902 | |
Residual plot | Uniform | Uniform | Uniform | Uniform | Uniform | |
GAB | A | 156146.6 | 9696.467 | 11806.88 | 7.9452 | 65.9138 |
B | 0.007007 | 0.0269 | 0.0269 | 1.0877 | 0.3634 | |
C | 0.5401 | 0.5952 | 0.5232 | 0.8255 | 0.6303 | |
R2 | 0.9875 | 0.9933 | 0.9895 | 0.9941 | 0.9894 | |
s | 0.8451 | 0.6023 | 0.7433 | 0.5455 | 0.7122 | |
MRE | 4.7524 | 4.6051 | 5.3836 | 5.3507 | 6.9848 | |
PRESS | 132.6791 | 14.4521 | 65.4748 | 12.0731 | 34.3074 | |
Residual plot | Pattern | Pattern | Pattern | Pattern | Pattern |
Component | C. Morifolium Flower (16) | A. formosamus Hayata (17) |
---|---|---|
Sugar | 0.4923 | 0.098 |
Ash | 0.077 | 0.02 |
Fiber | 0.13384 | 0.23 |
Starch | 0.07692 | 0.0 |
Protein | 0.1892 | 0.07 |
Oil | 0.0311 | 0.01 |
Component | Raw Bamboo [14] | Elecampe [34] | Corm VR [35] | Corm Vn [35] | Corm VA [35] |
---|---|---|---|---|---|
Sugar | 0.1964 | 0.0 | 0.03965 | 0.01508 | 0.02674 |
Ash | 0.1265 | 0.053 | 0.01925 | 0.01607 | 0.015394 |
Fiber | 0.1429 | 0.01 | 0.03579 | 0.03946 | 0.036445 |
Starch | 0.4688 | 0.874 | 0.75185 | 0.77221 | 0.73766 |
Protein | 0.0045 | 0.0775 | 0.11147 | 0.10573 | 0.12969 |
Oil | 0.0 | 0.0 | 0.04199 | 0.05144 | 0.05408 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C. Validation of the Component Model for Prediction of Moisture Sorption Isotherms of Two Herbs and other Products. Foods 2019, 8, 191. https://doi.org/10.3390/foods8060191
Chen C. Validation of the Component Model for Prediction of Moisture Sorption Isotherms of Two Herbs and other Products. Foods. 2019; 8(6):191. https://doi.org/10.3390/foods8060191
Chicago/Turabian StyleChen, Chiachung. 2019. "Validation of the Component Model for Prediction of Moisture Sorption Isotherms of Two Herbs and other Products" Foods 8, no. 6: 191. https://doi.org/10.3390/foods8060191
APA StyleChen, C. (2019). Validation of the Component Model for Prediction of Moisture Sorption Isotherms of Two Herbs and other Products. Foods, 8(6), 191. https://doi.org/10.3390/foods8060191