Oral Wine Texture Perception and Its Correlation with Instrumental Texture Features of Wine-Saliva Mixtures
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.1.1. Model-Wine Samples
2.1.2. Saliva/Sample Mixtures
2.2. Methods
2.2.1. Physical Measurements in Saliva/Sample Mixtures
Density
Flow Behaviour
2.2.2. Wine-Oral Texture Evaluation
Evaluation by Trained Panel
Evaluation by Expert Panel
2.3. Data Analysis
3. Results
3.1. Instrumental Measurements
3.1.1. Density
3.1.2. Flow Behaviour
3.2. Descriptive Sensory Evaluation
3.2.1. Wine-Oral Sensations
3.2.2. After-Swallowing Sensations
3.3. Relationships between Instrumental Measurements and Sensory Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Bourne, M. Food Texture and Viscosity: Concept and Measurement; Academic Press: New York, NY, USA, 2002. [Google Scholar]
- DeMiglio, P.; Pickering, G.J.; Reynolds, A.G. Astringent sub-qualities elicited by red wine: The role of ethanol and pH. In Presented at the Proceedings of the International Bacchus to the Future Conference, St Catharines, ON, Canada, 23–25 May 2002; pp. 31–52. [Google Scholar]
- Hand, A.R.; Frank, M.E. Fundamentals of Oral Histology and Physiology; John Wiley & Sons: Ames, IA, USA, 2014. [Google Scholar]
- Jackson, R.S. Wine Tasting: A Professional Handbook; Brock University: St Catharines, ON, Canada.
- Gawel, R.; Waters, E.J. The Effect of Glycerol on the Perceived Viscosity of Dry White Table Wine. J. Wine Res. 2008, 19, 109–114. [Google Scholar] [CrossRef]
- Hopfer, H.; Heymann, H. Judging wine quality: Do we need experts, consumers or trained panelists? Food Qual. Prefer. 2014, 32, 221–233. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food; Springer: New York, NY, USA, 2010; pp. 1–18. [Google Scholar]
- King, E.S.; Dunn, R.L.; Heymann, H. The influence of alcohol on the sensory perception of red wines. Food Qual. Prefer. 2013, 28, 235–243. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: Synergistic effect and modulation by aromas. Food Res. Int. 2014, 62, 1100–1107. [Google Scholar] [CrossRef]
- Laguna, L.; Sarkar, A. Oral tribology: Update on the relevance to study astringency in wines. Tribol. Mater. Surf. Interf. 2017, 11, 116–123. [Google Scholar] [CrossRef]
- Quijada-Morin, N.; Williams, P.; Rivas-Gonzalo, J.C.; Doco, T.; Escribano-Bailon, M.T. Polyphenolic, polysaccharide and oligosaccharide composition of Tempranillo red wines and their relationship with the perceived astringency. Food Chem. 2014, 154, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laguna, L.; Sarkar, A.; Bryant, M.G.; Beadling, A.R.; Bartolomé, B.; Victoria Moreno-Arribas, M. Exploring mouthfeel in model wines: Sensory-to-instrumental approaches. Food Res. Int. 2017, 102, 478–486. [Google Scholar] [CrossRef]
- Lubbers, S.; Verret, C.; Voilley, A. The Effect of Glycerol on the Perceived Aroma of a Model Wine and a White Wine. LWT Food Sci. Technol. 2001, 34, 262–265. [Google Scholar] [CrossRef]
- Gil, M.; Quirós, M.; Fort, F.; Morales, P.; Gonzalez, R.; Canals, J.-M.; Zamora, F. Influence of grape maturity and maceration length on polysaccharide composition of Cabernet sauvignon red wines. Am. J. Enol. Vitic. 2015, 66, 393–397. [Google Scholar] [CrossRef]
- Vidal, S.; Francis, L.; Williams, P.; Kwiatkowski, M.; Gawel, R.; Cheynier, V.; Waters, E. The mouth-feel properties of polysaccharides and anthocyanins in a wine like medium. Food Chem. 2004, 85, 519–525. [Google Scholar] [CrossRef]
- Amerine, M.A.; Pangborn, E.B.; Roessler, E.B. Principles of sensory evaluation of food. Food Sci. Technol. Monogr. 1965, 93–101. [Google Scholar]
- Gawel, R.; Sluyter, S.V.; Waters, E.J. The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines. Aust. J. Grape Wine Res. 2007, 13, 38–45. [Google Scholar] [CrossRef]
- Nurgel, C.; Pickering, G. Contribution of glycerol, ethanol and sugar to the perception of viscosity and density elicited by model white wines. J. Texture Stud. 2005, 36, 303–323. [Google Scholar] [CrossRef]
- Pickering, G.J.; Heatherbell, D.; Vanhanen, L.; Barnes, M. The effect of ethanol concentration on the temporal perception of viscosity and density in white wine. Am. J. Enol. Vitic. 1998, 49, 306–318. [Google Scholar]
- Runnebaum, R.; Boulton, R.; Powell, R.; Heymann, H. Key constituents affecting wine body–an exploratory study. J. Sensory Stud. 2011, 26, 62–70. [Google Scholar] [CrossRef]
- Cliff, M.A.; King, M.C.; Schlosser, J. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wine. Food Res. Int. 2007, 40, 92–100. [Google Scholar] [CrossRef]
- García-Ruiz, A.; Bartolomé, B.; Martínez-Rodríguez, A.J.; Pueyo, E.; Martín-Álvarez, P.J.; Moreno-Arribas, M. Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control 2008, 19, 835–841. [Google Scholar] [CrossRef]
- Cala, O.; Dufourc, E.J.; Fouquet, E.; Manigand, C.; Laguerre, M.; Pianet, I. The colloidal state of tannins impacts the nature of their interaction with proteins: The case of salivary proline-rich protein/procyanidins binding. Langmuir 2012, 28, 17410–17418. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Gallego, R.; Bras, N.F.; Garcia-Estevez, I.; Mateus, N.; Rivas-Gonzalo, J.C.; de Freitas, V.; Escribano-Bailon, M.T. Effect of flavonols on wine astringency and their interaction with human saliva. Food Chem. 2016, 209, 358–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laguna, L.; Bartolomé, B.; Moreno-Arribas, M.V. Mouthfeel perception of wine: Oral physiology, components and instrumental characterization. Trends Food Sci. Technol. 2017, 59, 49–59. [Google Scholar] [CrossRef]
- Taladrid, D.; Lorente, L.; Bartolomé, B.; Moreno-Arribas, M.V.; Laguna, L. An integrative salivary approach regarding palate cleansers in wine tasting. J. Texture Stud. 2019, 50, 75–82. [Google Scholar] [CrossRef]
- Waters, E.J.; Pellerin, P.; Brillouet, J.M. A saccharomyces mannoprotein that protects wine from protein haze. Carbohydr. Polym. 1994, 23, 185–191. [Google Scholar] [CrossRef]
- Pellerin, P.; Doco, T.; Vidal, S.; Williams, P.; Brillouet, J.M.; Oneill, M.A. Structural characterization of red wine rhamnogalacturonan II. Carbohydr. Res. 1996, 290, 183–197. [Google Scholar] [CrossRef]
- Vidal, S.; Courcoux, P.; Francis, L.; Kwiatkowski, M.; Gawel, R.; Williams, P.; Waters, E.; Cheynier, V. Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual. Pref. 2004, 15, 209–217. [Google Scholar] [CrossRef]
- Shama, F.; Sherman, P. Identification of stimuli controlling the sensory evaluation of viscosity II. Oral methods. J. Texture Stud. 1973, 4, 111–118. [Google Scholar] [CrossRef]
- Yamagata, Y.; Izumi, A.; Egashira, F.; Miyamoto, K.-I.; Kayashita, J. Determination of a suitable shear rate for thickened liquids easy for the elderly to swallow. Food Sci. Technol. Res. 2012, 18, 363–369. [Google Scholar] [CrossRef]
- Laguna, L.; Farrell, G.; Bryant, M.; Morina, A.; Sarkar, A. Relating rheology and tribology of commercial dairy colloids to sensory perception. Food Funct. 2017, 8, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Neto, F.S.; de Castilhos, M.B.; Telis, V.R.; Telis-Romero, J. Effect of ethanol, dry extract and reducing sugars on density and viscosity of Brazilian red wines. J. Sci. Food Agric. 2015, 95, 1421–1427. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; De Freitas, V. Wine Chemistry and Biochemistry; Springer: New York, NY, USA, 2009; pp. 529–570. [Google Scholar]
- Moreno-Arribas, V.; Pueyo, E.; Nieto, F.J.; Martin-Alvarez, P.J.; Polo, M.C. Influence of the polysaccharides and the nitrogen compounds on foaming properties of sparkling wines. Food Chem. 2000, 70, 309–317. [Google Scholar] [CrossRef]
- Riou, V.; Vernhet, A.; Doco, T.; Moutounet, M. Aggregation of grape seed tannins in model wine - effect of wine polysaccharides. Food Hydrocoll. 2002, 16, 17–23. [Google Scholar] [CrossRef]
- Haslams, E. Practical Polypenolics: From Structure to Molecular Recognition and Physiological Action; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Yanniotis, S.; Kotseridis, G.; Orfanidou, A.; Petraki, A. Effect of ethanol, dry extract and glycerol on the viscosity of wine. J. Food Eng. 2007, 81, 399–403. [Google Scholar] [CrossRef]
- Harrington, R.J. The wine and food pairing process: Using culinary and sensory perspectives. J. Culin. Sci. Technol. 2005, 4, 101–112. [Google Scholar] [CrossRef]
- Niimi, J.; Danner, L.; Li, L.; Bossan, H.; Bastian, S.E. Wine consumers’ subjective responses to wine mouthfeel and understanding of wine body. Food Res. Int. 2017, 99, 115–122. [Google Scholar] [CrossRef]
- Pascal, C.; Poncet-Legrand, C.; Cabane, B.; Vernhet, A. Aggregation of a proline-rich protein induced by epigallocatechin gallate and condensed tannins: Effect of protein glycosylation. J. Agric. Food Chem. 2008, 56, 6724–6732. [Google Scholar] [CrossRef] [PubMed]
- Montealegre, R.R.; Peces, R.R.; Vozmediano, J.C.; Gascueña, J.M.; Romero, E.G. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Compos. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Ma, W.; Guo, A.; Zhang, Y.; Wang, H.; Liu, Y.; Li, H. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Technol. 2014, 40, 6–19. [Google Scholar] [CrossRef]
- Hufnagel, J.C.; Hofmann, T. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. J. Agric. Food Chem. 2008, 56, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Danilova, V.; Hellekant, G. Oral sensation of ethanol in a primate model III: Responses in the lingual branch of the trigeminal nerve of Macaca mulatta. Alcohol 2002, 26, 3–16. [Google Scholar] [CrossRef]
- Jackson, R.S. Table Wines: Sensory Characteristics and Sensory Analysis; Wood Head Publishing: Cambridge, UK, 2012. [Google Scholar]
- Meillon, S.; Urbano, C.; Schlich, P. Contribution of the Temporal Dominance of Sensations (TDS) method to the sensory description of subtle differences in partially dealcoholized red wines. Food Qual. Prefer. 2009, 20, 490–499. [Google Scholar] [CrossRef]
- Serafini, M.; Maiani, G.; Ferro-Luzzi, A. Effect of ethanol on red wine tannin− protein (BSA) interactions. J. Agric. Food Chem. 1997, 45, 3148–3151. [Google Scholar] [CrossRef]
- Arnold, G. A tasting procedure for assessing bitterness and astringency. In Sensory Quality of Food and Beverages: Definition, Measurement, and Control; Williams, A.A., Atkins, R.K., Eds.; Horwood Ltd.: Chichester, UK, 1983; pp. 109–114. [Google Scholar]
- Van Aken, G.A. Modelling texture perception by soft epithelial surfaces. Soft Matter 2010, 6, 826. [Google Scholar] [CrossRef]
Sample | Base Wine (mL) | Ethanol (mL) | Mannoproteins (g) | Glycerol (g) | Tannins (g) |
---|---|---|---|---|---|
W | 100 | - | - | - | - |
WE | 92 | 8 | - | - | - |
WM | 100 | - | 0.5 | - | - |
WG | 100 | - | - | 1 | - |
WT | 100 | - | - | - | 0.1 |
WEMGT | 92 | 8 | 0.5 | 1 | 0.1 |
Term | Definition |
---|---|
Body | Viscosity sensation when swishing |
Astringency | Dryness from the tongue tip to the throat |
Alcoholic feeling | Hot sensation typical in alcoholic beverages |
Cereal taste | Feeling of cereal taste |
Bitter taste | Bitter taste at the end of the tongue |
Model-Wine Samples | Ŋ (at 100 s−1) |
---|---|
W | 0.0167 ± 0.002 ab |
WE | 0.0110 ± 0.001 a |
WM | 0.0200 ± 0.002 ab |
WG | 0.0117 ± 0.002 ab |
WT | 0.0347 ± 0.002 c |
WEMGT | 0.0203 ± 0.002 b |
Trained Panel | Expert Panel | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Body | Astringency | Alcohol | Cereal | Bitter | Body | Astringency | Alcohol | Cereal | Bitter | |
(a) | ||||||||||
W | 2.71 b* | 1.40 b | 2.84 bc | 0.52 a | 0.56 b | 3.62 b | 2.04 b | 1.07 | 2.46 c | 1.71 c |
WE | 3.53 ab | 2.61 ab | 4.99 a | 0.96 a | 4.07 a | 4.96 a | 3.73 ab | 4.56 | 2.59 c | 4.30 a |
WM | 4.09 a | 2.92 ab | 2.36 c | 1.25 a | 1.42 b | 4.18 ab | 2.73 ab | 1.46 | 3.06 bc | 1.91 c |
WG | 4.57 a | 3.50 ab | 2.08 c | 0.81 a | 1.18 b | 4.33 ab | 2.88 ab | 2.31 | 2.298 c | 1.69 c |
WT | 3.60 ab | 5.28 a | 2.37 c | 1.65 a | 2.15 ab | 3.92 ab | 4.28 a | 2.56 | 4.21 ab | 2.84 b |
WEMGT | 4.02 a | 4.369 ab | 3.54 b | 1.71 a | 3.89 a | 4.77 a | 3.88 ab | 4.03 | 4.52 a | 3.43 b |
(b) | ||||||||||
W | 1.34 a | 1.33 a | 0.34 a | 0.67 a | 0.68 a | 3.50 a | 3.00 a | 1.67 a | 2.00 a | 1.12 a |
WE | 2.01 a | 3.00 a | 3.43 a | 1.00 a | 2.33 a | 4.00 a | 3.70 a | 4.00 a | 2.33 a | 3.33 a |
WM | 2.00 a | 3.08 a | 0.66 a | 1.57 a | 1.00 a | 3.60 a | 2.67 a | 2.00 a | 2.67 a | 1.67 a |
WG | 2.05 a | 1.98 a | 1.00 a | 1.65 a | 1.15 a | 3.23 a | 2.33 a | 1.70 a | 1.80 a | 1.67 a |
WT | 2.37 a | 4.02 a | 0.69 a | 1.00 a | 2.00 a | 3.31 a | 4.00 a | 2.20 a | 3.50 a | 1.95 a |
WEMGT | 2.67 a | 3.68 a | 2.43 a | 2.00 a | 3.00 a | 3.98 a | 3.68 a | 3.00 a | 4.00 a | 2.67 a |
Shear rate (1 s−1) (Instrumentally Measured) | Body (p-Value) | Astringency (p-Value) |
---|---|---|
100 | 0.485 (0.329) | 0.855 (0.030) |
10 | 0.083 (0.876) | 0.582 (0.226) |
1 | 0.032 (0.953) | 0.553 (0.255) |
0.1 | 0.118 (0.823) | 0.616 (0.192) |
K | 0.077 (0.884) | 0.603 (0.205) |
n | 0.128 (0.809) | 0.692 (0.127) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laguna, L.; Álvarez, M.D.; Simone, E.; Moreno-Arribas, M.V.; Bartolomé, B. Oral Wine Texture Perception and Its Correlation with Instrumental Texture Features of Wine-Saliva Mixtures. Foods 2019, 8, 190. https://doi.org/10.3390/foods8060190
Laguna L, Álvarez MD, Simone E, Moreno-Arribas MV, Bartolomé B. Oral Wine Texture Perception and Its Correlation with Instrumental Texture Features of Wine-Saliva Mixtures. Foods. 2019; 8(6):190. https://doi.org/10.3390/foods8060190
Chicago/Turabian StyleLaguna, Laura, María Dolores Álvarez, Elena Simone, Maria Victoria Moreno-Arribas, and Begoña Bartolomé. 2019. "Oral Wine Texture Perception and Its Correlation with Instrumental Texture Features of Wine-Saliva Mixtures" Foods 8, no. 6: 190. https://doi.org/10.3390/foods8060190
APA StyleLaguna, L., Álvarez, M. D., Simone, E., Moreno-Arribas, M. V., & Bartolomé, B. (2019). Oral Wine Texture Perception and Its Correlation with Instrumental Texture Features of Wine-Saliva Mixtures. Foods, 8(6), 190. https://doi.org/10.3390/foods8060190