Canning Processes Reduce the DNA-Based Traceability of Commercial Tropical Tunas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Analysis
2.3. DNA Traceability
2.4. Statistical Analysis
3. Results
3.1. DNA Analysis
3.2. DNA Traceability
3.2.1. YFT
3.2.2. BET
3.2.3. SKJ
3.2.4. LOT
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Italy, Rome, 2018. [Google Scholar]
- Guillotreau, P.; Squires, D.; Sun, J.; Compeán, G.A. Local, regional and global markets: What drives the tuna fisheries? Rev. Fish. Biol. Fisher. 2016, 27, 909–929. [Google Scholar] [CrossRef]
- Brill, R.W.; Hobday, A.J. Tunas and their fisheries: Safeguarding sustainability in the twenty-first century. Rev. Fish. Biol. Fisher. 2017, 27, 691–695. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2016—Contributing to Food Security and Nutrition for All; FAO: Italy, Rome, 2016. [Google Scholar]
- Thai Union Group Public Company Limited. Annual Report 2017. Available online: https://investor.thaiunion.com/misc/ar/20180329-tu-ar2017-en.pdf (accessed on 14 July 2020).
- Pecoraro, C.; Zudaire, I.; Bodin, N.; Murua, H.; Taconet, P.; Díaz-Jaimes, P.; Cariani, A.; Tinti, F.; Chassot, E. Putting all the pieces together: Integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares). Rev. Fish. Biol. Fisher 2017, 27, 811–841. [Google Scholar] [CrossRef]
- Bénard-Capelle, J.; Guillonneau, V.; Nouvian, C.; Fournier, N.; Loët, K.L.; Dettai, A. Fish mislabelling in France: Substitution rates and retail types. PeerJ 2015, 2015, e714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordoa, A.; Carreras, G.; Sanz, N.; Viñas, J. Tuna species substitution in the Spanish commercial chain: A knock-on effect. PLoS ONE 2017, 12, e0170809. [Google Scholar] [CrossRef] [Green Version]
- Sotelo, C.G.; Velasco, A.; Perez-Martin, R.I.; Kappel, K.; Schröder, U.; Verrez-Bagnis, V.; Jérôme, M.; Mendes, R.; Silva, H.; Mariani, S.; et al. Tuna labels matter in Europe: Mislabelling rates in different tuna products. PLoS ONE 2018, 13, e0196641. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, J.; Pauly, D. Funding Priorities: Big Barriers to Small-Scale Fisheries. Conserv. Biol. 2008, 22, 832–835. [Google Scholar] [CrossRef]
- Barendse, J.; Roel, A.; Longo, C.; Andriessen, L.; Webster, L.M.I.; Ogden, R.; Neat, F. DNA barcoding validates species labelling of certified seafood. Curr. Biol. 2019, 29, R198–R199. [Google Scholar] [CrossRef] [Green Version]
- Pardo, M.Á.; Jiménez, E.; Pérez-Villarreal, B. Misdescription incidents in seafood sector. Food Control 2016, 62, 277–283. [Google Scholar] [CrossRef]
- Willette, D.A.; Simmonds, S.E.; Cheng, S.H.; Esteves, S.; Kane, T.L.; Nuetzel, H.; Pilaud, N.; Rachmawati, R.; Barber, P.H. Using DNA barcoding to track seafood mislabeling in Los Angeles restaurants. Conserv. Biol. 2017, 31, 1076–1085. [Google Scholar] [CrossRef]
- Mariani, S.; Griffiths, A.M.; Velasco, A.; Kappel, K.; Jérôme, M.; Perez-Martin, R.I.; Schröder, U.; Verrez-Bagnis, V.; Silva, H.; Vandamme, S.G.; et al. Low mislabeling rates indicate marked improvements in European seafood market operations. Front. Ecol. Environ. 2015, 13, 536–540. [Google Scholar] [CrossRef]
- Lenstra, J.A. DNA methods for identifying plant and animal species in food. In Food Authenticity and Traceability; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; pp. 34–53. ISBN 978-1-85573-526-2. [Google Scholar]
- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D.N. DNA barcoding Australia’s fish species. Philos. Soc. B 2005, 360, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, R.S.; Morrissey, M.T. DNA-Based methods for the identification of commercial fish and seafood species. Compr. Rev. Food Sci. F 2008, 7, 280–295. [Google Scholar] [CrossRef]
- Viñas, J.; Tudela, S. A validated methodology for genetic identification of tuna species (Genus Thunnus). PLoS ONE 2009, 4, e7606. [Google Scholar] [CrossRef] [Green Version]
- Hellberg, R.S.R.; Morrissey, M.T. Advances in DNA-based techniques for the detection of seafood species substitution on the commercial market. JALA J. Assoc. Lab. Autom. 2011, 16, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Mata, W.; Chanmalee, T.; Punyasuk, N.; Thitamadee, S. Simple PCR-RFLP detection method for genus- and species-authentication of four types of tuna used in canned tuna industry. Food Control 2020, 108, 106842. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Ser. B Biol. 2003, 270, 313. [Google Scholar] [CrossRef] [Green Version]
- Pardo, M.A.; Pérez-Villareal, B. Identification of commercial canned tuna species by restriction site analysis of mitochondrial DNA products obtained by nested primer PCR. Food Chem. 2004, 86, 143–150. [Google Scholar] [CrossRef]
- Shokralla, S.; Hellberg, R.S.; Handy, S.M.; King, I.; Hajibabaei, M. A DNA mini-barcoding system for authentication of processed fish products. Sci. Rep. UK 2015, 5, 15894. [Google Scholar] [CrossRef]
- Nagalakshmi, K.; Annam, P.K.; Venkateshwarlu, G.; Pathakota, G.B.; Lakra, W.S. Mislabeling in Indian seafood: An investigation using DNA barcoding. Food Control 2016, 59, 196–200. [Google Scholar] [CrossRef]
- Tinacci, L.; Stratev, D.; Vashin, I.; Chiavaccini, I.; Susini, F.; Guidi, A.; Armani, A. Seafood labelling compliance with European legislation and species identification by DNA barcoding: A first survey on the Bulgarian market. Food Control 2018, 90, 180–188. [Google Scholar] [CrossRef]
- Bottero, M.T.; Dalmasso, A.; Cappelletti, M.; Secchi, C.; Civera, T. Differentiation of five tuna species by a multiplex primer-extension assay. J. Biotechnol. 2007, 129, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.; Weller, P.; Hammes, W.P.; Hertel, C. The effect of processing parameters on DNA degradation in food. Eur. Food Res. Technol. 2003, 217, 338–343. [Google Scholar] [CrossRef]
- Chapela, M.J.; Sotelo, C.G.; Pérez-Martín, R.I.; Pardo, M.Á.; Pérez-Villareal, B.; Gilardi, P.; Riese, J. Comparison of DNA extraction methods from muscle of canned tuna for species identification. Food Control 2007, 18, 1211–1215. [Google Scholar] [CrossRef]
- Pollack, S.J.; Kawalek, M.D.; Williams-Hill, D.M.; Hellberg, R.S. Evaluation of DNA barcoding methodologies for the identification of fish species in cooked products. Food Control 2018, 84, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Pafundo, S.; Agrimonti, C.; Maestri, E.; Marmiroli, N. Applicability of SCAR markers to food genomics: olive oil traceability. J. Agric. Food Chem. 2007, 55, 6052–6059. [Google Scholar] [CrossRef]
- Abdullah, A.; Rehbein, H. The differentiation of tuna (family: Scombridae) products through the PCR-based analysis of the cytochrome b gene and parvalbumin introns. J. Sci. Food Agr. 2015, 96, 456–464. [Google Scholar] [CrossRef]
- Botti, S.; Giuffra, E. Oligonucleotide indexing of DNA barcodes: Identification of tuna and other scombrid species in food products. BMC Biotechnol. 2010, 10. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Sayers, E.W.; Cavanaugh, M.; Clark, K.; Ostell, J.; Pruitt, K.D.; Karsch-Mizrachi, I. GenBank. Nucleic Acids Res. 2020, 48, D84–D86. [Google Scholar] [CrossRef] [Green Version]
- Barbuto, M.; Galimberti, A.; Ferri, E.; Labra, M.; Malandra, R.; Galli, P.; Casiraghi, M. DNA barcoding reveals fraudulent substitutions in shark seafood products: The Italian case of “palombo” (Mustelus spp.). Food Res. Int. 2010, 43, 376–381. [Google Scholar] [CrossRef]
- Puillandre, N.; Lambert, A.; Brouillet, S.; Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2012, 21, 1864–1877. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Krčmář, P.; Piskatá, Z.; Servusová, E. Identification of tuna species Thunnus albacares and Katsuwonus pelamis in canned products by real-time PCR method. Acta Vet. Brno. 2019, 88, 323–328. [Google Scholar] [CrossRef]
- Soman, M.; Paul, R.J.; Antony, M.; Padinjarattath Sasidharan, S. Detecting mislabelling in meat products using PCR–FINS. J. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Hajibabaei, M.; Smith, M.A.; Janzen, D.H.; Rodriguez, J.J.; Whitfield, J.B.; Hebert, P.D.N. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 2006, 6, 959–964. [Google Scholar] [CrossRef]
- Leone, A.; Puncher, G.N.; Ferretti, F.; Sperone, E.; Tripepi, S.; Micarelli, P.; Gambarelli, A.; Sarà, M.; Arculeo, M.; Doria, G.; et al. Pliocene colonization of the Mediterranean by Great White Shark inferred from fossil records, historical jaws, phylogeographic and divergence time analyses. J. Biogeogr. 2020, 47, 1119–1129. [Google Scholar] [CrossRef]
- Peano, C.; Samson, M.C.; Palmieri, L.; Gulli, M.; Marmiroli, N. Qualitative and quantitative evaluation of the genomic DNA extracted from GMO and non-GMO foodstuffs with four different extraction methods. J. Agric. Food Chem. 2004, 52, 6962–6968. [Google Scholar] [CrossRef]
- Higashi, R.; Sakuma, K.; Chiba, S.N.; Suzuki, N.; Chow, S.; Semba, Y.; Okamoto, H.; Nohara, K. Species and lineage identification for yellowfin Thunnus albacares and bigeye T. obesus tunas using two independent multiplex PCR assays. Fish. Sci. 2016, 82, 897–904. [Google Scholar] [CrossRef]
- Quinteiro, J.; Sotelo, C.G.; Pérez-martín, R.I.; Rey-méndez, M. Use of mtDNA direct Polymerase Chain Reaction (PCR) sequencing and PCR-Restriction fragment length polymorphism methodologies in species identification of canned tuna. J. Agric. Food Chem. 1998, 46, 1662–1669. [Google Scholar] [CrossRef]
- Lowenstein, J.H.; Amato, G.; Kolokotronis, S.-O. The real maccoyii: Identifying tuna sushi with DNA barcodes—Contrasting characteristic attributes and genetic distances. PLoS ONE 2009, 4, e7866. [Google Scholar] [CrossRef] [Green Version]
Species | FAO Major Fishing Area | Specimen | Fork Length (cm) | Total Weight (kg) | Amplified fragment (AB, A, B) | ||||
---|---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | L4O | L4B | |||||
YFT | Atlantic Ocean -FAO 34 | 1 | 104–140 | 51 | AB | AB | AB | B | B |
2 | 101–168 | 44 | AB | AB | AB | B | B | ||
3 | 107–138 | 52 | AB | AB | na | B | B | ||
Indian Ocean -FAO 51 | 1 | 54.5 | 3.06 | AB | AB | AB | B | B | |
2 | 57 | 3.6 | AB | AB | AB | B | B | ||
3 | 61.5 | 4.28 | AB | AB | AB | B | B | ||
Eastern Pacific Ocean -FAO 87 | 1 | 55.88 | 3.37 | AB | AB | AB | B | B | |
2 | 54.61 | 3.16 | AB | AB | AB | B | B | ||
3 | 55.88 | 3.69 | AB | AB | AB | B | B | ||
Western-Central Pacific Ocean -FAO 71 | 1 | 45 | 1.7 | AB | AB | AB | B | B | |
2 | 48.5 | 2.3 | AB | AB | AB | B | B | ||
3 | 41 | 1.2 | AB | AB | AB | B | B | ||
BET | Indian Ocean -FAO 51 | 1 | 41 | 1.6 | AB | AB | A | B | B |
2 | 45 | 1.7 | AB | AB | A | B | B | ||
3 | 42 | 1.7 | AB | AB | A | B | B | ||
Eastern Pacific Ocean -FAO 87 | 1 | 71.12 | 7.47 | AB | AB | A | B | B | |
2 | 74.93 | 8.35 | AB | AB | A | B | B | ||
3 | 68.58 | 6.37 | AB | AB | A | B | B | ||
LOT | Indian Ocean -FAO 51 | 1 | 42 | 1 | AB | AB | A | B | B |
2 | 48 | 1.6 | AB | AB | AB | B | B | ||
3 | 44 | 1.2 | AB | AB | AB | B | B | ||
SKJ | Atlantic Ocean -FAO 34 | 1 | 41–60 | 4.95 | AB | AB | AB | A | B |
2 | 42–63.5 | 5.45 | AB | AB | AB | B | B | ||
3 | 42–62 | 5.3 | AB | AB | na | B | B | ||
Indian Ocean -FAO 51 | 1 | 48 | 3.54 | AB | AB | AB | B | B | |
2 | 47 | 3.48 | AB | AB | AB | B | na | ||
3 | 52 | 4.26 | AB | AB | AB | B | B | ||
Eastern Pacific Ocean -FAO 87 | 1 | 64.77 | 5.22 | AB | AB | AB | B | B | |
2 | 59.69 | 4.97 | AB | AB | AB | B | B | ||
3 | 58.42 | 4.11 | AB | AB | AB | B | B | ||
Western-Central Pacific Ocean -FAO 71 | 1 | 48 | 2.1 | AB | AB | AB | B | B | |
2 | 46 | 1.8 | AB | AB | AB | B | B | ||
3 | 45 | 1.9 | AB | AB | AB | B | B |
Level | Species | Ocean | Sample ID | Fragment | BLAST Identification | Similarity (%) | Accession Number |
---|---|---|---|---|---|---|---|
L2 | LOT | IO | LOT-IO-L2-3 | AB | T. thynnus, T. albacares | 98.73% | MG017705.1, MG017687.1 |
L3 | LOT | IO | LOT-IO-L3-2 | AB | T. thynnus, T. albacares | 98.73% | MG017705.1, MG017687.1 |
L3 | LOT | IO | LOT-IO-L3-3 | AB | T. thynnus, T. albacares | 98.73% | MG017705.1, MG017687.1 |
L3 | SKJ | EPO | SKJ-EPO-L3-2 | AB | K. pelamis | 96.19% * | KP669130.1 |
L4O | LOT | IO | LOT-IO-L4O-1 | B | T. obesus | 98.17% | MG017696.1 |
L4O | YFT | AO | YFT-AO-L4O-1 | B | T. obesus | 98.17% | MG017696.1 |
L4O | YFT | AO | YFT-AO-L4O-2 | B | K. pelamis | 100% | KP669132.1 |
L4O | YFT | IO | YFT-IO-L4O-1 | B | K. pelamis | 98.17% | KP669172.1 |
L4O | SKJ | AO | SKJ-AO-L4O-2 | B | K. pelamis | 97.25% * | KP669132.1 |
L4O | SKJ | EPO | SKJ-EPO-L4O-1 | B | T. obesus | 98.17% | MG017696.1 |
L4O | SKJ | EPO | SKJ-EPO-L4O-2 | B | T. obesus | 98.17% | MG017696.1 |
L4O | SKJ | IO | SKJ-IO-L4O-1 | B | T. obesus | 98.17% | MG017696.1 |
L4O | SKJ | IO | SKJ-IO-L4O-2 | B | T. obesus | 98.17% | MG017696.1 |
L4O | SKJ | WCPO | SKJ-WCPO-L4O-1 | B | T. obesus | 98.17% | MG017696.1 |
L4B | BET | EPO | BET-EPO-L4B-3 | B | K. pelamis | 100% | AB098093.1 |
L4B | LOT | IO | LOT-IO- L4B-1 | B | T. obesus | 98.17% | MG017696.1 |
L4B | LOT | IO | LOT-IO- L4B-2 | B | T. obesus | 98.17% | MG017696.1 |
L4B | YFT | AO | YFT-AO-L4B-1 | B | K. pelamis | 100% | KP669132.1 |
L4B | YFT | AO | YFT-AO-L4B-2 | B | K. pelamis | 100% | KP669132.1 |
L4B | YFT | AO | YFT-AO-L4B-3 | B | K. pelamis | 100% | KP669132.1 |
L4B | YFT | EPO | YFT-EPO- L4B-1 | B | K. pelamis, T. albacares, T. obesus | 96.33% | KP669132.1, MG017683.1, KJ018958.1 |
L4B | YFT | EPO | YFT-EPO-L4B-3 | B | T. albacares | 97.25% * | MG017683.1 |
L4B | YFT | EPO | YFT-EPO-L4B-2 | B | K. pelamis | 99.08% | KP669132.1 |
L4B | YFT | IO | YFT-IO-L4B-2 | B | T. albacares, T.obesus | 97.25% | MG017683.1, MG017696.1 |
L4B | YFT | IO | YFT-IO-L4B-3 | B | K. pelamis | 99.08% | KP669172.1 |
L4B | YFT | WCPO | YFT-WCPO-L4B-1 | B | K. pelamis | 99.08% | KP669132.1 |
L4B | YFT | WCPO | YFT-WCPO- L4B-3 | B | T. albacares, T.obesus | 97.25% | MG017683.1, KJ018958.1 |
L4B | SKJ | AO | SKJ-AO-L4B-1 | B | T. obesus | 98.17% | MG017696.1 |
L4B | SKJ | AO | SKJ-AO-L4B-2 | B | T. obesus | 98.17% | MG017696.1 |
L4B | SKJ | EPO | SKJ-EPO-L4B-1 | B | T. obesus | 98.17% | MG017696.1 |
L4B | SKJ | EPO | SKJ-EPO-L4B-2 | B | T. obesus | 98.17% | MG017696.1 |
L4B | SKJ | IO | SKJ-IO-L4B-1 | B | K. pelamis | 97.25% * | KP669132.1 |
L4B | SKJ | WCPO | SKJ-WCPO-L4B-1 | B | T. obesus | 98.17% | MG017696.1 |
L4B | SKJ | WCPO | SKJ-WCPO-L4B-2 | B | T. obesus | 98.17% | MG017696.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecoraro, C.; Crobe, V.; Ferrari, A.; Piattoni, F.; Sandionigi, A.; Andrews, A.J.; Cariani, A.; Tinti, F. Canning Processes Reduce the DNA-Based Traceability of Commercial Tropical Tunas. Foods 2020, 9, 1372. https://doi.org/10.3390/foods9101372
Pecoraro C, Crobe V, Ferrari A, Piattoni F, Sandionigi A, Andrews AJ, Cariani A, Tinti F. Canning Processes Reduce the DNA-Based Traceability of Commercial Tropical Tunas. Foods. 2020; 9(10):1372. https://doi.org/10.3390/foods9101372
Chicago/Turabian StylePecoraro, Carlo, Valentina Crobe, Alice Ferrari, Federica Piattoni, Anna Sandionigi, Adam J. Andrews, Alessia Cariani, and Fausto Tinti. 2020. "Canning Processes Reduce the DNA-Based Traceability of Commercial Tropical Tunas" Foods 9, no. 10: 1372. https://doi.org/10.3390/foods9101372
APA StylePecoraro, C., Crobe, V., Ferrari, A., Piattoni, F., Sandionigi, A., Andrews, A. J., Cariani, A., & Tinti, F. (2020). Canning Processes Reduce the DNA-Based Traceability of Commercial Tropical Tunas. Foods, 9(10), 1372. https://doi.org/10.3390/foods9101372