Polyphenolic Composition and In Vitro Antioxidant Activity of Red Grape Seeds as Byproducts of Short and Medium-Long Fermentative Macerations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Extraction of Polyphenols from Grape Seeds
2.3. Spectrophotometric Analysis
- Total flavonoids: the extract was diluted 50-fold with hydrochloric ethanol (ethanol/H2O/HCl; 70:30:1) and the absorbance at 280 nm was measured. The results were expressed as (+)-catechin equivalents.
- Total polyphenols: 1 mL extract was diluted 20-fold with water, and 1 mL of diluted sample was added to 1 mL of Folin–Ciocalteu reagent, basified with 4 mL of sodium carbonate, and filled up to 20 mL. After 90 min, the absorbance at 750 nm was measured against a blank. The results were expressed as mg of gallic acid equivalents (GAEs)/g dry weight (DW) of seed flour.
2.4. Characterization of Condensed Tannins (Phloroglucinolysis) and Monomer Flavan-3-Ols by HPLC
2.5. Antioxidant Activity Tests
2.5.1. DPPH Test
2.5.2. ABTS Test
2.5.3. FRAP Test
2.6. Statistical Analysis
3. Results and Discussion
3.1. Seeds Sampled after Two Days of Maceration
3.2. Seeds Sampled at Racking off
3.3. Comparison between the Two Samplings
3.4. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Falcone Ferreyra, M.L.; Rius, S.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 222, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Wang, D.; Song, X.; Zhang, Y.; Ding, W.; Peng, X.; Wang, R. Natural prenylchalconaringenins and prenylnaringenins as antidiabetic agents: α-glucosidase and α-amylase inhibition and in vivo antihyperglycemic and antihyperlipidemic effects. J. Agric. Food Chem. 2017, 65, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Venturelli, S.; Burkard, M.; Biendl, M.; Lauer, U.M.; Frank, J.; Busch, C. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 2016, 32, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; Vannini, S.; Blasi, F.; Marcotullio, M.C.; Dominici, L.; Villarini, M.; Cossignani, L.; Moretti, M. In Vitro safety/protection assessment of resveratrol and pterostilbene in a human hepatoma cell line (HepG2). Nat. Prod. Commun. 2015, 10, 1403–1408. [Google Scholar]
- Gollucke, A.P.; Peres, R.C.; Odair, A.; Ribeiro, D.A. Polyphenols: A nutraceutical approach against diseases. Recent Pat. Food Nutr. Agric. 2013, 5, 214–219. [Google Scholar] [CrossRef]
- Walker, R.; Tseng, A.; Cavender, G.; Ross, A.; Zhao, Y. Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. J. Food Sci. 2014, 79, S1811–S1822. [Google Scholar] [CrossRef]
- Bouarab Chibane, L.; Degraeve, P.; Ferhout, H.; Bouajila, J.; Oulahal, N. Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 2018, 99, 1457–1474. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Alonso, I.; Jimenez-Escrig, A.; Saura-Calixto, F.; Borderias, A.J. Antioxidant protection of white grape pomace on restructured fish products during frozen storage. LWT 2008, 41, 42–50. [Google Scholar] [CrossRef]
- Guerra-Rivas, C.; Vieira, C.; Rubio, B.; Martínez, B.; Gallardo, B.; Mantecón, A.R.; Lavín, P.; Manso, T. Effects of grape pomace in growing lamb diets compared with vitamin E and grape seed extract on meat shelf life. Meat Sci. 2016, 116, 221–229. [Google Scholar] [CrossRef]
- Garrido, M.D.; Auqui, M.; Marti, N.; Linares, M.B. Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers. LWT 2011, 44, 2238–2243. [Google Scholar] [CrossRef]
- Galanakis, C.M. Handbook of Grape Processing By-Products—Sustainable Solutions; Academic Press Elsevier Inc.: Cambridge, MA, USA, 2017; ISBN 978-0-12-809870-7. [Google Scholar]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Ribereau-Gayon, P.; Stonestreet, E. Dosage de tannins du vin rouge et determination de leur structure. Chim. Anal. 1966, 48, 188–196. [Google Scholar]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Compos. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Ky, I.; Lorrain, B.; Kolbas, N.; Crozier, A.; Teissedre, P.L. Wine By-Products: Phenolic Characterization and Antioxidant Activity Evaluation of Grapes and Grape Pomaces from Six Different French Grape Varieties. Molecules 2014, 19, 482–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ky, I.; Teissedre, P.L. Characterisation of Mediterranean Grape Pomace Seed and Skin Extracts: Polyphenolic Content and Antioxidant Activity. Molecules 2015, 20, 2190–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol Screening of Pomace from Red and White Grape Varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52, 4360–4367. [Google Scholar] [CrossRef]
- Guaita, M.; Bosso, A. Polyphenolic Characterization of Grape Skins and Seeds of Four Italian Red Cultivars at Harvest and after Fermentative Maceration. Foods 2019, 8, 395. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kennedy, J.A.; Devlin, C.; Redhead, M.; Rennaker, C. Effect of early seed removal during fermentation on proanthocyanidin extraction in red wine: A commercial production example. Food Chem. 2008, 107, 1270–1273. [Google Scholar] [CrossRef]
- Guaita, M.; Petrozziello, M.; Panero, L.; Tsolakis, C.; Motta, S.; Bosso, A. Influence of early seeds removal on the physicochemical, polyphenolic, aromatic and sensory characteristics of red wines from Gaglioppo cv. Eur. Food Res. Technol. 2017, 243, 1311–1322. [Google Scholar] [CrossRef]
- Bosso, A.; Panero, L.; Guaita, M.; Marulli, C. La tecnica del délestage nella vinificazione del Montepulciano d’Abruzzo. L’Enologo 2001, 5, 87–96. [Google Scholar]
- Shi, J.; Yu, J.J.; Pohorly, E.; Kakuda, Y. Polyphenols in grape seeds—Biochemistry and functionality. J. Med. Food 2003, 6, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Souquet, J.M.; Cheynier, V.; Moutounet, M. Les proanthocyanidins du raisin. Bull. l’OIV 2000, 73, 601–609. [Google Scholar]
- Sridhar, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH. and ABTS. assays: Estimation models for EC50 using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ozgen, M.R.; Reese, N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Bosso, A.; Guaita, M.; Petrozziello, M. Influence of solvents on the composition of condensed tannins in grape pomace seed extracts. Food Chem. 2016, 207, 162–169. [Google Scholar] [CrossRef]
- Di Stefano, R.; Cravero, M.C.; Gentilini, N. Metodi per lo studio dei polifenoli dei vini. Enotecnico 1989, 25, 83–89. [Google Scholar]
- Kennedy, J.A.; Jones, G.P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef]
- Ducasse, M.A.; Canal-Llauberes, R.M.; Lumley, M.D.; Williams, P.; Souquet, J.M.; Fulcrand, H. Effect of macerating enzyme treatment on the polyphenol and polysaccharide composition of red wines. Food Chem. 2010, 118, 369–376. [Google Scholar] [CrossRef]
- Carmona-Jiménez, Y.; GarcÍa-Moreno, M.V.; Igartuburu, J.M.; Garcia Barroso, C. Simplification of the DPPH assay for estimating the antioxidant activity of wine and wine by-products. Food Chem. 2014, 165, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Hayes, W.A.; Mills, D.S.; Neville, R.F.; Kiddie, J.; Collins, L.M. Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay. Anal. Biochem. 2011, 416, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Asproudi, A.; Piano, F.; Anselmi, G.; Di Stefano, R.; Bertolone, E.; Borsa, D. Proantocyanidin composition and evolution during grape ripening as affected by variety: Nebbiolo and Barbera cv. J. Int. Sci. Vigne Vin 2015, 49, 59–69. [Google Scholar] [CrossRef]
- Di Stefano, R.; Borsa, D.; Ummarino, I.; Gentilini, N.; Follis, R. Evoluzione della composizione polifenolica di uve da cultivars diverse durante la maturazione. L’Enologo 2002, 38, 81–96. [Google Scholar]
- Bonello, F.I. Composti Fenolici Nella Determinazione Dell’origine Varietale Dei Vini. Ph.D. Thesis, Università degli Studi di Torino, Torino, Italy, 2002. [Google Scholar]
- Tkacz, K.; Wojdylo, A.; Nowicka, P.; Turkiewicz, I.; Golis, T. Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids. J. Funct. Food 2019, 56, 353–363. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.L.; Haroutounianet, S.A. Bioactive non-coloured polyphenols content of grapes, wines and vinification byproducts: Evaluation of the antioxidant activities of their extracts. Food Res. Int. 2010, 43, 805–813. [Google Scholar] [CrossRef]
- Giannini, B.; Mulinacci, N.; Pasqua, G.; Innocenti, M.; Valletta, A.; Cecchini, F. Phenolics and antioxidant activity in different cultivars/clones of Vitis vinifera L. seeds over two years. Plant Biosyst. 2016, 150, 1408–1416. [Google Scholar] [CrossRef]
- Negro, C.; Tommasi, L.; Miceli, A. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour. Technol. 2003, 87, 14–41. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Guendez, R.; Kallithraka, S.; Makris, D.P.; Kefalas, P. Determination of low molecular weight polyphenolic constituents in grape (Vitis vinifera sp.) seed extracts: Correlation with antiradical activity. Food Chem. 2005, 89, 1–9. [Google Scholar] [CrossRef]
2 Days of Maceration | Barbera | Grignolino | Nebbiolo | Uvalino | Fcv | Sig | |
---|---|---|---|---|---|---|---|
Total flavonoids (mg/g DW) | 38.8 ± 0.5 a 1 | 93.1 ± 1.4 ab | 70.8 ± 2.0 a | 137.4 ± 3.5 b | 15 | * 2 | |
Total polyphenols (GAE) (mg/g DW) | 24.5 ± 0.4 a | 47.6 ± 1.4 b | 44.5 ± 3.4 b | 60.1 ± 1.0 c | 120 | *** | |
mDP | 4.0 ± 0.03 b | 3.2 ± 0.04 a | 4.0 ± 0.29 b | 3.5 ± 0.07 ab | 14 | * | |
G% | 20.3 ± 0.05 c | 15.2 ± 0.05 a | 19.4 ± 0.44 c | 17.8 ± 0.01 b | 196 | *** | |
Condensed tannins (mg/g DW) | 14.7 ± 0.3 a | 24.1 ± 1.1 bc | 22.4 ± 0.2 b | 26.6 ± 0.5 c | 126 | *** | |
Extention units (%) | EGC | 0.36 ± 0.00 b | 0.22 ± 0.00 a | 0.36 ± 0.03 b | 0.23 ± 0.00 a | 17 | * |
C | 3.57 ± 0.40 b | 2.63 ± 0.15 a | 3.24 ± 0.12 ab | 3.09 ± 0.02 a | 6.3 | * | |
EC | 55.6 ± 0.8 | 55.4 ± 0.5 | 58.3 ± 1.6 | 57.4 ± 0.5 | 4.2 | ns | |
ECG | 16.0 ± 0.6 c | 10.2 ± 0.1 a | 12.9 ± 0.4 b | 10.3 ± 0.1 b | 121 | *** | |
Terminal units (%) | C | 10.1 ± 0.3 a | 13.6 ± 0.2 b | 10.4 ± 1.2 a | 11.2 ± 0.1 ab | 12 | * |
EC | 9.8 ± 0.7 a | 12.9 ± 0.2 b | 8.4 ± 0.7 a | 10.2 ± 0.4 a | 26 | ** | |
ECG | 4.6 ± 0.04 a | 5.0 ± 0.02 b | 6.4 ± 0.08 c | 7.5 ± 0.08 d | 1048 | *** | |
Flavan-3-ols (mg/g DW) | C | 0.28 ± 0.00 a | 1.14 ± 0.17 bc | 1.59 ± 0.10 c | 0.98 ± 0.02 b | 30 | ** |
EC | 0.26 ± 0.01 a | 0.89 ± 0.13 b | 0.69 ± 0.02 b | 0.72 ± 0.02 b | 15 | * |
Racking off | Barbera | Grignolino | Nebbiolo | Uvalino | Fcv | Sig | |
---|---|---|---|---|---|---|---|
Total flavonoids (mg/g DW) | 30.7 ± 0.5 a 1 | 64.9 ± 3.5 b | 35.4 ± 0.6 a | 31.8 ± 0.2 a | 167 | *** 2 | |
Total polyphenols (GAE) (mg/g DW) | 20.0 ± 0.1 a | 37.5 ± 2.8 b | 25.1 ± 0.2 a | 22.8 ± 0.3 a | 60 | *** | |
mDP | 4.8 ± 0.02 b | 4.1 ± 0.02 a | 4.2 ± 0.04 a | 5.0 b ± 0.02 | 50 | *** | |
G% | 21.7 ± 0.2 c | 16.5 ± 0.2 a | 17.9 ± 0.4 b | 17.5 ± 0.3 ab | 144 | *** | |
Condensed tannins (mg/g DW) | 12.6 ± 0.8 a | 18.0 ± 1.8 b | 13.0 ± 0.5 a | 13.1 ± 0.9 a | 11 | * | |
Extention units (%) | EGC | 0.47 ± 0.01 c | 0.27 ± 0.04 a | 0.45 ± 0.01 bc | 0.33 ± 0.04 ab | 20 | ** |
C | 9.4 ± 0.8 b | 3.4 ± 0.1 a | 11.7 ± 1.5 b | 10.4 ± 1.7 b | 19 | ** | |
EC | 51.9 ± 0.7 a | 60.5 ± 0.1 b | 51.8 ± 2.0 a | 57.6 ± 0.2 b | 22 | ** | |
ECG | 17.5 ± 0.2 b | 11.7 ± 0.3 a | 12.5 ± 0.4 a | 11.7 ± 0.3 a | 222 | *** | |
Terminal units (%) | C | 8.5 ± 0.1 a | 10.3 ± 0.1 b | 10.7 ± 0.2 b | 8.0 ± 0.5 a | 54 | *** |
EC | 8.1 ± 0.02 c | 9.1 ± 0.2 d | 7.4 ± 0.08 b | 6.2 ± 0.16 a | 185 | *** | |
ECG | 4.2 ± 0.01 a | 4.8 ± 0.05 b | 5.4 ± 0.02 c | 5.9 ± 0.02 d | 1129 | *** | |
Flavan-3-ols (mg/g DW) | C | 0.18 ± 0.02 a | 0.50 ± 0.07 b | 0.47 ± 0.03 b | 0.20 ± 0.04 a | 31 | ** |
EC | 0.14 ± 0.00 a | 0.38 ± 0.06 b | 0.21 ± 0.02 a | 0.17 ± 0.02 a | 21 | ** |
2 Days | Racking off | F | Sig | Sig Fcv*time | ||
---|---|---|---|---|---|---|
Total flavonoids (mg/g DW) | 85.0 | 40.7 | 66 | *** 1 | *** | |
Total polyphenols (GAE) (mg/g DW) | 44.2 | 26.3 | 454 | *** | *** | |
mDP | 3.6 | 4.6 | 220 | *** | *** | |
G% | 18.2 | 18.4 | 4 | ns | *** | |
Condensed tannins (mg/g DW) | 22.0 | 14.2 | 292 | *** | *** | |
Extention units (%) | EGC | 0.29 | 0.38 | 39 | *** | ns |
C | 3.1 | 8.7 | 168 | *** | *** | |
EC | 56.7 | 55.4 | 4.9 | ns | *** | |
ECG | 12.3 | 13.3 | 41 | *** | ** | |
Terminal units (%) | C | 11.3 | 9.3 | 65 | *** | ** |
EC | 10.3 | 7.7 | 182 | *** | *** | |
ECG | 5.9 | 5.1 | 1303 | *** | *** | |
Flavan-3-ols (mg/g DW) | C | 1.00 | 0.34 | 162 | *** | ** |
EC | 0.64 | 0.23 | 133 | *** | * |
Barbera | Grignolino | Nebbiolo | Uvalino | Fcv | Sig | ||
---|---|---|---|---|---|---|---|
a | ABTSAAE | 43.9 a 1 | 79.6 c | 67.8 b | 92.5 d | 318 | *** 2 |
ABTSTE | 24.9 a | 45.2 c | 38.5 b | 52.5 d | 318 | *** | |
DPPHAAE | 22.6 a | 41.4 b | 40.2 b | 52.7 c | 60.7 | *** | |
DPPHTE | 12.8 a | 23.5 b | 22.8 b | 29.9 c | 60.7 | *** | |
FRAPAAE | 34.4 a | 72.2 c | 58.9 b | 85.3 d | 1242 | *** | |
FRAPTE | 22.4 a | 47.0 c | 38.4 b | 55.6 d | 1242 | *** | |
FRAPFe2+ | 41.5 a | 87.0 c | 51.1 b | 102.9 d | 1242 | *** | |
EC20 | 1.08 c | 0.40 a | 0.64 b | 0.40 a | 487 | *** | |
b | ABTSAAE | 37.8 a 1 | 57.8 b | 33.9 a | 35.8 a | 97 | *** 2 |
ABTSTE | 21.5 a | 32.8 b | 19.2 a | 20.3 a | 97 | *** | |
DPPHAAE | 18.6 a | 30.9 c | 24.8 b | 26.5 b | 78.6 | *** | |
DPPHTE | 10.6 a | 17.6 c | 14.1 b | 15.1 b | 78.6 | *** | |
FRAPAAE | 29.9 a | 48.0 c | 31.5 a | 35.2 b | 220 | *** | |
FRAPTE | 19.5 a | 31.3 c | 20.5 a | 23.0 b | 220 | *** | |
FRAPFe2+ | 36.0 a | 57.9 c | 38.0 a | 42.5 b | 220 | *** | |
EC20 | 1.58 b | 0.69 a | 1.27 b | 1.01 ab | 14.8 | ** |
TF | TP | CT | ABTS | DPPH | FRAP | EC20 | |
---|---|---|---|---|---|---|---|
TF | 1 | ||||||
TP | 0.977 | 1 | |||||
CT | 0.953 | 0.986 | 1 | ||||
ABTS | 0.973 | 0.982 | 0.991 | 1 | |||
DPPH | 0.960 | 0.983 | 0.967 | 0.953 | 1 | ||
FRAP | 0.980 | 0.985 | 0.986 | 0.989 | 0.978 | 1 | |
EC20 | −0.851 | −0.908 | −0.914 | −0.895 | −0.905 | −0.904 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosso, A.; Cassino, C.; Motta, S.; Panero, L.; Tsolakis, C.; Guaita, M. Polyphenolic Composition and In Vitro Antioxidant Activity of Red Grape Seeds as Byproducts of Short and Medium-Long Fermentative Macerations. Foods 2020, 9, 1451. https://doi.org/10.3390/foods9101451
Bosso A, Cassino C, Motta S, Panero L, Tsolakis C, Guaita M. Polyphenolic Composition and In Vitro Antioxidant Activity of Red Grape Seeds as Byproducts of Short and Medium-Long Fermentative Macerations. Foods. 2020; 9(10):1451. https://doi.org/10.3390/foods9101451
Chicago/Turabian StyleBosso, Antonella, Claudio Cassino, Silvia Motta, Loretta Panero, Christos Tsolakis, and Massimo Guaita. 2020. "Polyphenolic Composition and In Vitro Antioxidant Activity of Red Grape Seeds as Byproducts of Short and Medium-Long Fermentative Macerations" Foods 9, no. 10: 1451. https://doi.org/10.3390/foods9101451
APA StyleBosso, A., Cassino, C., Motta, S., Panero, L., Tsolakis, C., & Guaita, M. (2020). Polyphenolic Composition and In Vitro Antioxidant Activity of Red Grape Seeds as Byproducts of Short and Medium-Long Fermentative Macerations. Foods, 9(10), 1451. https://doi.org/10.3390/foods9101451