Assessment of Bioactive Phenolic Compounds and Antioxidant Activity of Blackberry Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Blackberry Wine Samples
2.3. HPLC Determination of Phenolic Acids and Trans-Resveratrol in Blackberry Wine.
2.4. Spectrophotometric Methods
2.4.1. Determination of Total Polyphenol Index (TPI)
2.4.2. Determination of Total Polyphenols—Folin–Ciocalteu Index (TPH)
2.4.3. Determination of Total Flavonoids
2.4.4. Determination of Total Tannins
2.4.5. Determination of Total Monomeric Anthocyanins (ACY)
2.4.6. DPPH Method
2.4.7. ABTS Method
2.4.8. Reducing Power Assay (RPA)
2.4.9. Molybdenum (MoT) Test
2.5. Statistical Methods
3. Results and Discussion
3.1. Phenolics in Blackberry Wine
3.2. Antioxidant Activity of Blackberry Wines
3.3. Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Velić, D.; Velić, N.; Amidžić Klarić, D.; Petravić Tominac, V.; Klarić, I.; Banović, M. Reinventing the traditional products—The case of blackberry wine. Food Health Dis. Sci. Prof. J. Nutr. Diet. 2019, 8, 58–66. Available online: https://hrcak.srce.hr/221977 (accessed on 15 January 2020).
- Amidžić Klarić, D.; Klarić, I.; Velić, D.; Vedrina-Dragojević, I. Evaluation of mineral and heavy metal content in Croatian blackberry wines. Czech J. Food Sci. 2011, 29, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Amidžić Klarić, D.; Klarić, I.; Mornar, A. Polyphenol content and antioxidant activity of commercial blackberry wines from Croatia: The application of multivariate analysis for the geographical origin differentiation. J. Food Nutr. Res. 2011, 50, 199–209. [Google Scholar]
- Mudnic, I.; Budimir, D.; Modun, D.; Gunjaca, G.; Generalic, I.; Skroza, D.; Katalinic, V.; Ljubenkov, I.; Boban, M. Antioxidant and vasodilatory effects of blackberry and grape wines. J. Med. Food 2012, 15, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ljevar, A.; Ćurko, N.; Tomašević, M.; Radošević, K.; Srček, V.G.; Ganić, K.K. Phenolic composition, antioxidant capacity and in vitro cytotoxicity assessment of fruit wines. Food Technol. Biotechnol. 2016, 54, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, H.P.V.; Clegg, S. Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentrations in wines of different fruit sources. J. Food Compost. Anal. 2007, 20, 133–137. [Google Scholar] [CrossRef]
- Lim, J.W.; Hwang, H.J.; Shin, C.S. Polyphenol compounds and anti-inflammatory activities of Korean black raspberry (Rubus coreanus Miquel) wines produced from juice supplemented with pulp and seed. J. Agric. Food Chem. 2012, 60, 5121–5127. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Mejia, E.G. Comparison of chemical composition and antioxidant capacity of commercially available blueberry and blackberry wines in Illinois. J. Food Sci. 2012, 71, C141–C148. [Google Scholar] [CrossRef]
- Čakar, U.; Petrović, A.; Živković, M.; Vajs, V.; Milovanović, M.; Zeravik, J.; Djordjevic, B. Phenolic profile of some fruit wines and their antioxidant properties. Chem. Ind. 2016, 70, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Maksimović, V.; Dragišić Maksimović, J. Chapter 4—Composition, nutritional, and therapeutic values of fruit and berry wines. In Science and Technology of Fruit Wine Production, 1st ed.; Kosseva, M.R., Joshi, V.K., Panesar, P.S., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 177–226. [Google Scholar]
- Dubick, M.A. Chapter 4—Wine polyphenols and protection from atherosclerosis and ischemic heart disease: Drink to your health? In Phytochemicals in Nutrition and Health, 1st ed.; Meskin, M.S., Bidlack, W.R., Davies, A.J., Omayer, S.T., Eds.; CRC Press LLC: Boca Raton, FL, USA, 2002; pp. 41–60. [Google Scholar]
- Shi, J.; Yu, J.; Pohorly, J.E.; Kakuda, Y. Polyphenolics in grape seeds—Biochemistry and functionality. J. Med. Food 2003, 6, 291–299. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Health aspects of functional grape seed constituents. Trends Food Sci. Tech. 2004, 15, 422–433. [Google Scholar] [CrossRef]
- Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef]
- Velić, D.; Amidžić Klarić, D.; Velić, N.; Klarić, I.; Petravić Tominac, V.; Mornar, A. Chemical constituents of fruit wines as descriptors of their nutritional, sensorial and health-related properties. In Descriptive Food Science, 1st ed.; Díaz, V., García-Gimeno, A., María, R., Eds.; IntechOpen: London, UK, 2018; pp. 1–33. [Google Scholar]
- Čakar, U.; Petrović, A.; Pejin, B.; Čakar, M.; Živković, M.; Vajs, V.; Đorđev, B. Fruit as a substrate for a wine: A case study of selected berry and drupe fruit wines. Sci. Hortic. 2019, 244, 42–49. [Google Scholar] [CrossRef]
- Vinković Vrček, I.; Bojić, M.; Žuntar, I.; Mendaš, G.; Medić-Šarić, M. Phenol content, antioxidant activity and metal composition of Croatian wines deriving from organically and conventionally grown grapes. Food Chem. 2011, 124, 354–361. [Google Scholar] [CrossRef]
- Vitali Čepo, D.; Pelajić, M.; Vinković Vrček, I.; Krivohlavek, A.; Žuntar, I.; Karoglan, M. Differences in the levels of pesticides, metals, sulphites and ochratoxin A between organically and conventionally produced wines. Food Chem. 2018, 246, 394–403. [Google Scholar] [CrossRef]
- Amidžić Klarić, D.; Klarić, I.; Velić, D.; Velić, N.; Marček, T. Evaluation of quercetin content, color and selected physico-chemical quality parameters of Croatian blackberry wines. Pol. J. Food Nutr. Sci. 2017, 67, 75–83. [Google Scholar] [CrossRef]
- Amidžić Klarić, D.; Klarić, I.; Mornar, A.; Nigović, B. Evaluation of volatile compound and food additive contents in blackberry wine. Food Control 2015, 50, 714–721. [Google Scholar] [CrossRef]
- Amidžić Klarić, D.; Klarić, I.; Mornar, A.; Velić, D.; Velić, N. Blackberry wines mineral and heavy metal content determination after dry ashing: Multivariate data analysis as a tool for fruit wine quality control. Int. J. Food Sci. Nutr. 2016, 67, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Official Journal of the European Union. Commission Regulation (EC) No 889/2008 of 5 September 2008 Laying Down Detailed Rules for Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Detailed Rules on Production, Labelling and Control. Available online: https://eur-lex.europa.eu/eli/reg/2008/889/oj (accessed on 17 May 2019).
- Official Journal of the European Union. Commission Implementing Regulation (EU) No 203/2012 of 8 March 2012 Amending Regulation (EC) No 889/2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007, as Regards Detailed Rules on Organic Wine. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012R0203 (accessed on 17 May 2019).
- Gambelli, L.; Santaroni, G.P. Polyphenols content in some Italian red wines of different geographical origins. J. Food Compost. Anal. 2004, 17, 613–618. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH Topic Q 2 (R1): Validation of Analytical Procedures: Text and Methodology; European Medicines Agency: London, UK, 2005.
- The International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis, 2007 ed.; The International Organisation of Vine and Wine: Paris, France, 2008. [Google Scholar]
- Ough, C.S.; Amerine, M.A. Methods for Analysis of Musts and Wines, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1988; pp. 196–221. [Google Scholar]
- Zoecklein, B.; Fugelsang, K.; Gump, B.; Nury, F. Wine Analysis and Production, 1st ed.; Chapman & Hall: New York, NY, USA, 1995; pp. 115–151. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 1988, 36, 2090–2207. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction- antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–37. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Harbertson, J.; Spayd, S. Measuring phenolics in the winery. Am. J. Enol. Vitic. 2006, 57, 280–288. [Google Scholar]
- Kalkan Yildirim, H. Evaluation of colour parameters and antioxidant activities of fruit wines. Int. J. Food Sci. Nutr. 2006, 57, 47–63. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Kovačević Ganić, K.; Galić, I.; Dragović-Uzelac, V.; Savić, Z. The influence of processing on physico-chemical parameters, phenolics, antioxidant capacity and sensory attributes of elderberry (Sambucus nigra L.) fruit wine. Croat. J. Food Technol. Biotechnol. Nutr. 2012, 7, 9–13. Available online: https://hrcak.srce.hr/82722 (accessed on 25 January 2020).
- Mudnic, I.; Modun, D.; Rastija, V.; Vukovic, J.; Brizic, I.; Katalinic, V.; Kozina, B.; Medic-Saric, M.; Boban, M. Antioxidative and vasodilatory effects of phenolic acids in wine. Food Chem. 2010, 119, 1205–1210. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Törrönen, A.R. Content of favonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Res. Int. 2000, 33, 517–524. [Google Scholar] [CrossRef]
- Carbonaro, M.; Mattera, M. Polyphenoloxidase activity and polyphenol levels in organically and conventionally grown peach (Prunus persica L., cv. Regina bianca) and pear (Pyrus communis L., cv. Williams). Food Chem. 2001, 72, 419–424. [Google Scholar] [CrossRef]
- Robards, K.; Prenzler, P.D.; Tucker, G.; Swatsitang, P.; Glover, W. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 1999, 66, 401–436. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Gerogiannaki-Christopoulou, M.; Athanasopoulos, P.; Kyriakidis, N.; Gerogiannaki, I.A.; Spanos, M. Trans-Resveratrol in wines from the major Greek red and white grape varieties. Food Control 2006, 17, 700–706. [Google Scholar] [CrossRef]
- Lamuela-Raventos, R.M.; Romero-Perez, A.; Waterhouse, A.L.; Torre-Boronat, M.C. Direct HPLC analysis of cis- and trans-resveratrol and piceid isomers in Spanish red Vitis vinifera wines. J. Agric. Food Chem. 1995, 43, 281–283. [Google Scholar] [CrossRef]
- Tinttunen, S.; Lehtonen, P. Distinguishing organic wines from normal wines on the basis of concentrations of phenolic compounds and spectral data. Eur. Food Res. Technol. 2001, 212, 390–394. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Selvi, T.; Sakariah, K.K. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int. 2003, 36, 117–122. [Google Scholar] [CrossRef]
- Baydar, N.G.; Özkan, G.; Yaşar, S. Evaluation of the antiradical and antioxidant potential of grape extracts. Food Control 2007, 18, 1131–1136. [Google Scholar] [CrossRef]
- Piljac-Žegarac, J.; Martinez, S.; Valek, L.; Stipčević, T.; Kovačević-Ganić, K. Correlation between the phenolic content and DPPH radical scavenging activity of selected Croatian wines. Acta Aliment. 2007, 36, 185–193. [Google Scholar] [CrossRef]
- Ortiz, J.; Marín-Arroyo, M.R.; Noriega-Domínguez, M.J.; Navarro, M.; Arozarena, I. Color, phenolics, and antioxidant activity of blackberry (Rubus glaucus Benth.), blueberry (Vaccinium floribundum Kunth.), and apple wines from Ecuador. J. Food Sci. 2013, 78, 985–993. [Google Scholar] [CrossRef] [PubMed]
Parameter | Gallic Acid | Chlorogenic Acid | Caffeic Acid | p-Coumaric Acid | Cinnamic Acid | trans-Resveratrol |
---|---|---|---|---|---|---|
tR [min] | 9.67 | 37.81 | 39.45 | 52.61 | 99.20 | 89.33 |
λmax [nm] | 272.3 | 328.2 | 325.4 | 311.1 | 280.3 | 307.2 |
λquant [nm] | 280 | 323 | 323 | 313 | 280 | 280 |
Calibration interval [mg/L] | 1–40 | 0.25–10 | 0.50–20 | 0.50–20 | 0.50–20 | 0.50–20 |
Calibration line (n = 6) | y = 1.0764x − 0.2043 | y = 0.9439x − 0.1605 | y = 1.9619x − 0.1292 | y = 2.9848x − 0.0560 | y = 3.2168x − 0.0040 | y = 1.7736x − 0.2210 |
Correlation coefficient (n = 5) | 0.9998 | 0.9990 | 0.9990 | 0.9991 | 0.9994 | 0.9996 |
LOD [mg/L] | 0.071 | 0.064 | 0.096 | 0.038 | 0.046 | 0.135 |
LOQ [mg/L] | 0.235 | 0.213 | 0.165 | 0.084 | 0.101 | 0.450 |
Intra-day precision standard solution RSD [%] (n = 10) | 0.64 | 1.27 | 1.38 | 1.51 | 0.92 | 1.12 |
Intra-day precision BW sample RSD [%] (n = 10) | 0.69 | 1.47 | 1.60 | 1.60 | - | 1.89 |
Parameter | All Samples | Conventional Group | Organic Group | ANOVA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Range | RSD (%) | Mean ± SD | Median | Range of Quantified Values | Interquartile | Mean ± SD | Median | Range of Quantified Values | Interquartile | F | p | |
TPI | 33.1–89.5 | 0.01–0.83 | 55.9 ± 14.0 | 56.2 | 33.1–75.2 | 47.8–68.0 | 69.3 ± 14.1 | 73.0 | 44.4–89.5 | 59.3–78.0 | 3.3849 | 0.0887 |
TPH (mg/L) | 868–2581 | 0.02–9.26 | 1772 ± 469 | 1965 | 868–2202 | 1455–2075 | 2136 ± 466 | 2206 | 1280–2581 | 1838–2541 | 2.2599 | 0.1567 |
Total tannins (mg/L) | 197–1158 | – 1 | 538 ± 325 | 491 | 202–1128 | 307–804 | 583 ± 300 | 534 | 197–1158 | 362–756 | 0.0779 | 0.7845 |
Nontannins (mg/L) | 666–2117 | 0.05-5.70 | 1234 ± 307 | 1271 | 666–1568 | 1074–1474 | 1404 ± 347 | 1437 | 666–2117 | 1348–1751 | 3.4938 | 0.0843 |
Total flavonoids (mg/L) | 161–774 | – 1 | 405 ± 247 | 287 | 161–774 | 187–699 | 491 ± 114 | 497 | 307–685 | 412–563 | 0.7745 | 0.3948 |
Nonflavonoids (mg/L) | 681–2037 | 0.05–5.27 | 1367 ± 387 | 1452 | 681–1804 | 1168–1804 | 1645 ± 415 | 1696 | 842–2037 | 1450–2008 | 1.7871 | 0.2042 |
ACY (mg/L) | 5.07–217 | 0.41–5.46 | 76.2 ± 87.4 | 24.2 | 5.34–217 | 7.11–168 | 53.5 ± 29.5 | 49.7 | 5.07–97.9 | 33.6–79.6 | 0.4825 | 0.4995 |
Gallic acid (mg/L) | 23.7–118 | 0.10–4.84 | 59.7 ± 40.7 | 31.4 | 23.7–116 | 26.5–101.2 | 77.9 ± 26.5 | 72.4 | 49.9–118 | 52.2–104 | 1.0816 | 0.3173 |
Chlorogenic acid (mg/L) | 1.23–8.32 | 0.34–2.93 | 3.46 ± 1.31 | 3.14 | 1.67–5.15 | 2.23–4.96 | 3.59 ± 2.09 | 3.21 | 1.23-8.32 | 2.47–3.93 | 0.0209 | 0.8872 |
Caffeic acid (mg/L) | 1.25–5.05 | 0.07–3.63 | 2.21 ± 0.84 | 2.05 | 1.25–3.33 | 1.47–3.08 | 3.73 ± 1.22 | 4.09 | 1.40–5.05 | 2.84–4.75 | 7.6597 | 0.0159 |
p-Coumaric acid (mg/L) | 0.331–4.06 | 0.22–4.41 | 0.814 ± 0.426 | 0.660 | 0.331–1.21 | 0.361–1.21 | 2.40 ± 1.23 | 2.39 | 0.881–4.06 | 1.25–3.41 | 10.3478 | 0.0067 |
trans-Resveratrol (mg/L) | 0.415–4.00 | 0.24–4.93 | 1.30 ± 0.75 | 1.32 | 0.415–2.55 | 0.666–1.82 | 1.73 ± 1.10 | 1.51 | 0.722–4.00 | 0.859–2.28 | 0.7566 | 0.4002 |
Cinnamic acid | <LOD (0.046 mg/L) | |||||||||||
Antioxidant activity | ||||||||||||
DPPH (mg/L) | 4.39–6.69 | 0.19–8.67 | 5.43 ± 0.65 | 5.62 | 4.53–6.27 | 4.57–5.84 | 5.20 ± 0.80 | 4.91 | 4.39–6.69 | 4.67–5.92 | 0.3713 | 0.5528 |
ABTS (mg/L) | 1.23–7.77 | 0.45–7.98 | 4.95 ± 1.60 | 5.38 | 2.81–7.00 | 2.82–5.95 | 4.05 ± 2.15 | 4.20 | 1.23–7.77 | 2.19–5.46 | 0.8224 | 0.3809 |
RPA 2 | 0.44–1.36 | 0.02–5.69 | 0.61 ± 0.33 | 0.46 | 0.45–1.36 | 0.44–0.56 | 0.51 ± 0.45 | 0.51 | 0.44–0.57 | 0.46–0.54 | 0.7961 | 0.3885 |
MoT (mg/L) | 2.99–9.87 | 0.03–7.44 | 5.95 ± 2.13 | 5.60 | 3.79–9.87 | 3.80–7.10 | 5.25 ± 2.37 | 4.71 | 2.99–9.39 | 3.10–7.09 | 0.3637 | 0.5569 |
Parameter | r | p | |
---|---|---|---|
Non–flavonoids | TPI | 0.9486 | p = 0.000 |
Non–flavonoids | TPH | 0.9281 | p = 0.000 |
TPH | TPI | 0.8961 | p = 0.000 |
Non–tannins | TPI | 0.8851 | p = 0.000 |
Non–flavonoids | Nontannins | 0.8707 | p = 0.000 |
Non–tannins | TPH | 0.7890 | p = 0.000 |
p-Coumaric acid | TPI | 0.7702 | p = 0.001 |
p-Coumaric acid | Non–tannins | 0.7655 | p = 0.001 |
p-Coumaric acid | Caffeic acid | 0.7580 | p = 0.001 |
Caffeic acid | Non–tannins | 0.7567 | p = 0.001 |
Total flavonoids | Total tannins | 0.7493 | p = 0.001 |
DPPH | TPI | −0.7443 | p = 0.001 |
MoT | Total tannins | 0.7423 | p = 0.002 |
DPPH | Non–flavonoids | −0.7110 | p = 0.003 |
ABTS | Non–tannins | −0.7077 | p = 0.003 |
Caffeic acid | Gallic acid | 0.7060 | p = 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amidžić Klarić, D.; Klarić, I.; Mornar, A.; Velić, N.; Velić, D. Assessment of Bioactive Phenolic Compounds and Antioxidant Activity of Blackberry Wines. Foods 2020, 9, 1623. https://doi.org/10.3390/foods9111623
Amidžić Klarić D, Klarić I, Mornar A, Velić N, Velić D. Assessment of Bioactive Phenolic Compounds and Antioxidant Activity of Blackberry Wines. Foods. 2020; 9(11):1623. https://doi.org/10.3390/foods9111623
Chicago/Turabian StyleAmidžić Klarić, Daniela, Ilija Klarić, Ana Mornar, Natalija Velić, and Darko Velić. 2020. "Assessment of Bioactive Phenolic Compounds and Antioxidant Activity of Blackberry Wines" Foods 9, no. 11: 1623. https://doi.org/10.3390/foods9111623
APA StyleAmidžić Klarić, D., Klarić, I., Mornar, A., Velić, N., & Velić, D. (2020). Assessment of Bioactive Phenolic Compounds and Antioxidant Activity of Blackberry Wines. Foods, 9(11), 1623. https://doi.org/10.3390/foods9111623