Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products
Abstract
:1. The Perspective of the Sous-Vide Technique
2. Sous-Vide Application for Vegetable Processing
2.1. Changes in Physicochemical Properties and Sensory Quality of Sous-Vide Vegetable Products
2.2. Changes in Nutrients and Phytochemicals of Sous-Vide Vegetables
2.3. Microbiological Concerns of Sous-Vide Vegetable Products
3. Sous-Vide Applications in Seafood Processing
3.1. Changes in Physicochemical Properties and Sensory Quality of Sous-Vide Seafood Products
3.2. Changes in Nutrients and Phytochemicals of Sous-Vide Seafood Products
3.3. Microbiological Concerns of Sous-Vide Seafood Product
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nyati, H. An evaluation of the effect of storage and processing temperatures on the microbiological status of sous vide extended shelf-life products. Food Control 2000, 11, 471–476. [Google Scholar] [CrossRef]
- Todd, E. Foodborne Diseases. Overview of Emerging Food Technologies. In Encyclopedia of Food Safety; Motarjemi, Y., Moy, G., Todd, E., Eds.; Academic Press: London, UK, 2014; Volume 1, pp. 253–261. [Google Scholar]
- Yıkmış, S.; Aksu, H.; Gökçe Çöl, B.; Demirçakmak, L. Evaluation of sous-vide technology in gastronomy. Int. J. Agric. Life Sci. 2018, 4, 226–231. [Google Scholar] [CrossRef]
- García-Linares, M.C.; Gonzalez-Fandos, E.; García-Fernàndez, M.C.; García-Arias, M.T. Microbiological and nutritional quality of sous vide or traditionally processed fish: Influence of fat content. J. Food Qual. 2004, 27, 371–387. [Google Scholar] [CrossRef]
- Stringer, S.C.; Fernandes, M.A.; Metris, A. Safety of Sous-Vide Foods: Feasibility of Extending Combase to Describe the Growth/Survival/Death Response of Bacterial Foodborne Pathogens between 40 °C and 60 °C; Institute of Food Research Report for Foods Standards Agency; Foods Standards Agency: London, UK, 2012.
- Baldwin, D.E. Sous vide cooking: A review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Rustad, T. The influence of cooking parameters and chilled storage time on quality of sous-vide Atlantic mackerel (Scomber scombrus). J. Aquat. Food Prod. Technol. 2019, 28, 505–518. [Google Scholar] [CrossRef]
- Stringer, S.C.; Metris, A. Predicting bacterial behaviour in sous vide food. Int. J. Gastron. Food Sci. 2018, 13, 117–128. [Google Scholar] [CrossRef]
- Vaudagna, S.R.; Sanchez, G.; Neira, M.S.; Insani, E.M.; Picallo, A.B.; Gallinger, M.M.; Lasta, J.A. Sous vide cooked beef muscles: Effects of low temperature-long time (LT-LT) treatments on their quality characteristics and storage stability. Int. J. Food Sci. Tech. 2002, 37, 425–441. [Google Scholar] [CrossRef]
- Dominguez-Hernandez, E.; Salaseviciene, A.; Ertbjerg, P. Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Sci. 2018, 143, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.; Boulaaba, A.; Pingen, S.; Krischek, C.; Klein, G. Low temperature cooking of pork meat—Physicochemical and sensory aspects. Meat Sci. 2016, 118, 82–88. [Google Scholar] [CrossRef]
- Christensen, L.; Gunvig, A.; Tørngren, M.A.; Aaslyng, M.D.; Knøchel, S.; Christensen, M. Sensory characteristics of meat cooked for prolonged times at low temperature. Meat Sci. 2012, 90, 485–489. [Google Scholar] [CrossRef]
- Kehlet, U.; Mitra, B.; Ruiz Carrascal, J.; Raben, A.; Aaslyng, M. The satiating properties of pork are not affected by cooking methods, sousvide holding time or mincing in healthy men—A randomized cross-over meal test study. Nutrients 2017, 9, 941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, J.; Calvarro, J.; Sánchez del Pulgar, J.; Roldán, M. Science and technology for new culinary techniques. J. Culin. Sci. Technol. 2013, 11, 66–79. [Google Scholar] [CrossRef]
- Stringer, S.C.; Metris, A. Spore forming pathogens and sous vide food safety. In Sous Vide and Cook-Chill Processing for the Food Industry, 2nd ed.; Ghazala, S., Ed.; Springer: New York, NY, USA, 2018. [Google Scholar]
- Kilibarda, N.; Brdar, I.; Baltic, B.; Markovic, V.; Mahmutovic, H.; Karabasil, N.; Stanisic, S. The safety and quality of sous vide food. Meat Technol. 2018, 59, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Carlin, F. Microbiology of Sous-vide Products. In Encyclopedia Food Microbiology; Robinson, R., Batt, C., Batt, C.A., Eds.; Academic Press: London, UK, 2014; Volume 2, pp. 621–626. [Google Scholar]
- Garrett, E.H. Fresh-cut produce. In Principles and Applications of Modified Atmosphere Packaging of Foods; Blakistone, B.A., Ed.; Aspen Publishers: Gaithersburg, Maryland, 1999; pp. 125–134. [Google Scholar] [CrossRef]
- Gazzala, S. Developments in cook-chill and sous-vide processing. In Improving the Thermal Processing of Foods; Richardson, P., Ed.; Woodhead Publishing: Cambridge, UK, 2004; pp. 152–173. [Google Scholar]
- Iborra-Bernad, C.; Tárrega, A.; García-Segovia, P.; Martínez-Monzó, J. Advantages of sous-vide cooked red cabbage: Structural, nutritional and sensory aspects. LWT-Food Sci. Technol. 2014, 56, 451–460. [Google Scholar] [CrossRef]
- Guillén, S.; Mir-Bel, J.; Oria, R.; Salvador, M.L. Influence of cooking conditions on organoleptic and health-related properties of artichokes, green beans, broccoli and carrots. Food Chem. 2017, 217, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Kosewski, G.; Górna, I.; Bolesławska, I.; Kowalówka, M.; Więckowska, B.; Główka, A.K.; Morawska, A.; Jakubowski, K.; Dobrzyńska, M.; Miszczuk, P.; et al. Comparison of antioxidative properties of raw vegetables and thermally processed ones using the conventional and sous-vide methods. Food Chem. 2018, 240, 1092–1096. [Google Scholar] [CrossRef]
- Gonnella, M.; Durante, M.; Caretto, S.; D’Imperio, M.; Renna, M. Quality assessment of ready-to-eat asparagus spears as affected by conventional and sous-vide cooking methods. LWT 2018, 92, 161–168. [Google Scholar] [CrossRef]
- Amoroso, L.; Rizzo, V.; Muratore, G. Nutritional values of potato slices added with rosemary essential oil cooked in sous vide bags. Int. J. Gastron. Food Sci. 2019, 15, 1–5. [Google Scholar] [CrossRef]
- Sila, D.N.; Smout, C.; Elliot, F.; Loey, A.V.; Hendrickx, M. Non-enzymatic de-polymerization of carrot pectin: Toward a better understanding of carrot texture during thermal processing. J. Food Sci. 2006, 71, 1–9. [Google Scholar] [CrossRef]
- Fraeye, I.; Deroeck, A.; Duvetter, T.; Verlent, I.; Hendrickx, M.; Vanloey, A. Influence of pectin properties and processing conditions on thermal pectin degradation. Food Chem. 2007, 105, 555–563. [Google Scholar] [CrossRef]
- Baldwin, D.E. Sous Vide for the Home Cook; Paradox Press LLC: New York, NY, USA, 2010. [Google Scholar]
- Martínez-Hernández, G.B.; Artés-Hernández, F.; Gómez, P.A.; Artés, F. Quality changes after vacuum-based and conventional industrial cooking of kailan-hybrid broccoli throughout retail cold storage. LWT-Food Sci. Technol. 2013, 50, 707–714. [Google Scholar] [CrossRef]
- dos Reis, L.C.R.; de Oliveira, V.R.; Hagen, M.E.K.; Jablonski, A.; Flôres, S.H.; de Oliveira Rios, A. Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1) grown in an organic system. Food Chem. 2015, 172, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Renna, M.; Gonnella, M.; Giannino, D.; Santamaria, P. Quality evaluation of cook-chilled chicory stems (Cichorium intybus L., Catalogna group) by conventional and sous vide cooking methods. J. Sci. Food Agr. 2014, 94, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Lau, M.H.; Tang, J.; Swanson, B.G. Kinetics of textural and color changes in green asparagus during thermal treatments. J. Food Eng. 2000, 45, 231–236. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Butler, F. Effect of water immersion and sous-vide processing on antioxidant activity, phenolic, carotenoid content and color of carrot disks. J. Food Process Preserv. 2010, 34, 1009–1023. [Google Scholar] [CrossRef]
- Trejo Araya, X.I.; Smale, N.; Zabaras, D.; Winley, E.; Forde, C.; Stewart, C.M.; Mawson, A.J. Sensory perception and quality attributes of high pressure processed carrots in comparison to raw, sous-vide and cooked carrots. Innov. Food Sci. Emerg. 2009, 10, 420–433. [Google Scholar] [CrossRef]
- Iborra-Bernad, C.; Philippon, D.; García-Segovia, P.; Martínez-Monzó, J. Optimizing the texture and color of sous-vide and cook-vide green bean pods. LWT-Food Sci. Technol. 2013, 51, 507–513. [Google Scholar] [CrossRef]
- Petersen, M.A. Influence of sous vide processing, steaming and boiling on vitamin retention and sensory quality in broccoli florets. Z. Für Lebensm. Unters. Forsch. 1993, 197, 375–380. [Google Scholar] [CrossRef]
- Rinaldi, M.; Dall’Asta, C.; Meli, F.; Morini, E.; Pellegrini, N.; Gatti, M.; Chiavaro, E. Physicochemical and microbiological quality of sous-vide-processed carrots and brussels sprouts. Food Bioprocess Tech. 2012, 6, 3076–3087. [Google Scholar] [CrossRef]
- Chiavaro, E.; Mazzeo, T.; Visconti, A.; Manzi, C.; Fogliano, V.; Pellegrini, N. Nutritional quality of sous vide cooked carrots and brussels sprouts. J. Agr. Food Chem. 2012, 60, 6019–6025. [Google Scholar] [CrossRef]
- Kalt, W. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 2005, 70, R11–R19. [Google Scholar] [CrossRef]
- Štěrbová, L.; Hlásná Čepková, P.; Viehmannová, I.; Huansi, D.C. Effect of thermal processing on phenolic content, tocopherols and antioxidant activity of Sacha inchi kernels. J. Food Process Preserv. 2017, 41, 1–8. [Google Scholar] [CrossRef]
- Baardseth, P.; Bjerke, F.; Martinsen, B.K.; Skrede, G. Vitamin C, total phenolics and antioxidative activity in tip-cut green beans (Phaseolus vulgaris) and swede rods (Brassica napus var.napobrassica) processed by methods used in catering. J. Sci. Food Agr. 2010, 90, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Lafarga, T.; Bobo, G.; Viñas, I.; Zudaire, L.; Simó, J.; Aguiló-Aguayo, I. Steaming and sous-vide: Effects on antioxidant activity, vitamin C, and total phenolic content of Brassica vegetables. Int. J. Gastron. Food Sci. 2018, 13, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Lafarga, T.; Viñas, I.; Bobo, G.; Simó, J.; Aguiló-Aguayo, I. Effect of steaming and sous vide processing on the total phenolic content, vitamin C and antioxidant potential of the genus Brassica. Innov. Food Sci. Emerg. 2018, 47, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Davey, M.W.; Montagu, M.V.; Inzé, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I.J.J.; Strain, J.J.; Favell, D.; Fletcher, J. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agr. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, S.; Shi, R.; Yu, J.; Li, S.; Tao, G.; Tsao, R.; Zhang, J.; Zhang, L. LC-MS/MS for simultaneous detection and quantification of Amadori compounds in tomato products and dry foods and factors affecting the formation and antioxidant activities. J. Food Sci. 2020, 85, 1007–1017. [Google Scholar] [CrossRef]
- Moon, J.-K.; Shibamoto, T. Antioxidant assays for plant and food components. J. Agr. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef]
- Hudson, J.A. Maximum Growth Temperatures of Foodborne Pathogens and Appropriate Temperatures for Hot Holding; Institute of Environmental Science and Research: Christchurch, New Zealand, 2011. [Google Scholar]
- Azi, F.; Odo, M.O.; Okorie, P.A.; Njoku, H.A.; Nwobasi, V.N.; David, E.; Onu, T.C. Heavy metal and microbial safety assessment of raw and cooked pumpkin and Amaranthus viridis leaves grown in Abakaliki, Nigeria. Food Sci. Nutr. 2018, 6, 1537–1544. [Google Scholar] [CrossRef] [Green Version]
- Balali, G.I.; Yar, D.D.; Afua Dela, V.G.; Adjei-Kusi, P. Microbial contamination, an increasing threat to the consumption of fresh fruits and vegetables in today’s world. Int. J. Microbiol. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Hyytiä-Trees, E.; Skyttä, E.; Mokkila, M.; Kinnunen, A.; Lindström, M.; Lähteenmäki, L.; Ahvenainen, R.; Korkeala, H. Safety evaluation of sous vide-processed products with respect to nonproteolytic Clostridium botulinum by use of challenge studies and predictive microbiological models. Appl. Environ. Microb. 2000, 66, 223–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putnik, P.; Pavlić, B.; Šojić, B.; Zavadlav, S.; Žuntar, I.; Kao, L.; Kitonić, D.; Kovačević, D.B. Innovative hurdle technologies for the preservation of functional fruit juices. Foods 2020, 9, 699. [Google Scholar] [CrossRef]
- Rizzo, V.; Amoroso, L.; Licciardello, F.; Mazzaglia, A.; Muratore, G.; Restuccia, C.; Lombardo, S.; Pandino, G.; Strano, M.G.; Mauromicale, G. The effect of sous vide packaging with rosemary essential oil on storage quality of fresh-cut potato. LWT 2018, 94, 111–118. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, N.; Fu, Y.-J.; Wang, W.; Luo, M.; Zhao, C.-J.; Zu, Y.-G.; Liu, X.-L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef]
- Sebastiá, C.; Soriano, J.M.; Iranzo, M.; Rico, H. Microbiological quality of sous vide cook-chill preserved food at different shelf life. J. Food Process Preserv. 2010, 34, 964–974. [Google Scholar] [CrossRef]
- Guerzoni, M.E.; Gianotti, A.; Corbo, M.R.; Sinigaglia, M. Shelf-life modelling for fresh-cut vegetables. Postharvest Biol. Technol. 1996, 9, 195–207. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Nail, B.V.; Adler, B.B.; Clavero, M.R.S. Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes, and lettuce. J. Food Prot. 1998, 61, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.M.; Rico, H.; Moltó, J.C.; Mañes, J. Assessment of the microbiological quality and wash treatments of lettuce served in University restaurants. Int. J. Food Microbiol. 2000, 58, 123–128. [Google Scholar] [CrossRef]
- Marin, M.E.; De La Rosa, M.C.; Cornejo, I. Enterotoxigenicity of Staphylococcus strains isolated from Spanish dry-cured hams. Appl. Environ. Microb. 1992, 58, 1067–1069. [Google Scholar] [CrossRef] [Green Version]
- Soriano, J.M.; Font, G.; Rico, H.; MoltÓ, J.C.; MaÑEs, J. Incidence of enterotoxigenic staphylococci and their toxins in foods. J. Food Prot. 2002, 65, 857–860. [Google Scholar] [CrossRef]
- Bennett, R.W. Atypical toxigenic staphylococcus and non-staphylococcus aureus species on the horizon? An update. J. Food Prot. 1996, 59, 1123–1126. [Google Scholar] [CrossRef]
- Church, I.J.; Parsons, A.L. Review: Sous vide cook-chill technology. Int. J. Food Sci. Technol. 1993, 28, 563–574. [Google Scholar] [CrossRef]
- Bolton, D.J.; McMahon, C.M.; Doherty, A.M.; Sheridan, J.J.; McDowell, D.A.; Blair, I.S.; Harrington, D. Thermal inactivation of Listeria monocytogenes and Yersinia enterocolitica in minced beef under laboratory conditions and in sous-vide prepared minced and solid beef cooked in a commercial retort. J. Appl. Microbiol. 2000, 88, 626–632. [Google Scholar] [CrossRef]
- Code of Practice for Sous Vide Catering System; SVAC (Ed.) Sous Vide Advisory Committee: Tetbury, Gloucestershire, UK, 1991. [Google Scholar]
- Rinaldi, M.; Caligiani, A.; Borgese, R.; Palla, G.; Barbanti, D.; Massini, R. The effect of fruit processing and enzymatic treatments on pomegranate juice composition, antioxidant activity and polyphenols content. LWT-Food Sci. Technol. 2013, 53, 355–359. [Google Scholar] [CrossRef]
- Florkiewicz, A.; Berski, W. Application of sous vide method as an alternative to traditional vegetable cooking to maximize the retention of minerals. J. Food Process Preserv. 2017, 42. [Google Scholar] [CrossRef]
- Florkiewicz, A.; Ciska, E.; Filipiak-Florkiewicz, A.; Topolska, K. Comparison of Sous-vide methods and traditional hydrothermal treatment on GLS content in Brassica vegetables. Eur. Food Res. Technol. 2017, 243, 1507–1517. [Google Scholar] [CrossRef] [Green Version]
- Florkiewicz, A.; Socha, R.; Filipiak-Florkiewicz, A.; Topolska, K. Sous-vide technique as an alternative to traditional cooking methods in the context of antioxidant properties of Brassica vegetables. J. Sci. Food Agr. 2018, 99, 173–182. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.D.F.G.; Sousa, P.H.M.D.; Figueiredo, R.W.; Gouveia, S.T.; Lima, J.S.S. Cooking effects on bioactive compounds and sensory acceptability in pumpkin (Cucurbita moschata cv. Leite). Rev. Ciência Agronômica 2019, 50, 394–401. [Google Scholar] [CrossRef]
- Banerjee, R.; Verma, A.K. Minimally Processed Meat and Fish Products. In Minimally Processed Foods: Technologies for Safety, Quality, and Convenience; Siddiqui, M.W., Rahman, M.S., Eds.; Springer: New York, NY, USA, 2014; pp. 193–250. [Google Scholar]
- Hosomi, R.; Yoshida, M.; Fukunaga, K. Seafood consumption and components for health. Glob. J. Health Sci. 2012, 4. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, A.D.T.; Crosby, G.A. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Int. J. Gastron. Food Sci. 2016, 3, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Shie, J.S.; Park, J.W. Physical characteristics of surimi seafood as affected by thermal processing conditions. J. Food Sci. 1999, 64, 287–290. [Google Scholar] [CrossRef]
- Barbosa, V.; Maulvault, A.L.; Alves, R.N.; Kwadijk, C.; Kotterman, M.; Tediosi, A.; Fernández-Tejedor, M.; Sloth, J.J.; Granby, K.; Rasmussen, R.R.; et al. Effects of steaming on contaminants of emerging concern levels in seafood. Food Chem. Toxicol. 2018, 118, 490–504. [Google Scholar] [CrossRef] [Green Version]
- Pilavtepe-Celik, M.; Ozer, N.P.; Ozkoc, S.O.; Seyhun, N.; Dede, N. Infrared assisted microwave cooking of Atlantic salmon (Salmo salar). Turk. J. Fish. Aquat. Sci. 2014, 14. [Google Scholar] [CrossRef]
- Kristinova, V.; Mozuraityte, R.; Aaneby, J.; Storrø, I.; Rustad, T. Iron-mediated peroxidation in marine emulsions and liposomes studied by dissolved oxygen consumption. Eur. J. Lipid Sci. Technol. 2014, 116, 207–225. [Google Scholar] [CrossRef]
- Puertollano, M.A.; Puertollano, E.; Alvarez de Cienfuegos, G.; Pablo, M.A. Dietary antioxidants: Immunity and host defense. Curr. Top. Med. Chem. 2011, 11, 1752–1766. [Google Scholar] [CrossRef]
- Wan, J.; Cao, A.; Cai, L. Effects of vacuum or sous-vide cooking methods on the quality of largemouth bass (Micropterus salmoides). Int. J. Gastron. Food Sci. 2019, 18. [Google Scholar] [CrossRef]
- Głuchowski, A.; Czarniecka, S.; Wasiak, Z.; Nowak, D. Effect of various cooking methods on technological and sensory quality of Atlantic salmon (Salmo salar). Foods 2019, 8, 323. [Google Scholar] [CrossRef] [Green Version]
- Singh, C.B.; Kumari, N.; Senapati, S.R.; Lekshmi, M.; Nagalakshmi, K.; Balange, A.K.; Chouksey, M.K.; Venkateshwarlu, G.; Xavier, K.A.M. Sous vide processed ready-to-cook seerfish steaks: Process optimization by response surface methodology and its quality evaluation. LWT 2016, 74, 62–69. [Google Scholar] [CrossRef]
- Gupta, V.; Kohli, V. Sous-vide: An emerging technology for fish preservation. Fish. Technol. 2019, 56, 93–100. [Google Scholar]
- Mouritsen, O.G.; Styrbæk, K. Cephalopod Gastronomy—A Promise for the Future. Front. Commun. 2018, 3. [Google Scholar] [CrossRef]
- Humaid, S.; Nayyar, D.; Bolton, J.; Skonberg, D.I. Physicochemical properties and consumer acceptance of high-pressure processed, sous vide-cooked lobster tails. J. Food Sci. 2019, 84, 3454–3462. [Google Scholar] [CrossRef] [PubMed]
- Nieva-Echevarría, B.; Manzanos, M.J.; Goicoechea, E.; Guillén, M.D. Changes provoked by boiling, steaming and sous-vide cooking in the lipid and volatile profile of European sea bass. Food Res. Int. 2017, 99, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.; Nikitchina, T.; Manoli, T.; Cui, Z. Trends of processed products of squid. Food Sci. Technol. 2020, 14. [Google Scholar] [CrossRef]
- DeWitt, C.; Oliveira, A. Modified atmosphere systems and shelf life extension of fish and fishery products. Foods 2016, 5, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abel, N.; Rotabakk, B.T.; Rustad, T.; Ahlsen, V.B.; Lerfall, J. Physiochemical and microbiological quality of lightly processed salmon (Salmo salar L.) stored under modified atmosphere. J. Food Sci. 2019, 84, 3364–3372. [Google Scholar] [CrossRef]
- Clausen, M.P.; Christensen, M.; Djurhuus, T.H.; Duelund, L.; Mouritsen, O.G. The quest for umami: Can sous vide contribute? Int. J. Gastron. Food Sci. 2018, 13, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Mouritsen, O.G.; Duelund, L.; Calleja, G.; Frøst, M.B. Flavour of fermented fish, insect, game, and pea sauces: Garum revisited. Int. J. Gastron. Food Sci. 2017, 9, 16–28. [Google Scholar] [CrossRef]
- Zavadlav, S.; Janči, T.; Lacković, I.; Karlović, S.; Rogulj, I.; Vidaček, S. Assessment of storage shelf life of European squid (cephalopod: Loliginidae, Loligo vulgaris) by bioelectrical impedance measurements. J. Food Eng. 2016. [Google Scholar] [CrossRef]
- Zavadlav, S.; Lacković, I.; Bursać Kovačević, D.; Greiner, R.; Putnik, P.; Vidaček Filipec, S. Utilizing impedance for quality assessment of European squid (Loligo Vulgaris) during chilled storage. Foods 2019, 8, 624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez del Pulgar, J.; Gázquez, A.; Ruiz-Carrascal, J. Physico-chemical, textural and structural characteristics of sous-vide cooked pork cheeks as affected by vacuum, cooking temperature, and cooking time. Meat Sci. 2012, 90, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Özyurt, G.; Kuley, E.; Balikçi, E.; Kaçar, Ç.; Gökdogan, S.; Etyemez, M.; Özogul, F. Effect of the icing with rosemary extract on the oxidative stability and biogenic amine formation in sardine (Sardinella aurita) during chilled storage. Food Bioprocess Technol. 2011, 5, 2777–2786. [Google Scholar] [CrossRef]
- Ofstad, R.; Kidman, S.; Myklebust, R.; Olsen, R.L.; Hermansson, A.-M. Liquid-holding capacity and structural changes in comminuted salmon (Salmo salar) muscle as influenced by pH, salt and temperature. LWT-Food Sci. Technol. 1995, 28, 329–339. [Google Scholar] [CrossRef]
- Lorenzo, I.; Serra, P.; Yébenes, J.C. The role of water homeostasis in muscle function and frailty: A review. Nutrients 2019, 11, 1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Christensen, L.; Ertbjerg, P.; Aaslyng, M.D.; Christensen, M. Effect of prolonged heat treatment from 48°C to 63°C on toughness, cooking loss and color of pork. Meat Sci. 2011, 88, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Humaid, S.; Nayyar, D.; Bolton, J.; Perkins, B.; Skonberg, D.I. Refrigerated shelf-life evaluation of high pressure processed, raw and sous vide cooked lobster. High Press. Res. 2020, 1–20. [Google Scholar] [CrossRef]
- Ayub, H.; Ahmad, A. Physiochemical changes in sous-vide and conventionally cooked meat. Int. J. Gastron. Food Sci. 2019, 17. [Google Scholar] [CrossRef]
- Roldán, M.; Ruiz, J.; del Pulgar, J.S.; Pérez-Palacios, T.; Antequera, T. Volatile compound profile of sous-vide cooked lamb loins at different temperature–time combinations. Meat Sci. 2015, 100, 52–57. [Google Scholar] [CrossRef]
- Djordjevic, J.; Pavlicevic, N.; Boskovic, M.; Baltic, T.; Ivanovic, J.; Glamoclija, N.; Baltic, M.Z. Sensory evaluation of cold-smoked trout packaged in vacuum and modifi ed atmosphere. Meat Technol. 2016, 57, 141–149. [Google Scholar]
- Alabdulkarim, B.; Bakeet, Z.A.N.; Arzoo, S. Role of some functional lipids in preventing diseases and promoting health. J. King Saud Univ. Sci. 2012, 24, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Ozogul, Y.; Duysak, O.; Ozogul, F.; Özkütük, A.S.; Türeli, C. Seasonal effects in the nutritional quality of the body structural tissue of cephalopods. Food Chem. 2008, 108, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Huss, H.H.; Ababouch, L.; Gram, L. Assessment and Management of Seafood Safety and Quality; FAO Fisheries Technical Paper 444; FAO: Rome, Italy, 2003; pp. 26–84.
- Silva, F.V.M.; Gibbs, P.A. Thermal pasteurization requirements for the inactivation of Salmonella in foods. Food Res. Int. 2012, 45, 695–699. [Google Scholar] [CrossRef]
- Leonard, B. Pathogenic bacteria survival through cooking or pasteurization. In Fish and Fishery Products Hazards and Controls Guidance; Diane Publshing: Darby, PA, USA, 2011; p. 315. [Google Scholar]
- dos Santos, C.A.M.L.V.; Regine, H.S. Fernandes. Bacteriological hazards and risks associated with seafood consumption in Brazil. Rev. Inst. Med. Trop. São Paulo 2013, 55, 219–228. [Google Scholar] [CrossRef]
- Picouet, P.A.; Cofan-Carbo, S.; Vilaseca, H.; Ballbè, L.C.; Castells, P. Stability of sous-vide cooked salmon loins processed by high pressure. Innov. Food Sci. Emerg. 2011, 12, 26–31. [Google Scholar] [CrossRef]
- Bolat, Y.; GenÇ, İ.Y.; Tunca, Y.; Demirayak, M. Effect of laurel (Laurus nobilis) and curcuma (Curcuma longa) on microbiological, chemical and sensory changes in vacuum packed sous-vide european sea bass (Dicentrarchus labrax) under chilled conditions. Food Sci. Technol. 2019, 39, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Dogruyol, H.; Mol, S.; Cosansu, S. Increased thermal sensitivity of Listeria monocytogenes in sous-vide salmon by oregano essential oil and citric acid. Food Microbiol. 2020, 90. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Barba, F.J.; Lorenzo, J.M.; Rocchetti, G.; Lucini, L.; Putnik, P. Innovative technologies for fruit extracts: Value-added opportunities in the meat industry. Iop Conf. Ser. Earth Environ. Sci. 2019, 333. [Google Scholar] [CrossRef] [Green Version]
- Alves, L.F.S.; Corrêa, S.S.; Rocha, J.D.M.; Amado, D.A.V.; Cottica, S.M.; Souza, M.L.R. Use of natural antioxidants in sous vide tilapia fillet. Bol. De Indústria Anim. 2020, 77. [Google Scholar] [CrossRef]
- Johnston, W.A. Freezing and Refrigerated Storage in Fisheries; Food and Agriculture Organization of the United Nations: Rome, Italy, 1994.
- Díaz, P.; Nieto, G.; Bañón, S.; Garrido, M.D. Determination of shelf life of sous vide salmon (Salmo Salard) based on sensory attributes. J. Food Sci. 2009, 74, S371–S376. [Google Scholar] [CrossRef]
- Mol, S.; Ozturan, S.; Cosansu, S. Determination of the quality and shelf life of sous vide packaged bonito (Sarda Sarda, Bloch, 1793) stored at 4 and 12 C. J. Food Qual. 2012, 35, 137–143. [Google Scholar] [CrossRef]
- Pino-Hernández, E.; de Carvalho Júnior, R.N.; Barata Alves, R.C.; Peixoto Joele, M.R.S.; da Silva e Silva, N.; Costa da Silva, E.V.; Henriques Lourenço, L.d.F. Evaluation of muscle cuts of pirarucu (Arapaima gigas) and sous vide product characterization and quality parameters. Int. J. Gastron. Food Sci. 2020, 20. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Rustad, T. Assessment of lipid oxidation in Atlantic mackerel (Scomber scombrus) subjected to different antioxidant and sous-vide cooking treatments by conventional and fluorescence microscopy methods. Food Control. 2019, 104, 1–8. [Google Scholar] [CrossRef]
- Llave, Y.; Shibata-Ishiwatari, N.; Watanabe, M.; Fukuoka, M.; Hamada-Sato, N.; Sakai, N. Analysis of the effects of thermal protein denaturation on the quality attributes of sous-vide cooked tuna. J. Food Process Preserv. 2018, 42. [Google Scholar] [CrossRef] [Green Version]
Bacteria | Temperature (° C) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 51 | 52 | 53 | 54 | 55 | 56 | ||
Bacillus cereus | G | ||||||||||||||||||||||
T | |||||||||||||||||||||||
Campylobacter | G | ||||||||||||||||||||||
Clostridium botulinum | G | ||||||||||||||||||||||
T | |||||||||||||||||||||||
Clostridium perfringens | G | ||||||||||||||||||||||
Listeria monocytogenes | G | ||||||||||||||||||||||
Salmonella spp. | G | ||||||||||||||||||||||
Shigella | G | ||||||||||||||||||||||
Staphylococcus aureus | G | ||||||||||||||||||||||
T | |||||||||||||||||||||||
STEC | G | ||||||||||||||||||||||
Yersinia | G | ||||||||||||||||||||||
Vibrio parahaemolyticus | G |
Vegetable Sample | Cooking Treatment | Quality Parameters | Conclusion Remarks | Reference |
---|---|---|---|---|
Potato slices added with rosemary essential oil (REO) Six potato cultivars: Arinda, Elodie, Erika, Fontane, Marabel, Ranomi | Dipping pre-treatments: (i) peanut seed oil with 0.5% (v/v) rosemary essential oil (REO) (ii) peanut seed oil—control Sous-vide cooking: 105 °C for 30 min | Ascorbic Acid Total phenols Antioxidant activity (DPPH) | -The addition of REO had no influence on the nutritional content of cooked potato slices. -Ascorbic acid, total phenols and antioxidant activity were noticeably reduced during sous-vide cooking. -Although total phenols were well retained after cooking, the antioxidant activity indicated reduction of a mean value of 48%. | Amoroso at al. (2019) [24] |
-Cauliflower (Brassica oleracea var. botrytis)—white rose -Romanesco-type cauliflower (green rose) -Brussel sprouts (Brassica oleracea var. gemmifera) -Broccoli (Brassica oleracea var. botrytis italica) | -Sous-vide cooking: 90 °C for 45 min (cauliflowers and broccoli) 90 °C for 50 min (Brussel sprouts) -Traditional cooking: unsalted water for 10 min (cauliflowers and broccoli) or 15 min (Brussel sprouts) -Steam cooking: 100 °C for 7 min -Storage: at 2 ± 1 °C for 5 days | The content of dry matter Total ash content Mineral compounds contents (K, Na, Ca, Mg, Mn, Fe, Zn, Cu) Organoleptic properties | -Losses of dry matter were minor in sous-vide cooked vegetables, whereas the traditional cooking led to a significant decrease in the dry matter content as compared to the raw material for all vegetable samples. -Treatment type demonstrated a distinct effect on the retention of micro and macro elements in all Brassica samples. -In comparison to steam cooking, sous-vide allowed higher preservation of the minerals contained in vegetable samples. -Sous-vide was the only cooking treatment that resulted in positive organoleptic properties. -The only benefit of boiling in water was the improved process yield. | Florkiewicz and Berski (2017) [64] |
-Cauliflower (Brassica oleracea var. botrytis)—white rose -Romanesco-type cauliflower (green rose) -Brussel sprouts (Brassica oleracea var. gemmifera) -Broccoli (Brassica oleracea var. botrytis italica) | -Sous-vide cooking: 90 °C for 45 min (cauliflowers and broccoli) 90 °C for 50 min (Brussel sprouts) -Traditional cooking: unsalted water for 10 min (cauliflowers and broccoli) or 15 min (Brussel sprouts) -Steam cooking: 100 °C for 7 min | Microbiological analysis Vitamin C (L-ascorbic acid) content HPLC analysis of glucosinolates (GLS): glucoiberin, progoitrin, sinirgin, glucoraphainin, gluconapin, gluconasturtin, glucobrassicin, 4-metoxyglukobrassicin, neoglucobrassicin | -The use of a lower temperature during sous-vide cooking did not affect the quality and microbiological safety of the vegetables. -In comparison to raw vegetable samples, higher concentrations of GLS were determined in steamed vegetables. -Six glucosinolates from 9 identified (glucoraphanin, glucoiberin, progoitrin, gluconapin, glucobrassicin, 4-metoxyglucobrassicin) were found in higher amounts in broccoli prepared by the sous-vide method, compared to the samples traditionally cooked. - Sous-vide cooking of Brussel sprouts and Romanesco-type cauliflower resulted in greater losses of GLS, in comparison with the traditional cooking. -Sous-vide cooking can be an advanced processing method of broccoli intended for direct consumption. | Florkiewicz et al. (2017) [65] |
-Cauliflower (Brassica oleracea var. botrytis)—white rose -Romanesco-type cauliflower (green rose) -Brussel sprouts (Brassica oleracea var. gemmifera) -Broccoli (Brassica oleracea var. botrytis italica) | -Sous-vide cooking: 90 °C for 45 min (cauliflowers and broccoli) 90 °C for 50 min (Brussel sprouts) -Traditional cooking: unsalted water for 10 min (cauliflowers and broccoli) or 15 min (Brussel sprouts) -Steam cooking: 100 °C for 7 min -Storage: at 2 ± 1 °C for 0, 48 and 120 h | Total phenolic content HPLC analysis of phenolic compounds: sinapic acid, caffeic acid, p-coumaric acid, gallic acid, protocatechuic acid Antioxidant activity (ABTS) | -Sous-vide appeared to be the most advantageous with regard to caffeic, p-coumaric and gallic acids’ stability. -A significant positive correlation was found between antioxidant activity and the total phenolic compounds in raw and thermally treated vegetables. -Sous-vide method is considered as the optimal thermal technique for Brassica vegetables’ processing with regard to phenolic compounds’ preservation. | Florkiewicz et al. (2018) [66] |
Pumpkin (Cucurbita moschata cv. Leite) | Cooking with the addition of 0.2% of salt (sodium chloride): Boiling—in water, 8 min Steaming—95 °C, 12 min Microwaving—2450 MHz, 10 min Sous-vide—90 °C, 30 min | Ascorbic acid content Total phenols Total flavonoids Total anthocyanins Total carotenoids Color analysis Sensory evaluation | -All cooking methods revealed losses of about 50% for ascorbic acid when compared to raw samples. -Sous-vide method affected the reduction of total flavonoids the most (30.27%). -Microwaved samples exhibited the highest level of anthocyanins and carotenoids, whereas the sous-vide samples had the most reduced values for both types of pigments with losses of 54.37% and 50.0%, respectively. -For all cooking methods, the total polyphenols content was significantly reduced from 49.68% to 64.94%. -The microwaved pumpkin showed the highest sensory applicability, followed by boiling, steaming and sous-vide cooking. | Da Silva et al. (2019) [67] |
Asparagus spears (Asparagus officinalis L., cv Grande) | Boiling (B): 99.0 ± 1.0 °C for 5 min Steaming (S): 99.0 ± 1.0 °C for 6 min Conventional microwaving (MW): 900 W, 2450 MHz, 1.5 min Sous-vide boiling (SV-B): 99.0 ± 1.0 °C for 5 min Sous-vide (SV): 80 ℃, 15 min Sous-vide microwaving (SV-MW): 900 W, 2450 MHz, 1.5 min | Color parameters Inorganic ion content Soluble sugars Ascorbic acid content Carotenoid content Chlorophyll content Rutin content Sensory evaluation | -MW resulted with the highest weight change, dry weight increase and the greatest total color difference as compared to raw samples. -Although all cooking methods were rated as sensory acceptable, SV-MW showed the best preferences. -SV-MW better preserved nutritive quality and color characteristics in comparison to other cooking methods. -In comparison to raw samples, SV-MW samples displayed increased violaxanthin content by 42%. - Rutin level was not statistically influenced by the cooking methods. -SV-MW was found to be the most suitable method for preservation of asparagus spears. | Gonnella et al. (2018) [23] |
22 vegetables: sweet potato, broccoli, beetroot, white onion, red onion, garlic, kale, cauliflower, kohlrabi, red cabbage, carrot, red bell pepper, green bell pepper, yellow bell pepper, parsley root, tomato, leek, celeriac, celery, shallot—onion of Ascalan, spinach, potato | Conventional cooking: 100 ℃, 2–20 min (in dependence of vegetable type) Sous-vide cooking: 84 ℃, 30 or 60 min (in dependence of vegetable type) | Antioxidative activity (DPPH, FRAP) | -With no effect of the type of processing (conventional vs. sous-vide cooking) and determination method (FRAP vs. DPPH), the antioxidative potential of two vegetables (kohlrabi and red pepper) increased when compared to raw vegetable samples. -Sous-vide method resulted in higher antioxidative potential after processing for the case of kale, beetroot, red bell pepper, sweet potato, carrot, cauliflower and kohlrabi as compared to their raw samples. -In comparison to the conventional cooking method, improved antioxidative potential after cooking using the sous-vide method was detected for red onion, shallot, broccoli, tomato, parsley root and cauliflower. -When comparing the two types of cooking, the obtained results suggest that an increase in the antioxidant potential was higher for the sous-vide technique. | Kosewski et al. (2018) [22] |
Tomato powder | Sous-vide cooking: 60 °C, 4 h | Amadori compounds (LC-MS/MS) L-ascorbic content Total phenolic content Lycopene content Antioxidant activities (DPPH, ORAC, FRAP, ABTS) | -After the sous-vide treatment of tomato powder, losses for the content of L-ascorbic acid (20.35%), total phenolic content (15.98%) and lycopene (10.93%) were determined. -The contents of Amadori compounds in the tomato powder subsequently after sous-vide treatment was 2.2 times of that before treatment. -Sous-vide-treated tomato powder indicated higher antioxidant activity than that from untreated samples measured by all four assays. | Yang et al. (2020) [44] |
Thickness (mm) | Temperature | ||||||
---|---|---|---|---|---|---|---|
60 °C | 61 °C | 62 °C | 63 °C | 64 °C | 65 °C | 66 °C | |
5 | 0:51 | 0:40 | 0:31 | 0:25 | 0:20 | 0:17 | 0:14 |
15 | 1:13 | 1:02 | 0:53 | 0:47 | 0:42 | 0:38 | 0:35 |
25 | 1:41 | 1:30 | 1:21 | 1:16 | 1:08 | 1:03 | 0:59 |
35 | 2:09 | 1:56 | 1:46 | 1:38 | 1:31 | 1:26 | 1:21 |
45 | 2:42 | 2:29 | 2:17 | 2:08 | 2:00 | 1:53 | 1:48 |
55 | 3:26 | 3:11 | 2:58 | 2:47 | 2:38 | 2:30 | 2:23 |
65 | 4:15 | 3:58 | 3:43 | 3:31 | 3:20 | 3:11 | 3:02 |
Sample | Heat treatment | Shelf life | Key findings | Reference |
---|---|---|---|---|
Salmon (Salmo Salard) | Par-roasting: 300 °C for 3 min Sous-vide: 80 °C for 43 min | Anaerobic conditions: 2 °C for 0, 4, 8, 12, 15, 18, 22 and 25 days | -The presence of Enterobacteriaceae was only detected on days 18, 22 and 25, but they were always below the minimal detection limit (<10 CFU/g). - Sous-vide cooking was found to be efficient in the growth inhibition of Enterobacteriaceae in salmon stored at 2 °C for up to 25 days. -The shelf life of the sous-vide salmon based on sensory analysis was established at 18 days. | Díaz et al. (2009) [112] |
Bonito (Sarda sarda, Bloch, 1793 | Sous-vide: 70 °C for 10 min | 4 and 12 °C, 42 days | -The sous-vide cooking at 70 °C for 10 min reduced the mesophilic (3.46-log CFU/g) and psychrophilic (2.72-log CFU/g) bacterial counts of the raw material to an undetectable level (<1.00-log CFU/g). -Sous-vide bonitos were considered highly acceptable in quality until the 15th day of storage at 12 °C. -The shelf life of cold-stored (4 °C) sous-vide bonitos is 28 days. | Mol et al. (2011) [113] |
Pirarucu (Arapaima gigas) | Sous-vide: 60 °C for 9.48 min | 2 °C, 49 days | -The dorsal cut of raw pirarucu was the most appropriate cut for developing the sous-vide product in comparison to other cuts from raw pirarucu. -On the day 0, the sous-vide product reached sensory scores for acceptance ≥ 7 considering the hedonic scale, while on the 49th day, the attributes were scored with 5 on average. -Mesophilic and psychrotrophic anaerobes remained during storage within the acceptable limits. | Pino-Hernández et al. (2020) [114] |
Lobster (Homarus americanus) | High-Pressure Processing (HPP): 150 MPa or 350 MPa for 10 min at 4 °C Sous-vide: 65 °C for 10 min | 28 days storage at 2 °C | -Raw lobster pressurized at 350 MPa or sous-vide cooked maintained significantly lower microbial counts during storage. -HPP pretreatment did not affect additional shelf life extension for sous-vide cooked products. -Sous-vide can promote the commercial availability of refrigerated lobster tails in terms of the development of diverse lobster products that are more convenient than live lobsters and have better quality than frozen products. | Humaid et al. (2020) [96] |
Atlantic mackerel (Scomber scombrus) | Sous-vide: 60, 75 and 90 °C for 10, 15 and 20 min | 1, 3 and 7 days at 4 ± 1°C | -The strongest effect on the generation of primary and secondary products of lipid oxidation was found to be the duration of chilled storage. -Prolonged chilled storage of sous-vide cooked samples had a negative impact on its physicochemical parameters. -Sous-vide cooking decreased the firmness of the fish muscle during storage. | Cropotova et al. (2019) [7] |
Seafood Sample | Cooking Treatment | Quality Parameters | Conclusion Remarks | Reference |
---|---|---|---|---|
European sea bass (Dicentrarchus labrax) | Sous-vide cooking: 90 °C for 10 min The ratio of fish/ingredients was 1:0.002. Addition of: laurel (Laurus nobilis) and curcuma (Curcuma longa) Storage: 3 ± 1 °C for 60 days | pH Total volatile basic nitrogen (TVB-N) Trimethil amine–nigrogen (TMA-N) Microbial analysis: Total mesophilic aerobic (TMAB) Total psychrophilic aerobic bacteria (TPAB) Members of Enterobacteriaceae family Sensory evaluation | -The quality of the sous-vide seafood products strongly depends on initial quality parameters (microbiological, chemical and sensory) of the raw material. -All products were microbiologically safe during the storage period (<7.00-log cfu/g). -Aside from sous-vide processing, addition of laurel and curcuma could prolong shelf life by approximately 4 and 10 days, respectively. -Higher concentrations of laurel and curcuma could promote extended shelf life, but it might have a negative effect on the sensory perception. | Bolat et al. (2019) [107] |
Largemouth bass (Micropterus salmoides) | Boiling (BT): 85 °C, 4 min Steaming: 100 °C, 4 min Vacuum boiling (VB): 85 °C, 5 min Vacuum steaming (VS): 100 °C, 5 min Sous-vide cooking (SV): 85 °C, 5 min | Color measurements Texture analysis The thiobarbituric acid (TBA) Water migration and distribution Microstructural changes | -VS and SV samples reached desirable quality, displaying more stable protein secondary structure and lower lipid oxidation in comparison to other cooking methods. -Protein structure was less damaged in VB, VS and SV samples compared with other cooked samples. -The VS and SV treatments both showed more immobilized water in comparison to other cooked samples. | Wan et al. (2019) [76] |
Atlantic mackerel (Scomber scombrus) | Sous-vide cooking: 70 and 80 °C for 10 and 20 min with and without use of commercial antioxidants (TR25—rosemary extract and mix of tocopherols and RPT40—rosemary extract, α-tocopherol and ascorbyl palmitate). Storage: 4 ℃, 9 days | Primary and secondary products of lipid oxidation Color parameters | -Sous-vide cooking and chilled storage negatively influence oxidative lipid stability in mackerel fillets with respect to primary and secondary lipid oxidation products. -Natural antioxidants positively affect the slower rate of lipid oxidation in cooked samples during chilled storage. -The b* value (yellowness) of the fish flesh significantly correlated with conjugated trienes generated from thermal polymerization of lipids during chilled storage of sous-vide cooked fish. -Irrespective of antioxidants used, higher temperature and prolonged cooking times enhanced lipid oxidation in mackerel samples. | Cropotova et al. (2019) [115] |
Atlantic mackerel (Scomber scombrus) | Sous-vide cooking: 60, 75 and 90 °C for 10, 15 and 20 min Storage: 1, 3 and 7 days at 4 ± 1 °C | pH Water content and cook loss Water- and salt-soluble proteins Texture analysis Color parameters Lipid oxidation products | -Sous-vide cooking time and temperature showed the minimal influence on the formation of primary and secondary products of lipid oxidation and increase in b* value (yellowness) of the fish samples. -Length of chilled storage led to a significant intensification in oxidation and b* value (yellowness). -Length of chilled storage also had an impact on the structural and textural properties of the fish muscle, leading to a decreased cook loss. | Cropotova et al. (2019) [7] |
Atlantic salmon (Salmo salar Linnaeus, 1758) | Sous-vide cooking: 55, 57.5, 60 and 62.5 °C for 0.08 to 250 min Addition of antioxidants: -non-treated control (C) -0.5% (w/w) citric acid (S) -1% (v/w) oregano essential oil (O) -0.5% (w/w) citric acid + 1% (v/w) oregano essential oil added (OS) | Listeria monocytogenes ATCC 7644 inoculation pH value | - The inactivation times of L. monocytogenes in control group (C) were Table 4 -The inactivation times of L. monocytogenes in control samples (C) were significantly higher than all other treated samples (S, O, OS). -Addition of oregano oil (O), citric acid (S) and their combination (OS) significantly reduced the time required to inactivate L. monocytogenes. -Combined treatment (OS) was proven to improve the microbial inactivation at 57.5 and 60 °C better than each of the treatments alone did. | Dogruyol et al. (2020) [108] |
Tilapia fillets (Oreochromis niloticus) | Sous-vide cooking: 60.5 °C for 41 min Addition of antioxidants: T1: Control—no herbs added, T2: added extract of oregano. T3: added extract of rosemary and T4: added extract of basil | Centesimal composition Microbiological analysis Lipid oxidation through Thiobarbituric acid reactive substances (TBARS) | -All samples with added extracts showed significantly higher moisture content, while in control samples, higher protein content was observed. -All samples were in accordance to microbiological standards recommended by legislation. -Control samples exhibited high values from Malondialdehyde (MDA)/kg, demonstrating oxidative rancidity characteristics. -Addition of plant extracts as natural antioxidants prolonged shelf life of sous-vide treated tilapia fillets. | Alves et al. (2020) [110] |
Cephalic part of tuna (Thunnus maccoyii) | Sous-vide cooking: (1) 59.5 °C for 13 min (2) 59 °C for 39 min (3) 50 °C for 31 min (4) 50 °C for 62 min | Cooking loss, moisture and crude fat content Thermal protein denaturation (TPD) Color analysis Texture analysis Analysis of ATP-related compounds | -The analysis of TPD showed two peaks at approximately 71 and 48 °C (for actin and myosin, respectively). -Based on obtained results from kinetics analysis, the estimation of TPD under different processing conditions for each protein can be evaluated. -Texture changes were more induced by actin denaturation than myosin denaturation, while myosin denaturation was mostly responsible for changes in color and appearance. | Llave et al. (2018) [116] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavadlav, S.; Blažić, M.; Van de Velde, F.; Vignatti, C.; Fenoglio, C.; Piagentini, A.M.; Pirovani, M.E.; Perotti, C.M.; Bursać Kovačević, D.; Putnik, P. Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products. Foods 2020, 9, 1537. https://doi.org/10.3390/foods9111537
Zavadlav S, Blažić M, Van de Velde F, Vignatti C, Fenoglio C, Piagentini AM, Pirovani ME, Perotti CM, Bursać Kovačević D, Putnik P. Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products. Foods. 2020; 9(11):1537. https://doi.org/10.3390/foods9111537
Chicago/Turabian StyleZavadlav, Sandra, Marijana Blažić, Franco Van de Velde, Charito Vignatti, Cecilia Fenoglio, Andrea M. Piagentini, María Elida Pirovani, Cristina M. Perotti, Danijela Bursać Kovačević, and Predrag Putnik. 2020. "Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products" Foods 9, no. 11: 1537. https://doi.org/10.3390/foods9111537
APA StyleZavadlav, S., Blažić, M., Van de Velde, F., Vignatti, C., Fenoglio, C., Piagentini, A. M., Pirovani, M. E., Perotti, C. M., Bursać Kovačević, D., & Putnik, P. (2020). Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products. Foods, 9(11), 1537. https://doi.org/10.3390/foods9111537