Platelet Anti-Aggregant Activity and Bioactive Compounds of Ultrasound-Assisted Extracts from Whole and Seedless Tomato Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Preparation of Extracts
2.4. Platelet Aggregation Assay
2.5. Identification and Quantification of Bioactive Compounds by HPLC-MS
2.5.1. Phenolic Compounds
2.5.2. Carotenoids Compounds
2.5.3. Nucleosides Compounds
3. Competitive Study
4. Statistical Analysis
5. Results and Discussion
5.1. Extraction Yield
5.2. Platelet Anti-Aggregant Activity
5.3. Identification of Bioactive Compounds
5.4. Competitive Study
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mensah, G.A.; Roth, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J. Am. Coll. Cardiol. 2019, 74, 2529–2532. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estadísticas. 2012. Available online: http://ine.cl/docs/default-source/demogr%C3%A1ficas-y-vitales/vitales/anuarios/anuario-2012/completa_vitales_2012.pdf?sfvrsn=6 (accessed on 6 August 2020).
- Alissa, E.M.; Ferns, G.A. Dietary fruits and vegetables and cardiovascular diseases risk. Crit. Rev. Food. Sci. Nutr. 2017, 57, 1950–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, M.; Fuentes, E.; Avila, F.; Alarcon, M.; Palomo, I. Roles of Phenolic Compounds in the Reduction of Risk Factors of Cardiovascular Diseases. Molecules 2019, 24, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomo, I.; Concha-Meyer, A.; Lutz, M.; Said, M.; Saez, B.; Vasquez, A.; Fuentes, E. Chemical Characterization and Antiplatelet Potential of Bioactive Extract from Tomato Pomace (Byproduct of Tomato Paste). Nutrients 2019, 11, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta-Roy, A.K.; Crosbie, L.; Gordon, M.J. Effects of tomato extract on human platelet aggregation in vitro. Platelets 2001, 12, 218–227. [Google Scholar] [CrossRef]
- O’Kennedy, N.; Crosbie, L.; van Lieshout, M.; Broom, J.I.; Webb, D.J.; Duttaroy, A.K. Effects of antiplatelet components of tomato extract on platelet function in vitro and ex vivo: A time-course cannulation study in healthy humans. Am. J. Clin. Nutr. 2006, 84, 570–579. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, E.J.; Astudillo, L.A.; Gutierrez, M.I.; Contreras, S.O.; Bustamante, L.O.; Rubio, P.I.; Moore-Carrasco, R.; Alarcon, M.A.; Fuentes, J.A.; Gonzalez, D.E.; et al. Fractions of aqueous and methanolic extracts from tomato (Solanum lycopersicum L.) present platelet antiaggregant activity. Blood Coagul. Fibrinolysis 2012, 23, 109–117. [Google Scholar] [CrossRef]
- Fuentes, E.; Castro, R.; Astudillo, L.; Carrasco, G.; Alarcon, M.; Gutierrez, M.; Palomo, I. Bioassay-Guided Isolation and HPLC Determination of Bioactive Compound That Relate to the Antiplatelet Activity (Adhesion, Secretion, and Aggregation) from Solanum lycopersicum. Evid. Based Complement Alternat. Med. 2012, 2012, 147031. [Google Scholar] [CrossRef]
- Fuentes, E.; Pereira, J.; Alarcon, M.; Valenzuela, C.; Perez, P.; Astudillo, L.; Palomo, I. Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids) on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies. Evid Based Complement Alternat. Med. 2013, 2013, 609714. [Google Scholar] [CrossRef] [Green Version]
- Michalickova, D.; Belovic, M.; Ilic, N.; Kotur-Stevuljevic, J.; Slanar, O.; Sobajic, S. Comparison of Polyphenol-Enriched Tomato Juice and Standard Tomato Juice for Cardiovascular Benefits in Subjects with Stage 1 Hypertension: A Randomized Controlled Study. Plant Foods Hum. Nutr. 2019, 74, 122–127. [Google Scholar] [CrossRef]
- Uddin, M.; Biswas, D.; Ghosh, A.; O’Kennedy, N.; Duttaroy, A.K. Consumption of Fruitflow((R)) lowers blood pressure in pre-hypertensive males: A randomised, placebo controlled, double blind, cross-over study. Int. J. Food Sci. Nutr. 2018, 69, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.A.; Leung, Y.Y. Exploring the Link between Uric Acid and Osteoarthritis. Front Med. 2017, 4, 225. [Google Scholar] [CrossRef] [PubMed]
- WPTC World Production Estimate of Tomato Processing. Available online: http://www.wptc.to/pdf/releases/WPTC%20World%20Production%20estimate%20as%20of%2031%20March%202017.pdf (accessed on 20 January 2020).
- Food and Agriculture Organization Statistical Database FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 10 July 2019).
- Ruiz Celma, A.; Cuadros, F.; López-Rodríguez, F. Characterisation of industrial tomato by-products from infrared drying process. Food Bioprod. Process. 2009, 87, 282–291. [Google Scholar] [CrossRef]
- Fondevila, M.; Guada, J.A.; Gasa, J.; Castrillo, C. Tomato pomace as a protein supplement for growing lambs. Small Rumin. Res. 1994, 13, 117–126. [Google Scholar] [CrossRef]
- Marcos, C.N.; de Evan, T.; Molina-Alcaide, E.; Carro, M.D. Nutritive Value of Tomato Pomace for Ruminants and Its Influence on In Vitro Methane Production. Animals 2019, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Isik, F.; Topkaya, C. Effects of tomato pomace supplementation. Ital. J. Food Sci. 2016, 28, 525–535. [Google Scholar] [CrossRef]
- Tedeschi, G.; Benitez, J.J.; Ceseracciu, L.; Dastmalchi, K.; Itin, B.; Stark, R.E.; Heredia, A.; Athanassiou, A.; Heredia-Guerrero, J.A. Sustainable Fabrication of Plant Cuticle-Like Packaging Films from Tomato Pomace Agro-Waste, Beeswax, and Alginate. ACS Sustain. Chem. Eng. 2018, 6, 14955–14966. [Google Scholar] [CrossRef]
- Mirzaei-Aghsaghali, A.; Maheri-sis, N.; Mansouri, H.; Razeghi, M.E.; Safaei, A.R.; Aghajanzadeh-Golshani, A.; Alipoor, K. Estimation of the nutritive value of tomato pomace for ruminant using in vitro gas production technique. Afr. J. Biotechnol. 2011, 10, 6251–6256. [Google Scholar]
- Del Valle, M.; Cámara, M.; Torija, M.-E. Chemical characterization of tomato pomace. J. Sci. Food Agric. 2006, 86, 1232–1236. [Google Scholar] [CrossRef]
- Concha-Meyer, A.A.; Durham, C.A.; Colonna, A.E.; Hasenbeck, A.; Sáez, B.; Adams, M.R. Consumer Response to Tomato Pomace Powder as an Ingredient in Bread: Impact of Sensory Liking and Benefit Information on Purchase Intent. J. Food Sci. 2019, 84, 3774–3783. [Google Scholar] [CrossRef]
- Lazos, E.S.; Tsaknis, J.; Lalas, S. Characteristics and composition of tomato seed oil. Grasas y Aceites 1998, 49, 440–445. [Google Scholar] [CrossRef] [Green Version]
- Lenucci, M.S.; Durante, M.; Anna, M.; Dalessandro, G.; Piro, G. Possible use of the carbohydrates present in tomato pomace and in byproducts of the supercritical carbon dioxide lycopene extraction process as biomass for bioethanol production. J. Agric. Food Chem. 2013, 61, 3683–3692. [Google Scholar] [CrossRef]
- Cárdenas-Castro, A.P.; del Carmen Perales-Vázquez, G.; De la Rosa, L.A.; Zamora-Gasga, V.M.; Ruiz-Valdiviezo, V.M.; Alvarez-Parrilla, E.; Sáyago-Ayerdi, S.G. Sauces: An undiscovered healthy complement in Mexican cuisine. Int. J. Gastron. Food Sci. 2019, 17, 100154. [Google Scholar] [CrossRef]
- Grassino, A.N.; Brncic, M.; Vikic-Topic, D.; Roca, S.; Dent, M.; Brncic, S.R. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chem. 2016, 198, 93–100. [Google Scholar] [CrossRef]
- Chen, H.M.; Fu, X.; Luo, Z.G. Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chem. 2015, 168, 302–310. [Google Scholar] [CrossRef]
- Maran, J.P.; Priya, B. Ultrasound-assisted extraction of pectin from sisal waste. Carbohydr. Polym. 2015, 115, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Luengo, E.; Alvarez, I.; Raso, J. Improving carotenoid extraction from tomato waste by pulsed electric fields. Front Nutr. 2014, 1, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Fernández, I.; Pino, V. Chapter 17—Extraction With Ionic Liquids-Organic Compounds. In Liquid-Phase Extraction; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 499–537. [Google Scholar]
- Fuentes, F.; Alarcon, M.; Badimon, L.; Fuentes, M.; Klotz, K.N.; Vilahur, G.; Kachler, S.; Padro, T.; Palomo, I.; Fuentes, E. Guanosine exerts antiplatelet and antithrombotic properties through an adenosine-related cAMP-PKA signaling. Int. J. Cardiol. 2017, 248, 294–300. [Google Scholar] [CrossRef]
- Fuentes, E.; Pereira, J.; Mezzano, D.; Alarcon, M.; Caballero, J.; Palomo, I. Inhibition of platelet activation and thrombus formation by adenosine and inosine: Studies on their relative contribution and molecular modeling. PLoS ONE 2014, 9, e112741. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Azua, R.; Treuer, A.; Moore-Carrasco, R.; Cortacans, D.; Gutierrez, M.; Astudillo, L.; Fuentes, E.; Palomo, I. Effect of tomato industrial processing (different hybrids, paste, and pomace) on inhibition of platelet function in vitro, ex vivo, and in vivo. J. Med. Food 2014, 17, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Torres, C.A.; Sepúlveda, G.; Concha-Meyer, A.A. Effect of processing on quality attributes and phenolic profile of quince dried bar snack. J. Sci. Food Agric. 2019, 99, 2556–2564. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Carle, R.; Astudillo, L.; Guzman, L.; Gutierrez, M.; Carrasco, G.; Palomo, I. Antioxidant and Antiplatelet Activities in Extracts from Green and Fully Ripe Tomato Fruits (Solanum lycopersicum) and Pomace from Industrial Tomato Processing. Evid Based Complement Alternat. Med. 2013, 2013, 867578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudley, E.; Bond, L. Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrometry Reviews 2014, 33, 302–331. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Rastogi, N.K. Opportunities and Challenges in Application of Ultrasound in Food Processing. Crit. Rev. Food Sci. Nutr. 2011, 51, 705–722. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Ponmurugan, K.; Maran Jeganathan, P. Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrason. Sonochem. 2017, 34, 206–213. [Google Scholar] [CrossRef]
- Delgado-Povedano, M.; Luque de Castro, M. Ultrasound-Assisted Extraction of Food Components. Ref. Module Food Sci. 2017, 1. [Google Scholar]
- Ji, J.; Hu, J.; Chen, S.; Liu, R.; Wang, L.; Cheng, J.; Wu, H. Development and application of a method for determination of nucleosides and nucleobases in Mactra veneriformis. Pharmacogn. Mag. 2013, 9, 96–102. [Google Scholar] [CrossRef]
- Valdez-Morales, M.; Espinosa-Alonso, L.G.; Espinoza-Torres, L.C.; Delgado-Vargas, F.; Medina-Godoy, S. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. J. Agric. Food Chem. 2014, 62, 5281–5289. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Walton, J.; Viñas, I.; Tiwari, B.K. Ultrasound assisted extraction of polysaccharides from mushroom by-products. LWT 2017, 77, 92–99. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Brodowski, D.; Geisman, J.R. Protein content and amino acid composition of protein of seeds from tomatoes at various stages of ripeness. J. Food Sci. 1980, 45, 228–229. [Google Scholar] [CrossRef]
- Lianfu, Z.; Zelong, L. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason. Sonochem. 2008, 15, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Luengo, E.; Condón-Abanto, S.; Condón, S.; Álvarez, I.; Raso, J. Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Sep. Purif. Tech. 2014, 136, 130–136. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Pyriochou, V.; Peristeraki, A.; Karathanos, V.T. Bioactive phytochemicals in industrial tomatoes and their processing byproducts. Lebensm. Wiss. Technol. 2012, 49, 213–216. [Google Scholar] [CrossRef]
- Navarro-González, I.; García-Valverde, V.; García-Alonso, J.; Periago, M.J. Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Res. Int. 2011, 44, 1528–1535. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R.; Medici, F.; Piga, F. Use of Cell Wall Degrading Enzymes for the Production of High-Quality Functional Products from Tomato Processing Waste. Chem. Eng. Trans. 2014, 38, 355–360. [Google Scholar] [CrossRef]
- Vinha, A.F.; Alves, R.C.; Barreira, S.V.P.; Castro, A.; Costa, A.S.G.; Oliveira, M.B.P.P. Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT-Food Sci. Technol. 2014, 55, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Ferreres, F.; Taveira, M.; Pereira, D.M.; Valentao, P.; Andrade, P.B. Tomato (Lycopersicon esculentum) seeds: New flavonols and cytotoxic effect. J. Agric. Food Chem. 2010, 58, 2854–2861. [Google Scholar] [CrossRef]
- Lavelli, V.; Torresani, M.C. Modelling the stability of lycopene-rich by-products of tomato processing. Food Chem. 2011, 125, 529–535. [Google Scholar] [CrossRef]
- Luceri, C.; Giannini, L.; Lodovici, M.; Antonucci, E.; Abbate, R.; Masini, E.; Dolara, P. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br. J. Nutr. 2007, 97, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Stangl, V.; Lorenz, M.; Ludwig, A.; Grimbo, N.; Guether, C.; Sanad, W.; Ziemer, S.; Martus, P.; Baumann, G.; Stangl, K. The Flavonoid Phloretin Suppresses Stimulated Expression of Endothelial Adhesion Molecules and Reduces Activation of Human Platelets. J. Nutr. 2005, 135, 172–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, K.J.; Chronopoulos, A.K.; Singh, I.; A Francis, M.; Moriarty, H.; Pike, M.J.; Turner, A.H.; Mann, N.J.; Sinclair, A.J. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am. J. Clin. Nutr. 2003, 77, 1466–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolnik, A.; Żuchowski, J.; Stochmal, A.; Olas, B. Quercetin and kaempferol derivatives isolated from aerial parts of Lens culinaris Medik as modulators of blood platelet functions. Ind. Crop. Prod. 2020, 152, 112536. [Google Scholar] [CrossRef]
- Sinegre, T.; Teissandier, D.; Milenkovic, D.; Morand, C.; Lebreton, A. Epicatechin influences primary hemostasis, coagulation and fibrinolysis. Food Funct. 2019, 10, 7291–7298. [Google Scholar] [CrossRef]
- Guerrero, J.A.; Lozano, M.L.; Castillo, J.; Benavente-García, O.; Vicente, V.; Rivera, J. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J. Thromb. Haemost. 2005, 3, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Jawad, M.; Kamal, M.A.; Baldi, A.; Ulrih, N.P.; Nabavi, S.M.; Daglia, M. Evidence and prospective of plant derived flavonoids as antiplatelet agents: Strong candidates to be drugs of future. Food Chem. Toxicol. 2018, 119, 355–367. [Google Scholar] [CrossRef]
- Li, Y.; Zhuang, S.; Liu, Y.; Zhang, L.; Liu, X.; Cheng, H.; Liu, J.; Shu, R.; Luo, Y. Effect of grape seed extract on quality and microbiota community of container-cultured snakehead (Channa argus) fillets during chilled storage. Food Microbiol. 2020, 91, 103492. [Google Scholar] [CrossRef]
- Story, E.N.; Kopec, R.E.; Schwartz, S.J.; Harris, G.K. An Update on the Health Effects of Tomato Lycopene. Annu. Rev. Food Sci. Technol. 2010, 1, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.M.A.; Akram, M.; Riaz, M.; Munir, N.; Rasool, G. Cardioprotective Potential of Plant-Derived Molecules: A Scientific and Medicinal Approach. Dose-Response 2019, 17, 1559325819852243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Extracts | Code | Yield (%) | Platelet Aggregation (%) |
---|---|---|---|
Aqueous whole tomato pomace extract cycle 1 | AWTPE1 | 3.57 | 46 ± 12 |
Aqueous whole tomato pomace extract cycle 3 | AWTPE3 | 3.45 | 32 ± 9 ** |
Aqueous whole tomato pomace extract cycle 6 | AWTPE6 | 2.13 | 48 ± 3 |
Ethanolic whole tomato pomace extract cycle 1 | EWTPEC1 | 0.82 | 52 ± 8 |
Ethanolic whole tomato pomace extract cycle 3 | EWTPEC3 | 0.68 | 32 ± 9 ** |
Ethanolic whole tomato pomace extract cycle 6 | EWTPEC6 | 0.57 | 51 ± 9 |
Aqueous seedless tomato pomace extract cycle 1 | ASTPEC1 | 1.31 | 61 ± 7 |
Aqueous seedless tomato pomace extract cycle 3 | ASTPEC3 | 1.87 | 46 ± 9 |
Aqueous seedless tomato pomace extract cycle 6 | ASTPEC6 | 0.80 | 26 ± 6 *** |
Ethanolic seedless tomato pomace extract cycle 1 | ESTPEC1 | ND | ND |
Ethanolic seedless tomato pomace extract cycle 3 | ESTPEC3 | 0.59 | 45 ± 9 |
Ethanolic seedless tomato pomace extract cycle 6 | ESTPEC6 | 0.46 | 29 ± 7 ** |
Aqueous seed extract cycle 1 | ASEC1 | 2.51 | 29 ± 8 ** |
Aqueous seed extract cycle 3 | ASEC3 | 1.60 | 34 ± 2 * |
Aqueous seed extract cycle 6 | ASEC6 | 3.45 | 40 ± 7 |
Ethanolic seed extract cycle 1 | ESEC1 | 0.48 | 38 ± 4 |
Ethanolic seed extract cycle 3 | ESEC3 | 1.44 | 47 ± 8 |
Ethanolic seed extract cycle 6 | ESEC6 | 1.27 | 52 ± 12 |
Aqueous extract, 50% tomato pomace/50% seed cycle 1 | AE5TPSC1 | 2.96 | 27 ± 12 *** |
Aqueous extract, 50% tomato pomace/50% seed cycle 3 | AE5TPSC3 | 4.43 | 36 ± 8 |
Aqueous extract, 50% tomato pomace/50% seed cycle 6 | AE5TPSC6 | 2.61 | 54 ± 9 |
Ethanolic extract, 50% tomato pomace/50% seed cycle 1 | EE5TPSC1 | 1.11 | 29 ± 12 ** |
Ethanolic extract, 50% tomato pomace/50% seed cycle 3 | EE5TPSC3 | ND | ND |
Ethanolic extract, 50% tomato pomace/50% seed cycle 6 | EE5TPSC6 | ND | ND |
Aqueous extract, 80% tomato pomace/20% seed cycle 1 | AE8TPSC1 | 2.94 | 41 ± 7 |
Aqueous extract, 80% tomato pomace/20% seed cycle 3 | AE8TPSC3 | 4.25 | 40 ± 11 |
Aqueous extract, 80% tomato pomace/20% seed cycle 6 | AE8TPSC6 | 4.08 | 38 ± 11 |
Ethanolic extract, 80% tomato pomace/20% seed cycle 1 | EE8TPSC1 | 2.29 | 39 ± 15 |
Ethanolic extract, 80% tomato pomace/20% seed cycle 3 | EE8TPSC3 | 1.07 | 52 ± 16 |
Ethanolic extract, 80% tomato pomace/20% seed cycle 6 | EE8TPSC6 | 1.28 | 39 ± 12 |
Non-ultrasound-assisted aqueous whole tomato pomace extract | 64 ± 11 | ||
Control (maximum platelet aggregation) | 87 ± 6 |
Samples | |||
---|---|---|---|
Compounds ** | AWTPE3 * | ASEC3 | ASTPEC3 |
Flavonoids (mg/100 g Dry Weight) | |||
Gallic acid | 0.83 | 6.94 | 0.53 |
Ferulic acid | 2.44 | 9.08 | 3.68 |
Coumaric acid | 88.56 | 2.58 | <0.001 |
Phloridzin | 4.71 | 1.35 | 2.62 |
Phloretin | 97.31 | 26.72 | 1.71 |
Procyanidin B2 | 1868.49 | 76.62 | 27.95 |
Apigenin-7-O-glucoside | <0.001 | 0.196 | <0.001 |
Kaempferol-3-O-glucoside | 2032.58 | 415.39 | <0.001 |
Luteolin-7-O-glucoside | 63.34 | 55.77 | 57.63 |
Genistein | <0.001 | 0.196 | <0.001 |
Kaempferol | 77.09 | <0.001 | <0.001 |
Daidzein | <0.001 | 0.02 | <0.001 |
Quercetin | 408.23 | <0.001 | 7.74 |
Quercitrin | 1.96 | 0.003 | <0.001 |
Rutin | 0.262 | 0.065 | 0.012 |
Epicatechin | 0.131 | 0.026 | <0.001 |
Nucleosides (µg/100 g Dry Weight) | |||
Adenosine | 42.90 | <0.001 | <0.001 |
Inosine | 57.20 | 42.21 | <0.001 |
Guanosine | 20.97 | 7.44 | 7.26 |
Carotenoids (mg/100 g Dry Weight) | |||
Lycopene | <0.001 | <0.001 | 7.74 |
β-Carotene | 55.5 | 4.3 | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concha-Meyer, A.; Palomo, I.; Plaza, A.; Gadioli Tarone, A.; Junior, M.R.M.; Sáyago-Ayerdi, S.G.; Fuentes, E. Platelet Anti-Aggregant Activity and Bioactive Compounds of Ultrasound-Assisted Extracts from Whole and Seedless Tomato Pomace. Foods 2020, 9, 1564. https://doi.org/10.3390/foods9111564
Concha-Meyer A, Palomo I, Plaza A, Gadioli Tarone A, Junior MRM, Sáyago-Ayerdi SG, Fuentes E. Platelet Anti-Aggregant Activity and Bioactive Compounds of Ultrasound-Assisted Extracts from Whole and Seedless Tomato Pomace. Foods. 2020; 9(11):1564. https://doi.org/10.3390/foods9111564
Chicago/Turabian StyleConcha-Meyer, Anibal, Iván Palomo, Andrea Plaza, Adriana Gadioli Tarone, Mário Roberto Maróstica Junior, Sonia G. Sáyago-Ayerdi, and Eduardo Fuentes. 2020. "Platelet Anti-Aggregant Activity and Bioactive Compounds of Ultrasound-Assisted Extracts from Whole and Seedless Tomato Pomace" Foods 9, no. 11: 1564. https://doi.org/10.3390/foods9111564
APA StyleConcha-Meyer, A., Palomo, I., Plaza, A., Gadioli Tarone, A., Junior, M. R. M., Sáyago-Ayerdi, S. G., & Fuentes, E. (2020). Platelet Anti-Aggregant Activity and Bioactive Compounds of Ultrasound-Assisted Extracts from Whole and Seedless Tomato Pomace. Foods, 9(11), 1564. https://doi.org/10.3390/foods9111564