Novel Biodegradable Starch Film for Food Packaging with Antimicrobial Chicory Root Extract and Phytic Acid as a Cross-Linking Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Microorganism Strains
2.3. Preparation of Chicory Root Extract
2.4. Preparation of Starch Films
2.5. Analysis of Properties of Chicory Root Extracts
2.5.1. Analysis of Sesquiterpene Lactone Concentration
2.5.2. Analysis of Reducing Sugars and Nonreducing Carbohydrate Concentration
2.5.3. Analysis of Total Polyphenol Content
2.5.4. Measurement of Color Parameters
2.5.5. Antibacterial Activity of Chicory Root Extracts
2.6. Analysis of Film Properties
2.6.1. Water Content Analysis
2.6.2. Thickness Measurements
2.6.3. Scanning Electron Microscopy Imaging
2.6.4. Measurement of Color Parameters
2.6.5. Tensile Strength Measurement
2.6.6. Analysis of Swelling in Water
2.6.7. Water Vapor Permeability Analysis
2.6.8. Light Transmittance Measurement
2.6.9. Antimicrobial Activity
2.7. Statistical Methods
3. Results and Discussion
3.1. Chemical Composition and Properties of Chicory Root Extracts
3.2. Antibacterial Activity of Chicory Root Extracts
3.3. Properties of Antimicrobial Biodegradable Starch Film with Chicory Root Extract and Phytic Acid
3.3.1. Physicochemical Properties of Starch Films
3.3.2. Antimicrobial Properties of the Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, F. Starch based Pickering emulsions: Fabrication, properties, and applications. Trends Food Sci. Technol. 2019, 85, 129–137. [Google Scholar] [CrossRef]
- Park, E.Y.; Lim, S.T. Characterization of waxy starches phosphorylated using phytic acid. Carbohydr. Polym. 2019, 225, 115225. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Li, T.; Zhang, S.; Ma, P.; Shi, D.; Chen, M.; Dong, W. A bio-based flame-retardant starch based on phytic acid. ACS Sustain. Chem. Eng. 2020, 8, 10265–10274. [Google Scholar] [CrossRef]
- Oatway, L.; Vasanthan, T.; Helm, J.H. Phytic acid. Food Rev. Int. 2001, 17, 419–431. [Google Scholar] [CrossRef]
- Kalali, E.N.; Zhang, L.; Shabestari, M.E.; Croyal, J.; Wang, D.Y. Flame-Retardant wood polymer composites (WPCs) as potential fire safe bio-based materials for building products: Preparation, flammability and mechanical properties. Fire Saf. J. 2019, 107, 210–216. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. [Google Scholar] [CrossRef]
- GRAS Notices. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=GRASNotices&id=381 (accessed on 6 October 2020).
- Lei, Y.; Mao, L.; Yao, J.; Li, Z. Efficient gas barrier and antibacterial properties of poly(lactic acid) nanocomposites: Functionalization with phytic acid–Cu(II) loaded layered clay. Materials 2020, 13, 2033. [Google Scholar] [CrossRef]
- Massoud, I.; Amin, A.; Crops, S.; Inst, R. Chemical and technological studies on chicory (Cichorium intybus L.) and its applications in some functional food. J. Agric. Res. 2009, 14, 735–756. [Google Scholar]
- Mensink, M.A.; Frijlink, H.W.; Van Der Voort Maarschalk, K.; Hinrichs, W.L.J. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym. 2015, 130, 405–419. [Google Scholar] [CrossRef] [Green Version]
- Juśkiewicz, J.; Zary-Sikorska, E.; Zduńczyk, Z.; Król, B.; Jurgoński, A. Physiological effects of chicory root preparations with various levels of fructan and polyphenolic fractions in diets for rats. Arch. Anim. Nutr. 2011, 65, 74–87. [Google Scholar] [CrossRef]
- Nwafor, I.C.; Shale, K.; Achilonu, M.C. Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement. Sci. World J. 2017, 2017, 7343928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puhlmann, M.L.; de Vos, W.M. Back to the roots: Revisiting the use of the fiber-rich Cichorium intybus L. Taproots. Adv. Nutr. 2020, 11, 878–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juśkiewicz, J.; Zduńczyk, Z.; Żary-Sikorska, E.; Król, B.; Milala, J.; Jurgoński, A. Effect of the dietary polyphenolic fraction of chicory root, peel, seed and leaf extracts on caecal fermentation and blood parameters in rats fed diets containing prebiotic fructans. Br. J. Nutr. 2011, 105, 710–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Su, Z.; Yang, Y.; Ba, H.; Aisa, H.A. Isolation of three sesquiterpene lactones from the roots of Cichorium glandulosum Boiss. et Huet. by high-speed counter-current chromatography. J. Chromatogr. A 2007, 1176, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Koner, A.; Ghosh, S.; Roy, P. Isolation of antimicrobial compounds from chicory root. J. Pure Appl. Microbiol. 2011, 1, 13–18. [Google Scholar]
- Street, R.A.; Sidana, J.; Prinsloo, G. Cichorium intybus: Traditional uses, phytochemistry, pharmacology, and toxicology. Evid. Based Complement. Altern. Med. 2013, 2013, 579319. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D.; Kim, D.-H.; Chon, J.-W.; Kim, H.; Kim, H.-S.; Song, K.-Y.; Kang, I.-B.; Kim, Y.-J.; Park, J.-H.; Jang, H.-S.; et al. The Antimicrobial activity of the crude extracts from Cichorium intybus L. (chicory) against Bacillus cereus in various dairy Foods. J. Milk Sci. Biotechnol. 2016, 34, 239–244. [Google Scholar] [CrossRef]
- Jadav, K.; Gowda, N. Antibacterial and antioxidant properties of silk fabric dyed with Cichorium intybus root extract. Int. J. Pharmacogn. 2017, 4, 299–304. [Google Scholar] [CrossRef]
- Chana-Thaworn, J.; Chanthachum, S.; Wittaya, T. Properties and antimicrobial activity of edible films incorporated with kiam wood (Cotyleobium lanceotatum) extract. LWT Food Sci. Technol. 2011, 44, 284–292. [Google Scholar] [CrossRef]
- Maizura, M.; Fazilah, A.; Norziah, M.H.; Karim, A.A. Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemongrass oil. J. Food Sci. 2007, 72. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Montero, P.; Fernández-Martín, F.; Gómez-Guillén, M.C. Physico-Chemical and film-forming properties of bovine-hide and tuna-skin gelatin: A comparative study. J. Food Eng. 2009, 90, 480–486. [Google Scholar] [CrossRef]
- Hong, Y.H.; Chao, W.W.; Chen, M.L.; Lin, B.F. Ethyl acetate extracts of alfalfa (Medicago sativa L.) sprouts inhibit lipopolysaccharide-induced inflammation in vitro and In Vivo. J. Biomed. Sci. 2009, 16, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staroszczyk, H.; Kusznierewicz, B.; Malinowska-Pańczyk, E.; Sinkiewicz, I.; Gottfried, K.; Kołodziejska, I. Fish gelatin films containing aqueous extracts from phenolic-rich fruit pomace. LWT Food Sci. Technol. 2020, 117, 108613. [Google Scholar] [CrossRef]
- D’Antuono, L.F.; Ferioli, F.; Manco, M.A. The impact of sesquiterpene lactones and phenolics on sensory attributes: An investigation of a curly endive and escarole germplasm collection. Food Chem. 2016, 199, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Pycia, K.; Gryszkin, A.; Berski, W.; Juszczak, L. The influence of chemically modified potato maltodextrins on stability and rheological properties of model oil-in-water emulsions. Polymers 2018, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Sinkovič, L.; Jamnik, P.; Korošec, M.; Vidrih, R.; Meglič, V. In-Vitro and In-Vivo antioxidant assays of chicory plants (Cichorium intybus L.) as influenced by organic and conventional fertilisers. BMC Plant Biol. 2020, 20, 36. [Google Scholar] [CrossRef] [Green Version]
- Ju, A.; Baek, S.K.; Kim, S.; Song, K.B. Development of an antioxidative packaging film based on khorasan wheat starch containing moringa leaf extract. Food Sci. Biotechnol. 2019, 28, 1057–1063. [Google Scholar] [CrossRef]
- Nowak, A.; Koch-Wilk, M.; Pogorzelski, E.; Czyżowska, A. Effect of nitrogen sources on fermentation process and formation of hydrogen sulfide and ethyl carbamate by wine yeast. Biotechnol. Food Sci. 2013, 77, 11–23. [Google Scholar]
- Basiak, E.; Lenart, A.; Debeaufort, F. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers 2018, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Basiak, E.; Lenart, A.; Debeaufort, F. Effect of starch type on the physico-chemical properties of edible films. Int. J. Biol. Macromol. 2017, 98, 348–356. [Google Scholar] [CrossRef]
- Makaremi, M.; Yousefi, H.; Cavallaro, G.; Lazzara, G.; Goh, C.B.S.; Lee, S.M.; Solouk, A.; Pasbakhsh, P. Safely dissolvable and healable active packaging films based on alginate and pectin. Polymers 2019, 11, 1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano-Navarro, J.I.; Díaz-Zavala, N.P.; Velasco-Santos, C.; Martínez-Hernández, A.L.; Tijerina-Ramos, B.I.; García-Hernández, M.; Rivera-Armenta, J.L.; Páramo-García, U.; Reyes-de la Torre, A.I. Antimicrobial, optical and mechanical properties of chitosan-starch films with natural extracts. Int. J. Mol. Sci. 2017, 18, 997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, H.; Kondo, Y.; Nagasaka, T.; Satoh, A. Allelochemicals in chicory and utilization in processed foods. J. Chem. Ecol. 2000, 26, 2233–2241. [Google Scholar] [CrossRef]
- Frey, M.; Schmauder, K.; Pateraki, I.; Spring, O. Biosynthesis of Eupatolide—A metabolic route for sesquiterpene lactone formation involving the P450 enzyme CYP71DD6. ACS Chem. Biol. 2018, 13, 1536–1543. [Google Scholar] [CrossRef]
- Graziani, G.; Ferracane, R.; Sambo, P.; Santagata, S.; Nicoletto, C.; Fogliano, V. Profiling chicory sesquiterpene lactones by high resolution mass spectrometry. Food Res. Int. 2015, 67, 193–198. [Google Scholar] [CrossRef]
- Foster, J.G.; Clapham, W.M.; Belesky, D.P.; Labreveux, M.; Hall, M.H.; Sanderson, M.A. Influence of cultivation site on sesquiterpene lactone composition of forage chicory (Cichorium intybus L.). J. Agric. Food Chem. 2006, 54, 1772–1778. [Google Scholar] [CrossRef]
- Papetti, A.; Daglia, M.; Aceti, C.; Sordelli, B.; Spini, V.; Carazzone, C.; Gazzani, G. Hydroxycinnamic acid derivatives occurring in Cichorium endivia vegetables. J. Pharm. Biomed. Anal. 2008, 48, 472–476. [Google Scholar] [CrossRef]
- Budryn, G.; Nebesny, E.; Podsędek, A.; Zyzelewicz, D.; Materska, M.; Jankowski, S.; Janda, B. Effect of different extraction methods on the recovery of chlorogenic acids, caffeine and Maillard reaction products in coffee beans. Eur. Food Res. Technol. 2009, 228, 913–922. [Google Scholar] [CrossRef]
- Milala, J.; Grzelak, K.; Król, B.; Juśkiewicz, J.; Zduńczyk, Z. Composition and properties of chicory extracts rich in fructans and polyphenols. Pol. J. Food Nutr. Sci. 2009, 59, 35–43. [Google Scholar]
- Zeaiter, Z.; Regonesi, M.E.; Cavini, S.; Labra, M.; Sello, G.; Di Gennaro, P. Extraction and characterization of inulin-type fructans from artichoke wastes and their effect on the growth of intestinal bacteria associated with health. BioMed Res. Int. 2019, 2019, 1083952. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Rawat, A.; Ganie, S.A.; Agnihotri, R.K.; Sharma, R.; Mahajan, S.; Gupta, A. In Vitro antibacterial activity of Cichorium intybus against some pathogenic bacteria. Br. J. Pharm. Res. 2013, 3, 767–775. [Google Scholar] [CrossRef]
- Nandagopal, S.; Kumari, B.D.R. Phytochemical and antibacterial studies of chicory (Cichorium intybus L.). Adv. Biol. Res. 2007, 1, 17–21. [Google Scholar]
- Andrade, E.F.; Carpiné, D.; Dagostin, J.L.A.; Barison, A.; Rüdiger, A.L.; de Muñiz, G.I.B.; Masson, M.L. Identification and antimicrobial activity of the sesquiterpene lactone mixture extracted from Smallanthus sonchifolius dried leaves. Eur. Food Res. Technol. 2017, 243, 2155–2161. [Google Scholar] [CrossRef]
- Ivanescu, B.; Miron, A.; Corciova, A. Sesquiterpene lactones from Artemisia genus: Biological activities and methods of analysis. J. Anal. Methods Chem. 2015, 2015, 247685. [Google Scholar] [CrossRef] [Green Version]
- Wińska, K.; Grabarczyk, M.; Mączka, W.; Żarowska, B.; Maciejewska, G.; Anioł, M. Antimicrobial activity of new bicyclic lactones with three or four methyl groups obtained both synthetically and biosynthetically. J. Saudi Chem. Soc. 2018, 22, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, Q.; Liu, Y.; Chen, G.; Cui, J. Antimicrobial and antioxidant activities of Cichorium intybus root extract using orthogonal matrix design. J. Food Sci. 2013, 78, M258–M263. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.M. Antimicrobial effects of egyptian local chicory, Cichorium endivia subsp. pumilum. Int. J. Microbiol. 2018, 2018, 6475072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, T.; Rub, R.A.; Sasikumar, S. Antimicrobial screening of Cichorium intybus seed extracts. Arab. J. Chem. 2016, 9, S1569–S1573. [Google Scholar] [CrossRef] [Green Version]
- Afzal, M.; Shahid, M.; Mehmood, Z.; Bukhari, S.A.; Talpur, M.M.A. Antimicrobial activity of extract and fractions of different parts and gc-ms profiling of essential oil of Cichorium intybus extracted by super critical fluid extraction. Asian J. Chem. 2014, 26, 531–536. [Google Scholar] [CrossRef]
- Eslami, H.; Batavani, R.A.; Asr I-Rezaei, S.; Hobbenaghi, R. Changes of stress oxidative enzymes in rat mammary tissue, blood and milk after experimental mastitis induced by E. coli lipopolysaccharide. Vet. Res. Forum. 2015, 6, 131–136. [Google Scholar]
- Eslami, H.; Babaei, H.; Falsafi, P.; Rahbar, M.; Najar-Karimi, F.; Pourzare-Mehrbani, S. Evaluation of the antifungal effect of chicory extracts on Candida glabrata and Candida krusei in a laboratory environment. J. Contemp. Dent. Pract. 2017, 18, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Badakhasann, S.; Bhatnagar, S. Cichorium intybus an anti-fungal drug: A prospective study in tertiary care hospital of Kashmir Valley. ACTA Sci. Microbiol. 2019, 2, 94–97. [Google Scholar]
- Ghafoor, B.; Ali, M.N.; Ansari, U.; Bhatti, M.F.; Mir, M.; Akhtar, H.; Darakhshan, F. New biofunctional loading of natural antimicrobial agent in biodegradable polymeric films for biomedical applications. Int. J. Biomater. 2016, 2016, 6964938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.; Qian, Y.; Wei, J.; Zhou, C. Polymeric antimicrobial food packaging and its applications. Polymers 2019, 11, 560. [Google Scholar] [CrossRef] [Green Version]
Bacterial Strain | Source | Accession Number |
---|---|---|
Gram-positive bacteria | ||
Bacillus subtilis | NCAIM | 01644 |
Staphylococcus aureus | ATCC | 10536 |
Gram-negative bacteria | ||
Pseudomonas fluorescens | ATCC | 13525 |
Escherichia coli | ATCC | 10536 |
Fungi | ||
Candida albicans | ATCC | 10231 |
Aspergillus niger | ATCC | 16404 |
Characteristics of Strain Growth | Effect | Symbol of the Effect |
---|---|---|
Growth inhibition around zone >1 mm and under film | Very good activity | +++ |
Growth inhibition around zone <1 mm or no growth inhibition around zone and growth inhibition under sample | Good activity | ++ |
No growth inhibition around zone and slight growth inhibition under sample | Low activity | + |
No growth inhibition around zone No growth inhibition under sample | Lack of activity | − |
Composition and Properties | Extract | |||
---|---|---|---|---|
W | WM70/30 | WM50/50 | WE | |
Sesquiterpene lactones (g/100 g db) | ||||
8-Deoxylactucin | 1.567 ± 0.107 a | 1.094 ± 0.084 b | 0.809 ± 0.068 c | 1.634 ± 0.089 a |
Lactucin | 0.856 ± 0.072 b | 0.554 ± 0.038 c | 0.515 ± 0.041 c | 2.443 ± 0.170 a |
11(S),13-Dihydrolactucin | 0.398 ± 0.025 a | 0.328 ± 0.025 b | 0.285 ± 0.17 c | 0.304 ± 0.027 b,c |
8-Deoxylactucin oxalate | 1.433 ± 0.092 a | 1.291 ± 0.074 a | 0.946 ± 0.075 b | 0.312 ± 0.045 c |
Lactucopicrin | 0.142 ± 0.008 b | 0.141 ± 0.007 b | 0.045 ± 0.003 c | 0.336 ± 0.030 a |
11(Z),13-Dihydrolactucopicrin | 0.118 ± 0.005 a | 0.083 ± 0.02 b | 0.057 ± 0.008 c | 0.108 ± 0.008 a |
Total sesquiterpene lactones | 4.514 ± 0.348 b | 3.491 ± 0.208 c | 2.657 ± 0.170 d | 5.581 ± 0.418 a |
Total polyphenols (g/100 g db) | 1.742 ± 0.093 a | 1.221 ± 0.261 b | 1.082 ± 0.105 b | 1.659 ± 0.128 a |
Carbohydrates (g/100 g db) | ||||
Reducing sugars | 12.44 ± 1.04 a,b | 14.62 ± 1.32 a | 15.81 ± 2.94 a | 11.17 ± 1.31 b |
Nonreducing carbohydrates | 66.92 ± 4.39 a | 59.42 ± 3.22 b | 52.69 ± 3.28 c | 62.81 ± 6.71 a,b |
Total carbohydrates | 79.36 ± 5.28 a | 74.04 ± 4.96 a,b | 68.50 ± 5.52 b | 73.98 ± 7.04 a,b |
Color | ||||
L* | 46.11 ± 1.01 d | 51.81 ± 1.04 b | 56.78 ± 1.18 a | 49.21 ± 1.09 c |
a* | 4.28 ± 0.02 b | 4.29 ± 0.01 b | 5.38 ± 0.01 a | −1.29 ± 0.01 c |
b* | 7.21 ± 0.02 d | 11.73 ± 0.02 c | 16.29 ± 0.03 b | 22.11 ± 0.04 a |
Bacterial Strain | Extract Conc. (%) | Extract | |||
---|---|---|---|---|---|
W | WM70/30 | WM50/50 | WE | ||
µmax (h−1) | |||||
Escherichia coli | 0 | 0.204 ± 0.021 a | 0.204 ± 0.021 a | 0.204 ± 0.021 b | 0.204 ± 0.021 c |
1 | 0.238 ± 0.061 a C | 0.200 ± 0.011 a C | 0.323 ± 0.097 a B | 0.486 ± 0.055 a A | |
2 | 0.231 ± 0.009 a B | 0.134 ± 0.011 b C | 0.248 ± 0.065 a,b A,B | 0.345 ± 0.087 a,b A | |
5 | 0.100 ± 0.042 b B,C | 0.064 ± 0.009 c C | 0.131 ± 0.025 c B | 0.259 ± 0.074 b,c A | |
Pseudomonas fluorescens | 0 | 0.540 ± 0.021 a | 0.540 ± 0.021 a | 0.540 ± 0.021 a | 0.540 ± 0.021 a |
1 | 0.201 ± 0.007 b C | 0.181 ± 0.009 b D | 0.511 ± 0.071 a A | 0.312 ± 0.007 b B | |
2 | 0.165 ± 0.002 c B | 0.117 ± 0.012 c C | 0.285 ± 0.069 b A | 0.289 ± 0.021 b A | |
5 | 0.106 ± 0.001 d B | 0.088 ± 0.007 d C | 0.222 ± 0.052 b A | 0.281± 0.062 b A | |
Bacillus subtilis | 0 | 0.256 ± 0.052 a | 0.256 ± 0.052 b | 0.256 ± 0.052 d | 0.256 ± 0.052 a |
1 | 0.114 ± 0.003 b D | 0.532 ± 0.023 a B | 1.127 ± 0.040 a A | 0.282 ± 0.028 a C | |
2 | 0.024 ± 0.006 c C | 0.102 ± 0.020 c B | 0.639 ± 0.028 b A | 0.152 ± 0.064 a,b B | |
5 | 0.001 ± 0.001 d D | 0.005 ± 0.001 d C | 0.374 ± 0.029 c A | 0.136 ± 0.061 b B | |
Staphylococcus aureus | 0 | 0.460 ± 0.022 a | 0.460 ± 0.022 c | 0.460 ± 0.022 b | 0.460 ± 0.022 a |
1 | 0.117 ± 0.008 b D | 0.840 ± 0.009 a B | 1.457 ± 0.205 a A | 0.292 ± 0.046 b C | |
2 | 0.115 ± 0.012 b D | 0.610 ± 0.013 b B | 1.360 ± 0.201 caA | 0.223 ± 0.021 c C | |
5 | 0.064 ± 0.041 c D | 0.464 ± 0.034 c A | 0.294 ± 0.090 c B | 0.169 ± 0.027 d C |
Bacterial Strain | Extract Conc. (%) | Extract | |||
---|---|---|---|---|---|
W | WM70/30 | WM50/50 | WE | ||
tLag (h) | |||||
Escherichia coli | 0 | 5.5 ± 2.1 b | 5.5 ± 2.1 b | 5.5 ± 2.1 a | 5.5 ± 2.1 b |
1 | 7.5 ± 3.2 a, b A | 8.3 ± 0.5 a A | 7.4 ± 3.3 a A | 7.5 ± 0.9 a,b A | |
2 | 9.9 ± 1.7 a A | 8.9 ± 2.0 a,b A | 7.9 ± 1.3 a A | 9.6 ± 1.8 a A | |
5 | 10.7 ± 0.8 a A | 9.9 ± 2.2 a A | 8.7 ± 2.0 a A | 10.3 ± 2.2 a A | |
Pseudomonas fluorescens | 0 | 8.6 ± 0.5 a | 8.6 ± 0.5 a | 8.6 ± 0.5 a | 8.6 ± 0.5 a |
1 | 5.8 ± 0.4 b A | 6.5 ± 0.9 b A | 5.7 ± 0.2 c A | 6.3 ± 0.1 c A | |
2 | 7.3 ± 0.8 a A | 6.6 ± 0.3 b A | 6.2 ± 0.4 b,c A | 6.8 ± 0.4 c A | |
5 | 8.7 ± 1.2 a A | 8.0 ± 0.6 a A | 6.7 ± 0.2 b B | 7.4 ± 0.1 b A | |
Bacillus subtilis | 0 | 9.9 ± 0.2 b | 9.9 ± 0.2 a | 9.9 ± 0.2 c | 9.9 ± 0.2 b |
1 | 0.2 ± 0.1 d C | 0.2 ± 0.1 d C | 7.0 ± 0.2 d A | 5.9 ± 0.5 d B | |
2 | 5.2 ± 0.1 c C | 2.1 ± 0.3 c D | 13.5 ± 0.4 b A | 8.9 ± 0.1 c B | |
5 | 12.8 ± 0.2 a C | 5.7 ± 0.3 b D | 26.2 ± 0.9 a A | 20.5 ± 0.3 a B | |
Staphylococcus aureus | 0 | 10.0 ± 1.7 a | 10.0 ± 1.7 a | 10.0 ± 1.7 a | 10.0 ± 1.7 a |
1 | 10.6 ± 3.0 a A | 4.8 ± 2.4 b B | 4.0 ± 2.7 b B | 6.3 ± 2.7 a A,B | |
2 | 10.8 ± 3.2 a A | 5.2 ± 2.8 b A,B | 2.5 ± 0.1 b B | 7.8 ± 4.0 a A | |
5 | 12.8 ± 1.4 a A | 6.3 ± 3.3 a,b B | 8.3 ± 0.1 a B | 8.4 ± 1.4 a B |
Concentration of the Extract | Film | |||
---|---|---|---|---|
FW | FWM70/30 | FWM50/50 | FWE | |
Water Content (g/100 g) | ||||
Control | 7.85 ± 0.52 a | 7.85 ± 0.52 a | 7.85 ± 0.52 a | 7.85 ± 0.52 a |
0% | 8.03 ± 0.79 a | 8.03 ± 0.79 a | 8.03 ± 0.79 a | 8.03 ± 0.79 a |
1% | 7.68 ± 0.50 a A | 8.03 ± 0.43 a A | 8.47 ± 0.39 a A | 7.52 ± 0.65 a A |
2% | 7.29 ± 0.82 a A,B | 7.60 ± 0.61 a A,B | 8.30 ± 0.84 a A | 6.59 ± 0.79 a B |
5% | 5.25 ± 0.48 b C | 6.51 ± 0.22 b B | 8.01 ± 0.55 a A | 4.83 ± 0.26 b C |
Thickness (mm) | ||||
Control | 0.106 ± 0.021 c | 0.106 ± 0.021 c | 0.106 ± 0.021 c | 0.106 ± 0.021 c |
0% | 0.147 ± 0.018 b | 0.147 ± 0.018 b | 0.147 ± 0.018 a | 0.147 ± 0.018 b |
1% | 0.150 ± 0.009 b A | 0.137 ± 0.012 b A,B | 0.135 ± 0.008 b,c B | 0.166 ± 0.018 b A |
2% | 0.171 ± 0.015 b A | 0.158 ± 0.011 b A | 0.142 ± 0.020 a,b B | 0.167 ± 0.020 b A |
5% | 0.213 ± 0.019 a A | 0.200 ± 0.017 a A | 0.160 ± 0.011 a B | 0.209 ± 0.025 a A |
Concentration of Extract | Film | |||
---|---|---|---|---|
FW | FWM70/30 | FWM50/50 | FWE | |
Tensile strength (N) | ||||
Control | 8.85 ± 0.64 c | 8.85 ± 0.64 c | 8.85 ± 0.64 b | 8.85 ± 0.64 c |
0% | 10.72 ± 0.82 b | 10.72 ± 0.82 b | 10.72 ± 0.82 a | 10.72 ± 0.82 b |
1% | 8.92 ± 0.47 c A | 7.95 ± 0.62 c A | 7.38 ± 0.60 c B | 6.69 ± 0.57 d B |
2% | 9.06 ± 0.88 c A | 8.62 ± 0.55 c A | 7.42 ± 0.39 c B | 7.64 ± 0.63 c,d B |
5% | 19.02 ± 1.14 a A | 13.93 ± 0.94 a B | 10.79 ± 0.82 a C | 15.52 ± 2.12 a B |
Swelling (g/100 g) | ||||
Control | 167.34 ± 10.77 a | 167.34 ± 10.77 a | 167.34 ± 10.77 a | 167.34 ± 10.77 a |
0% | 144.59 ± 9.34 b | 144.59 ± 9.34 b | 144.59 ± 9.34 b | 144.59 ± 9.34 b |
1% | 123.75 ± 7.15 c A | 125.07 ± 6.91 c A | 134.06 ± 7.22 b A | 105.45 ± 4.58 c B |
2% | 123.30 ± 5.80 c A | 123.08 ± 8.63 c A | 131.65 ± 9.38 b A | 104.84 ± 6.33 c B |
5% | 89.22 ± 4.09 d C | 99.35 ± 5.60 d B | 114.24 ± 3.87 c A | 82.85 ± 5.18 d C |
Water Vapor Permeability (G/[M2*D]) | ||||
Control | 74.42 ± 5.28 a | 74.42 ± 5.28 a | 74.42 ± 5.28 a | 74.42 ± 5.28 a |
0% | 16.25 ± 0.94 b | 16.25 ± 0.94 b | 16.25 ± 0.94 b | 16.25 ± 0.94 b |
1% | 14.61 ± 0.75 b,c A | 13.50 ± 0.82 c A | 9.31 ± 0.49 c B | 13.46 ± 1.26 c A |
2% | 13.85 ± 0.92 c A | 10.31 ± 0.55 d B | 7.66 ± 0.60 d C | 11.44 ± 0.93 c B |
5% | 13.24 ± 1.17 c A | 6.83 ± 0.51 e C | 6.35 ± 0.64 d C | 8.18 ± 0.79 d B |
Concentration of Extract | Film | |||
---|---|---|---|---|
FW | FWM70/30 | FWM50/50 | FWE | |
L* | ||||
Control | 97.82 ± 0.74 a | 97.82 ± 0.74 a | 97.82 ± 0.74 a | 97.82 ± 0.74 a |
0% | 96.43 ± 0.52 b | 96.43 ± 0.52 b | 96.43 ±0.52 b | 96.43 ± 0.52 b |
1% | 89.65 ± 0.37 c B | 91.08 ± 0.73 cA | 91.51 ± 0.64 c A | 83.74 ± 0.73 c C |
2% | 84.51 ± 0.44 d C | 86.07 ± 0.40 d B | 87.12 ± 0.55 d A | 75.53 ± 0.38 d D |
5% | 76.69 ± 0.60 e A | 77.27 ± 0.27 e A | 77.43 ± 0.90 e A | 59.74 ± 0.41 e B |
a* | ||||
Control | −0.90 ± 0.03 c | −0.90 ± 0.03 c | −0.90 ± 0.03 b | −0.90 ± 0.03 d |
0% | −2.16 ± 0.09 e | −2.16 ± 0.09 e | −2.16 ± 0.09 d | −2.16 ± 0.09 e |
1% | −1.49 ± 0.07 d B | −1.91 ± 0.06 d C | −2.08 ± 0.15 d C | 0.00 ± 0.01 c A |
2% | −0.24 ± 0.05 b B | −0.80 ± 0.01 b C | −1.26 ± 0.06 c D | 3.28 ± 0.11 b A |
5% | 4.73 ± 0.13 a B,C | 4.43 ± 0.09 a C | 4.90 ± 0.18 a B | 13.43 ± 0.16 a A |
b* | ||||
Control | 4.84 ± 0.28 e | 4.84 ± 0.28 e | 4.84 ± 0.28 e | 4.84 ± 0.28 d |
0% | 10.54 ± 0.74 d | 10.54 ± 0.74 d | 10.54 ± 0.74 d | 10.54 ± 0.74 c |
1% | 24.95 ± 1.20 c B | 26.32 ± 2.09 c B | 32.22 ± 2,59 c A | 23.53 ± 1.61 b B |
2% | 35.47 ± 1.74 b B | 35.81 ± 1.72 b B | 38.26 ± 3.14 b A,B | 40.34 ± 3.09 a A |
5% | 48.77 ± 2,83 a A | 50.19 ± 2,51 a A | 51.61 ± 3.52 a A | 42.86 ± 2.94 a B |
Concentration of Extract | Film | |||
---|---|---|---|---|
FW | FWM70/30 | FWM50/50 | FWE | |
Daylight | ||||
Control | 95.66 ± 7.38 a | 95.66 ± 7.38 a | 95.66 ± 7.38 a | 95.66 ± 7.38 a |
0% | 90.56 ± 6.43 a | 90.56 ± 6.43 a,b | 90.56 ± 6.43 a,b | 90.56 ± 6.43 a |
1% | 75.26 ± 4.27 b B | 80.15 ± 6.70 b A,B | 86.22 ± 5.02 b A | 63.78 ± 2.63 b C |
2% | 53.52 ± 3.19 c C | 62.60 ± 4.73 c B | 71.89 ± 3.90 c A | 37.65 ± 4.80 c D |
5% | 50.31 ± 2.98 c A | 51.99 ± 2.05 d A | 52.96 ± 4.47 d A | 13.47 ± 0.54 d B |
LED | ||||
Control | 95.81 ± 6.18 a | 95.81 ± 6.18 a | 95.81 ± 6.18 a | 95.81 ± 6.18 a |
0% | 89.19 ± 5.29 a | 89.19 ± 5.29 a,b | 89.19 ± 5.29 a,b | 89.19 ± 5.29 a |
1% | 77.67 ± 5.59 b A | 77.79 ± 6.58 b A | 78.95 ± 7.29 b,c A | 62.91 ± 5.18 b B |
2% | 59.19 ± 3.11 c B | 67.91 ± 2.25 c A | 70.93 ± 4.30 c A | 37.67 ± 3.75 c C |
5% | 38.72 ± 4.03 d B | 50.47 ± 4.06 d A | 53.95 ± 4.94 d A | 15.47 ± 1.89 d C |
UVA | ||||
Control | 96.83 ± 8.15 a | 96.83 ± 8.15 a | 96.83 ± 8.15 a | 96.83 ± 8.15 a |
0% | 93.67 ± 7.70 a | 93.67 ± 7.70 a | 93.67 ± 7.70 a | 93.67 ± 7.70 a |
1% | 46.67 ± 3.82 b B | 48.83 ± 2.78 b A,B | 55.50 ± 4.07 b A | 30.00 ± 2.05 b C |
2% | 22.67 ± 1.90 c B | 32.83 ± 2.77 c A | 37.00 ± 2.99 c A | 15.33 ± 1.27 c C |
5% | 13.67 ± 0.89 d B | 19.50 ± 1.02 d A | 21.67 ± 1.28 d A | 4.67 ± 0.33 d C |
UVB | ||||
Control | 97.92 ± 8.15 a | 97.92 ± 8.15 a | 97.92 ± 8.15 a | 97.92 ± 8.15 a |
0% | 93.61 ± 7.24 a,b | 93.61 ± 7.24 a | 93.61 ± 7.24 a | 93.61 ± 7.24 a |
1% | 80.69 ± 7.49 b A | 85.00 ± 5.21 a A | 88.06 ± 6.00 a A | 74.31 ± 5.01 b B |
2% | 61.25 ± 5.27 c B | 65.28 ± 3.94 b A,B | 73.06 ± 5.35 b A | 34.72 ± 2.77 c C |
5% | 41.94 ± 3.70 d B | 36.25 ± 2.78 c B | 55.42 ± 3.98 c A | 14.17 ± 1.84 d C |
Antimicrobial Activity | Film | |||
---|---|---|---|---|
FW | FWM70/30 | FWM50/50 | FWE | |
Antibacterial activity | ||||
Escherichia coli | ||||
LDPE | – | |||
0% | – | |||
1% | ++ | + | ++ | ++ |
2% | ++ | ++ | ++ | ++ |
5% | ++ | ++ | ++ | ++ |
Streptococcus aureus | ||||
LDPE | – | |||
0% | – | |||
1% | + | ++ | ++ | ++ |
2% | ++ | ++ | ++ | ++ |
5% | ++ | ++ | ++ | ++ |
Bacillus subtilis | ||||
LDPE | – | |||
0% | – | |||
1% | +++ | ++ | ++ | ++ |
2% | ++ | ++ | ++ | + |
5% | ++ | +++ | ++ | ++ |
Pseudomonas fluorescens | ||||
LDPE | – | |||
0% | – | |||
1% | + | ++ | ++ | + |
2% | + | ++ | ++ | ++ |
5% | ++ | ++ | ++ | ++ |
Antifungal activity | ||||
Candida albicans | ||||
LDPE | – | |||
0% | – | |||
1% | + | – | – | – |
2% | + | – | – | + |
5% | + | – | + | + |
Aspergillus niger | ||||
LDPE | – | |||
0% | – | |||
1% | + | + | ++ | + |
2% | + | + | + | + |
5% | ++ | ++ | ++ | ++ |
Sample Availability: Samples of the aerobic rice leaves extract are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaśkiewicz, A.; Budryn, G.; Nowak, A.; Efenberger-Szmechtyk, M. Novel Biodegradable Starch Film for Food Packaging with Antimicrobial Chicory Root Extract and Phytic Acid as a Cross-Linking Agent. Foods 2020, 9, 1696. https://doi.org/10.3390/foods9111696
Jaśkiewicz A, Budryn G, Nowak A, Efenberger-Szmechtyk M. Novel Biodegradable Starch Film for Food Packaging with Antimicrobial Chicory Root Extract and Phytic Acid as a Cross-Linking Agent. Foods. 2020; 9(11):1696. https://doi.org/10.3390/foods9111696
Chicago/Turabian StyleJaśkiewicz, Andrzej, Grażyna Budryn, Agnieszka Nowak, and Magdalena Efenberger-Szmechtyk. 2020. "Novel Biodegradable Starch Film for Food Packaging with Antimicrobial Chicory Root Extract and Phytic Acid as a Cross-Linking Agent" Foods 9, no. 11: 1696. https://doi.org/10.3390/foods9111696
APA StyleJaśkiewicz, A., Budryn, G., Nowak, A., & Efenberger-Szmechtyk, M. (2020). Novel Biodegradable Starch Film for Food Packaging with Antimicrobial Chicory Root Extract and Phytic Acid as a Cross-Linking Agent. Foods, 9(11), 1696. https://doi.org/10.3390/foods9111696