Critical Analysis of Pork QMRA Focusing on Slaughterhouses: Lessons from the Past and Future Trends
Abstract
:1. Introduction
2. Materials and Methods
- Web of Science: TITLE: (pork* OR swine* OR porc* OR pig* OR cochon*) AND TITLE: (risk* OR risque* OR “risk assessment” OR aqr OR QMRA OR exposure OR “model$ing”);
- Scopus: TITLE (pork* OR swine* OR porc* OR pig* OR cochon*) AND TITLE (risk* OR risque* OR “risk assessment” OR aqr OR QMRA OR exposure OR modeling OR modelling).
- Estimation of contamination levels in the slaughterhouse [135].
3. Results and Discussion
3.1. Analysis of Selected Studies
3.1.1. Pork Farm to Fork Chain
3.1.2. Pathogens Included in the Review of Pork QMRAs Studies
3.2. QMRA and Slaughterhouse
3.2.1. Transport and Lairage
3.2.2. Slaughtering
Stunning, Killing, Bleeding
Scalding and Dehairing
Singeing
Polishing, Washing
Evisceration
Splitting, Trimming
Chilling
3.2.3. Overall Impact of Slaughterhouse Operations
3.3. Mitigation Measures
3.3.1. Lairage Length
3.3.2. Slaughterhouse
3.3.3. Logistic Slaughter
3.3.4. Spray Scalding
3.3.5. Evisceration-Specific Procedures and Post-Evisceration Inspection
3.3.6. Double Singeing
3.3.7. Hot Water and Organic Acid Washes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization; Foodborne Disease Burden Epidemiology Reference Group. WHO Estimates of the Global Burden of Foodborne Diseases; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar] [CrossRef] [Green Version]
- EFSA. The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2012. EFSA J. 2012, 312, 3547. [Google Scholar]
- EFSA; ECDPC. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, e05926. [Google Scholar] [CrossRef] [Green Version]
- Devine, R. Meat consumption trends in the world and the European Union. Prod. Anim. 2003, 16, 2. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Meat and Dairy Production. Available online: https://ourworldindata.org/meat-production (accessed on 18 November 2020).
- EFSA. Scientific Opinion on the public health hazards to be covered by inspection of meat (swine). EFSA J 2011, 9, 2351. [Google Scholar] [CrossRef] [Green Version]
- Casas, M.; Martín, M. Hepatitis E virus and pigs: A zoonotic risk in Europe? Vet. J. 2010, 186, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, S.; Devleesschauwer, B.; Aspinall, W.; Cooke, R.; Corrigan, T.; Havelaar, A.; Angulo, F.; Gibb, H.; Kirk, M.; Lake, R.; et al. Attribution of global foodborne disease to specific foods: Findings from a World Health Organization structured expert elicitation. PLoS ONE 2017, 12, e0183641. [Google Scholar] [CrossRef] [Green Version]
- FAO; WHO. Interventions for the Control of Non-Typhoidal Salmonella spp. in Beef and Pork: Meeting Report and Systematic Review; World Health Organization: Geneva, Switzerland, 2016; ISBN 978-92-4-156524-0. [Google Scholar]
- EFSA. Opinion of the Scientific Panel on biological hazards (BIOHAZ) related to “Risk assessment and mitigation options of Salmonella in pig production”. EFSA J. 2006, 4, 341. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Principles and Guidelines for the Conduct of Microbiological Risk Assessment, (CAC/GL-30-1999); World Health Organization, Food and Agriculture Organization of the United Nations: Rome, Italy, 1999. [Google Scholar]
- Codex Alimentarius Commission. Principles and Guidelines for the Conduct of Microbiological Risk Management (MRM) (CAC/GL 63-2007); World Health Organization, Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Codex Alimentarius Commission. Working Principles for Risk Analysis Application in the Framework of the Codex Alimentarius (CAC/GL 62-2007); World Health Organization, Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Codex Alimentarius Commission. Working Principles for Risk Analysis for Food Safety for Application by Governments, (CAC/GL 62-2007); World Health Organization, Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Haberbeck, L.U.; Plaza-Rodríguez, C.; Desvignes, V.; Dalgaard, P.; Sanaa, M.; Guillier, L.; Nauta, M.; Filter, M. Harmonized terms, concepts and metadata for microbiological risk assessment models: The basis for knowledge integration and exchange. Microb. Risk Anal. 2018, 10, 3–12. [Google Scholar] [CrossRef]
- Romero-Barrios, P.; Hempen, M.; Messens, W.; Stella, P.; Hugas, M. Quantitative microbiological risk assessment (QMRA) of food-borne zoonoses at the European level. Food Control 2013, 29, 343–349. [Google Scholar] [CrossRef]
- Vigre, H.; Domingues, A.R.C.C.; Pedersen, U.B.; Hald, T. An Approach to Cluster EU Member States into Groups According to Pathways of Salmonella in the Farm-to-Consumption Chain for Pork Products: Clustering EU States According to Pathways of Salmonella. Risk Anal. 2016, 36, 450–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Membré, J.-M.; Boué, G. Quantitative microbiological risk assessment in food industry: Theory and practical application. Food Res. Int. 2018, 106, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alban, L.; Olsen, A.-M.; Nielsen, B.; Sørensen, R.; Jessen, B. Qualitative and quantitative risk assessment for human salmonellosis due to multi-resistant Salmonella Typhimurium DT104 from consumption of Danish dry-cured pork sausages. Prev. Vet. Med. 2002, 52, 251–265. [Google Scholar] [CrossRef]
- Anses. OPINION of the French Agency for Food, Environmental and Occupational Health & Safety on Salmonella Control Measures in the Pig Sector: Review of Knowledge and Quantitative Risk Assessment; Anses: Maison-Alfort, France, 2018; p. 17.
- Gonzales-Barron, U.; Butler, F. Risk of salmonellosis from the consumption of Irish fresh pork sausages. IJCAET 2015, 7, 287. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Soumpasis, I.; Butler, F.; Prendergast, D.; Duggan, S.; Duffy, G. Estimation of Prevalence of Salmonella on Pig Carcasses and Pork Joints, Using a Quantitative Risk Assessment Model Aided by Meta-Analysis. J. Food Prot. 2009, 72, 274–285. [Google Scholar] [CrossRef]
- Belluco, S.; Patuzzi, I.; Ricci, A. Bovine meat versus pork in Toxoplasma gondii transmission in Italy: A quantitative risk assessment model. Int. J. Food Microbiol. 2018, 269, 1–11. [Google Scholar] [CrossRef]
- Bollaerts, K.E.; Messens, W.; Delhalle, L.; Aerts, M.; Van der Stede, Y.; Dewulf, J.; Quoilin, S.; Maes, D.; Mintiens, K.; Grijspeerdt, K. Development of a Quantitative Microbial Risk Assessment for Human Salmonellosis Through Household Consumption of Fresh Minced Pork Meat in Belgium. Risk Anal. 2009, 29, 820–840. [Google Scholar] [CrossRef]
- Bollerslev, A.M.; Nauta, M.; Hald, T.; Hansen, T.B.; Aabo, S. A risk-based approach for evaluation of hygiene performance at pig slaughter. Food Control 2017, 75, 116–125. [Google Scholar] [CrossRef]
- Condoleo, R.; Rinaldi, L.; Sette, S.; Mezher, Z. Risk Assessment of Human Toxoplasmosis Associated with the Consumption of Pork Meat in Italy: Risk Assessment of Toxoplasmosis Associated with Pork Meat Products. Risk Anal. 2018, 38, 1202–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, L.A.T.; Popken, D.A. Quantitative Assessment of Human MRSA Risks from Swine: Quantitative Assessment of Human MRSA Risks from Swine. Risk Anal. 2014, 34, 1639–1650. [Google Scholar] [CrossRef] [PubMed]
- Crotta, M.; Lavazza, A.; Mateus, A.; Guitian, J. Quantitative risk assessment of hepatitis E virus: Modelling the occurrence of viraemic pigs and the presence of the virus in organs of food safety interest. Microb. Risk Anal. 2018, 9, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Delhalle, L.; Saegerman, C.; Messens, W.; Farnir, F.; Korsak, N.; Van Der Stede, Y.; Daube, G. Assessing Interventions by Quantitative Risk Assessment Tools To Reduce the Risk of Human Salmonellosis from Fresh Minced Pork Meat in Belgium. J. Food Prot. 2009, 72, 2252–2263. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.S.R.; Nauta, M.J.; Aabo, S. Variation in the effect of carcass decontamination impacts the risk for consumers. Food Control 2016, 59, 12–19. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on a Quantitative Microbiological Risk Assessment of Salmonella in slaughter and breeder pigs. EFSA J. 2010, 8, 1547. [Google Scholar] [CrossRef] [Green Version]
- Fajardo-Guerrero, M.; Rojas-Quintero, C.; Chamorro-Tobar, I.; Zambrano, C.; Sampedro, F.; Carrascal-Camacho, A. Exposure assessment of Salmonella spp. in fresh pork meat from two abattoirs in Colombia. Food Sci. Technol. Int. 2020, 26, 21–27. [Google Scholar] [CrossRef]
- Franssen, F.; Takumi, K.; van der Giessen, J.; Swart, A. Assessing the risk of human trichinellosis from pigs kept under controlled and non-controlled housing in Europe. Food Waterborne Parasitol. 2018, 10, 14–22. [Google Scholar] [CrossRef]
- Garrido, V.; García-Jalón, I.; Vitas, A.I.; Sanaa, M. Listeriosis risk assessment: Simulation modelling and “what if” scenarios applied to consumption of ready-to-eat products in a Spanish population. Food Control 2010, 21, 231–239. [Google Scholar] [CrossRef]
- Giovannini, A.; Prencipe, V.; Conte, A.; Marino, L.; Petrini, A.; Pomilio, F.; Rizzi, V.; Migliorati, G. Quantitative risk assessment of Salmonella spp. infection for the consumer of pork products in an Italian region. Food Control 2004, 15, 139–144. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Redmond, G.; Butler, F. A risk characterization model of Salmonella Typhimurium in Irish fresh pork sausages. Food Res. Int. 2012, 45, 1184–1193. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Redmond, G.; Butler, F. A consumer-phase exposure assessment of Salmonella typhimurium from Irish fresh pork sausages: I. Transport and refrigeration modules. Food Control 2010, 21, 1683–1692. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Cadavez, V.; Sheridan, J.J.; Butler, F. Modelling the effect of chilling on the occurrence of Salmonella on pig carcasses at study, abattoir and batch levels by meta-analysis. Int. J. Food Microbiol. 2013, 163, 101–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzales-Barron, U.; Redmond, G.; Butler, F. A consumer-phase exposure assessment of Salmonella Typhimurium from Irish fresh pork sausages: II. Cooking and consumption modules. Food Control 2010, 21, 1693–1702. [Google Scholar] [CrossRef]
- Guo, M.; Lambertini, E.; Buchanan, R.L.; Dubey, J.P.; Hill, D.E.; Gamble, H.R.; Jones, J.L.; Pradhan, A.K. Quantifying the risk of human Toxoplasma gondii infection due to consumption of fresh pork in the United States. Food Control 2017, 73, 1210–1222. [Google Scholar] [CrossRef] [Green Version]
- Gurman, P.M.; Ross, T.; Kiermeier, A. Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home. Risk Anal. 2018, 38, 2625–2645. [Google Scholar] [CrossRef]
- Hill, A.A.; Simons, R.L.; Swart, A.N.; Kelly, L.; Hald, T.; Snary, E.L. Assessing the Effectiveness of On-Farm and Abattoir Interventions in Reducing Pig Meat-Borne Salmonellosis within E.U. Member States. Risk Anal. 2016, 36, 546–560. [Google Scholar] [CrossRef]
- Hill, A.A.; Simons, R.R.L.; Kelly, L.; Snary, E.L. A Farm Transmission Model for Salmonella in Pigs, Applicable to E.U. Member States. Risk Anal. 2016, 36, 461–481. [Google Scholar] [CrossRef] [Green Version]
- Hurd, H.S.; Enøe, C.; Sørensen, L.; Wachman, H.; Corns, S.M.; Bryden, K.M.; Grenier, M. Risk-Based Analysis of the Danish Pork Salmonella Program: Past and Future. Risk Anal. 2008, 28, 341–351. [Google Scholar] [CrossRef]
- Kim, H.J.; Griffiths, M.W.; Fazil, A.M.; Lammerding, A.M. Probabilistic Risk Model for Staphylococcal Intoxication from Pork-Based Food Dishes Prepared in Food Service Establishments in Korea. J. Food Prot. 2009, 72, 1897–1908. [Google Scholar] [CrossRef]
- Mataragas, M.; Zwietering, M.H.; Skandamis, P.N.; Drosinos, E.H. Quantitative microbiological risk assessment as a tool to obtain useful information for risk managers—Specific application to Listeria monocytogenes and ready-to-eat meat products. Int. J. Food Microbiol. 2010, 141, S170–S179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, P.E.; Miller, G.Y.; Liu, X.; Barber, D.A. A farm-to-fork stochastic simulation model of pork-borne salmonellosis in humans: Lessons for risk ranking. Agribusiness 2007, 23, 157–172. [Google Scholar] [CrossRef]
- Miller, G.Y.; Liu, X.; McNAMARA, P.E.; Barber, D.A. Influence of Salmonella in Pigs Preharvest and during Pork Processing on Human Health Costs and Risks from Pork. J. Food Prot. 2005, 68, 1788–1798. [Google Scholar] [CrossRef]
- Mürmann, L.; Corbellini, L.G.; Collor, A.Á.; Cardoso, M. Quantitative Risk Assessment for Human Salmonellosis through the Consumption of Pork Sausage in Porto Alegre, Brazil. J. Food Prot. 2011, 74, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Osiriphun, S.; Pongpoolponsak, A.; Tuitemwong, K. Quantitative Risk Assessment of Salmonella spp. in Fermented Pork Sausage (Nham). Agric. Nat. Resour. 2004, 14, 52–65. [Google Scholar]
- Richardson, E.; Cogger, N.; Pomroy, W.; Potter, M.; Morris, R. Quantitative risk assessment for the annual risk of exposure to Trichinella spiralis in imported chilled pork meat from New Zealand to Singapore. New Zealand Vet. J. 2009, 57, 269–277. [Google Scholar] [CrossRef]
- Sequeira, G.J.; Zbrun, M.V.; Soto, L.P.; Astesana, D.M.; Blajman, J.E.; Rosmini, M.R.; Frizzo, L.S.; Signorini, M.L. Quantitative Risk Assessment of Human Trichinellosis Caused by Consumption of Pork Meat Sausages in Argentina. Zoonoses Public Health 2016, 63, 167–176. [Google Scholar] [CrossRef]
- Simons, R.R.L.; Hill, A.A.; Swart, A.; Kelly, L.; Snary, E.L. A Transport and Lairage Model for Salmonella Transmission between Pigs Applicable to EU Member States. Risk Anal. 2016, 36, 482–497. [Google Scholar] [CrossRef] [Green Version]
- Snary, E.L.; Swart, A.N.; Simons, R.R.L.; Domingues, A.R.C.; Vigre, H.; Evers, E.G.; Hald, T.; Hill, A.A. A Quantitative Microbiological Risk Assessment for Salmonella in Pigs for the European Union: A QMRA for Salmonella in Pigs. Risk Anal. 2016, 36, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Swart, A.N.; Evers, E.G.; Simons, R.L.L.; Swanenburg, M. Modeling of Salmonella Contamination in the Pig Slaughterhouse: Salmonella Contamination in Pig Slaughterhouse. Risk Anal. 2016, 36, 498–515. [Google Scholar] [CrossRef] [PubMed]
- Swart, A.N.; van Leusden, F.; Nauta, M.J. A QMRA Model for Salmonella in Pork Products during Preparation and Consumption: QMRA Model for Salmonella in Pork. Risk Anal. 2016, 36, 516–530. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.F.; de Glanville, W.A.; Cook, E.A.J.; Bronsvoort, B.M.D.C.; Handel, I.; Wamae, C.N.; Kariuki, S.; Fèvre, E.M. Modelling the risk of Taenia solium exposure from pork produced in western Kenya. PLoS Negl. Trop. Dis. 2017, 11, e0005371. [Google Scholar] [CrossRef] [PubMed]
- Vigre, H.; Barfoed, K.; Swart, A.N.; Simons, R.R.L.; Hill, A.A.; Snary, E.L.; Hald, T. Characterization of the Human Risk of Salmonellosis Related to Consumption of Pork Products in Different E.U. Countries Based on a QMRA: Human Risk of Salmonellosis. Risk Anal. 2016, 36, 531–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vossenkuhl, B.; Sharp, H.; Brandt, J.; Fetsch, A.; Käsbohrer, A.; Tenhagen, B.-A. Modeling the transmission of livestock associated methicillin-resistant Staphylococcus aureus along the pig slaughter line. Food Control 2014, 39, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; O’Connor, A.M.; Wang, C.; Dickson, J.S.; Hurd, H.S.; Wang, B. Interventions Targeting Deep Tissue Lymph Nodes May Not Effectively Reduce the Risk of Salmonellosis from Ground Pork Consumption: A Quantitative Microbial Risk Assessment. Risk Anal. 2019, 39, 2237–2258. [Google Scholar] [CrossRef]
- Afssa. Opinion of the French Agency for Food, Environmental and Occupational Health & Safety on the “Microbiological Safety and Hygiene of Pig Carcasses Refrigerated in Chilling Rooms and then Transported in Refrigerated Trucks”; Expert opinion; Afssa: Maisons-Alfort, France, 2014; p. 24. [Google Scholar]
- Afssa. Opinion of the French Food Safety Agency Regarding the Risk to Man of Infection with the Hepatitis E Virus (HEV) After Ingestion of Figatelli (Raw Sausages Containing Pork Liver); Expert Opinion; Afssa: Maisons-Alfort, France, 2009; p. 16. [Google Scholar]
- Chokesajjawatee, N.; Pornaem, S.; Zo, Y.-G.; Kamdee, S.; Luxananil, P.; Wanasen, S.; Valyasevi, R. Incidence of Staphylococcus aureus and associated risk factors in Nham, a Thai fermented pork product. Food Microbiol. 2009, 26, 547–551. [Google Scholar] [CrossRef]
- Cook, M.A.; Phuc, P.D. Review of Biological and Chemical Health Risks Associated with Pork Consumption in Vietnam: Major Pathogens and Hazards Identified in Southeast Asia. J. Food Qual. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Delhalle, L.; De Sadeleer, L.; Bollaerts, K.; Farnir, F.; Saegerman, C.; Korsak, N.; Dewulf, J.; De Zutter, L.; Daube, G. Risk Factors for Salmonella and Hygiene Indicators in the 10 Largest Belgian Pig Slaughterhouses. J. Food Prot. 2008, 71, 1320–1329. [Google Scholar] [CrossRef]
- Denis, M.; Henrique, E.; Chidaine, B.; Tircot, A.; Bougeard, S.; Fravalo, P. Campylobacter from sows in farrow-to-finish pig farms: Risk indicators and genetic diversity. Vet. Microbiol. 2011, 154, 163–170. [Google Scholar] [CrossRef]
- Dubey, J.P.; Hill, D.E.; Jones, J.L.; Hightower, A.W.; Kirkland, E.; Roberts, J.M.; Marcet, P.L.; Lehmann, T.; Vianna, M.C.B.; Miska, K.; et al. Prevalence of Viable Toxoplasma gondii in Beef, Chicken and Pork from Retail Meat Stores in the United States: Risk Assessment to Consumers. J. Parasitol. 2005, 91, 1082–1093. [Google Scholar] [CrossRef]
- Fosse, J.; Seegers, H.; Magras, C. Prevalence and Risk Factors for Bacterial Food-Borne Zoonotic Hazards in Slaughter Pigs: A Review. Zoonoses Public Health 2009, 56, 429–454. [Google Scholar] [CrossRef] [PubMed]
- Hurd, H.S.; Brudvig, J.; Dickson, J.; Mirceta, J.; Polovinski, M.; Matthews, N.; Griffith, R. Swine Health Impact on Carcass Contamination and Human Foodborne Risk. Public Health Rep. 2008, 123, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-J.; Song, Y. An Analysis of the Factors for Microbial Contamination Risk for Pork at Slaughterhouses in Korea Using the Logit Model. J. Toxicol. Environ. Health Part A 2009, 72, 1470–1474. [Google Scholar] [CrossRef] [PubMed]
- Lafrance-Girard, C.; Arsenault, J.; Thibodeau, A.; Opsteegh, M.; Avery, B.; Quessy, S. Toxoplasma gondii in Retail Beef, Lamb, and Pork in Canada: Prevalence, Quantification, and Risk Factors from a Public Health Perspective. Foodborne Pathog. Dis. 2018, 15, 798–808. [Google Scholar] [CrossRef]
- Leps, J.; Fries, R. Incision of the heart during meat inspection of fattening pigs—A risk-profile approach. Meat Sci. 2009, 81, 22–27. [Google Scholar] [CrossRef]
- Mataragas, M.; Skandamis, P.; Drosinos, E. Risk profiles of pork and poultry meat and risk ratings of various pathogen/product combinations. Int. J. Food Microbiol. 2008, 126, 1–12. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; Enserink, R.; Friesema, I.; Heck, M.; van Duynhoven, Y.; van Pelt, W. Risk Factors for Human Salmonellosis Originating from Pigs, Cattle, Broiler Chickens and Egg Laying Hens: A Combined Case-Control and Source Attribution Analysis. PLoS ONE 2014, 9, e87933. [Google Scholar] [CrossRef] [Green Version]
- Pearson, H.E.; Toribio, J.-A.L.M.L.; Lapidge, S.J.; Hernández-Jover, M. Evaluating the risk of pathogen transmission from wild animals to domestic pigs in Australia. Prev. Vet. Med. 2016, 123, 39–51. [Google Scholar] [CrossRef]
- Rajic, A.; O’Connor, B.P.; Deckert, A.E.; Keenliside, J.; McFall, M.E.; Reid-Smith, R.J.; Dewey, C.E.; McEwen, S.A. Farm-level risk factors for the presence of Salmonella in 89 Alberta swine-finishing barns. Can. J. Vet. Res. 2007, 71, 264–270. [Google Scholar]
- Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Escamez, P.S.F.; Herman, L.; Koutsoumanis, K.; Lindqvist, R.; Nørrung, B.; et al. Public Health Risks Associated with Hepatitis E Virus (HEV) as a Food-borne Pathogen. EFSA J. 2017, 15, e04886. [Google Scholar] [CrossRef]
- Rodríguez, D.M.; Suárez, M.C. Salmonella spp. in the pork supply chain: A risk approach. Rev. Colomb. Cienc. Pecu. 2014, 27, 65–75. [Google Scholar]
- Van Damme, I.; Berkvens, D.; Vanantwerpen, G.; Baré, J.; Houf, K.; Wauters, G.; De Zutter, L. Contamination of freshly slaughtered pig carcasses with enteropathogenic Yersinia spp.: Distribution, quantification and identification of risk factors. Int. J. Food Microbiol. 2015, 204, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Kagira, J.M.; Kanyari, P.N.; Githigia, S.M.; Maingi, N.; Ng’ang’a, J.C.; Gachohi, J.M. Risk factors associated with occurrence of nematodes in free range pigs in Busia District, Kenya. Trop. Anim. Health Prod. 2012, 44, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Vanantwerpen, G.; Berkvens, D.; Van Damme, I.; De Zutter, L.; Houf, K. Assessment of Risk Factors for a High Within-Batch Prevalence of Yersinia enterocolitica in Pigs Based on Microbiological Analysis at Slaughter. Foodborne Pathog. Dis. 2015, 12, 571–575. [Google Scholar] [CrossRef]
- Vecerek, V.; Kozak, A.; Malena, M.; Chloupek, P.; Pistekova, V. Organs of slaughter pigs as a source of potential risk for human health in the Czech Republic during the years 1995-2002. Vet. Med. 2012, 49, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Li, J.; Dickson, J.S. Generalized Linear Mixed Model Analysis of Risk Factors for Contamination of Moisture-Enhanced Pork with Campylobacter jejuni and Salmonella enterica Typhimurium. Foodborne Pathog. Dis. 2014, 11, 808–814. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, B.; Fazil, A.; Rajić, A.; Houde, A.; McEwen, S.A. Risk Profile of Hepatitis E Virus from Pigs or Pork in Canada. Transbound Emerg. Dis. 2017, 64, 1694–1708. [Google Scholar] [CrossRef]
- Wu, F.; Wang, Y.; Yang, Z.; Li, X.; Li, Z.; Lin, Q. Seroprevalence and Risk Factors of Toxoplasma gondii in Slaughter Pigs in Shaanxi Province, Northwestern China. Vector-Borne Zoonotic Dis. 2017, 17, 517–519. [Google Scholar] [CrossRef]
- Zhou, Z.; Jin, X.; Zheng, H.; Li, J.; Meng, C.; Yin, K.; Xie, X.; Huang, C.; Lei, T.; Sun, X.; et al. The prevalence and load of Salmonella, and key risk points of Salmonella contamination in a swine slaughterhouse in Jiangsu province, China. Food Control 2018, 87, 153–160. [Google Scholar] [CrossRef]
- Lo Fo Wong, D.M.A.; Dahl, J.; Stege, H.; van der Wolf, P.J.; Leontides, L.; von Altrock, A.; Thorberg, B.M. Herd-level risk factors for subclinical Salmonella infection in European finishing-pig herds. Prev. Vet. Med. 2004, 62, 253–266. [Google Scholar] [CrossRef]
- Corrégé, I.; Minvielle, B. Issues and strategies to control Salmonella in the pork industry: A prospective analysis. In Journées Rech. Porcine; Institut du Porc: Paris, France, 2013; Volume 45, pp. 233–244. [Google Scholar]
- Alban, L.; Baptista, F.M.; Møgelmose, V.; Sørensen, L.L.; Christensen, H.; Aabo, S.; Dahl, J. Salmonella surveillance and control for finisher pigs and pork in Denmark—A case study. Food Res. Int. 2012, 45, 656–665. [Google Scholar] [CrossRef]
- Alban, L.; Sorensen, L. Hot-Water decontamination is an effective way of reducing risk of Salmonella in pork. Fleischwirtsch. Frankf. 2010, 90, 109–113. [Google Scholar]
- Arguello, H.; Álvarez-Ordoñez, A.; Carvajal, A.; Rubio, P.; Prieto, M. Role of Slaughtering in Salmonella Spreading and Control in Pork Production. J. Food Prot. 2013, 76, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Baptista, F.M.; Halasa, T.; Alban, L.; Nielsen, L.R. Modelling food safety and economic consequences of surveillance and control strategies for Salmonella in pigs and pork. Epidemiol. Infect. 2011, 139, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.R.; Gallas, P.; Lyall, L.; McOrist, S.; Hathaway, S.C.; Pointon, A.M. Risk-based evaluation of postmortem inspection procedures for pigs in Australia. Vet. Rec. 2002, 151, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.; Brouwer, A.; Donaldson, N.; Lambton, S.; Buncic, S.; Griffiths, I. A risk and benefit assessment for visual-only meat inspection of indoor and outdoor pigs in the United Kingdom. Food Control 2013, 30, 255–264. [Google Scholar] [CrossRef]
- Pearce, R.A.; Bolton, D.J.; Sheridan, J.J.; McDowell, D.A.; Blair, I.S.; Harrington, D. Studies to determine the critical control points in pork slaughter hazard analysis and critical control point systems. Int. J. Food Microbiol. 2004, 90, 331–339. [Google Scholar] [CrossRef]
- Pointon, A.M.; Hamilton, D.; Kolega, V.; Hathaway, S.C. Risk assessment of organoleptic postmortem inspection procedures for pigs. Vet. Rec. 2000, 146, 124–131. [Google Scholar] [CrossRef]
- Soumpasis, I.; Alban, L.; Butler, F. Controlling Salmonella infections in pig farms: A framework modelling approach. Food Res. Int. 2012, 45, 1139–1148. [Google Scholar] [CrossRef]
- Theron, M.M.; Lues, J.F.R. Organic Acids and Meat Preservation: A Review. Food Res. Int. 2007, 23, 141–158. [Google Scholar] [CrossRef]
- Rajkovic, A.; Smigic, N.; Uyttendaele, M.; Medic, H.; de Zutter, L.; Devlieghere, F. Resistance of Listeria monocytogenes, Escherichia coli O157:H7 and Campylobacter jejuni after exposure to repetitive cycles of mild bactericidal treatments. Food Microbiol. 2009, 26, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Rajkovic, A.; Smigic, N.; Devlieghere, F. Contemporary strategies in combating microbial contamination in food chain. Int. J. Food Microbiol. 2010, 141, S29–S42. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Opinion of the Scientific Committee on Veterinary Measures Relating to Public Health: The Cleaning and Disinfection of Knives in the Meat and Poultry Industry; European Commission: Brussels, Belgium, 2001; p. 24. [Google Scholar]
- Cornu, M.; Billoir, E.; Bergis, H.; Beaufort, A.; Zuliani, V. Modeling microbial competition in food: Application to the behavior of Listeria monocytogenes and lactic acid flora in pork meat products. Food Microbiol. 2011, 28, 639–647. [Google Scholar] [CrossRef] [PubMed]
- De Cesare, A.; Valero, A.; Lucchi, A.; Pasquali, F.; Manfreda, G. Modeling growth kinetics of Listeria monocytogenes in pork cuts from packaging to fork under different storage practices. Food Control 2013, 34, 198–207. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, B.S.; Kim, K.-T.; Paik, H.-D. Predictive model for the growth kinetics of Staphylococcus aureus in raw pork developed using Integrated Pathogen Modeling Program (IPMP) 2013. Meat Sci. 2015, 107, 20–25. [Google Scholar] [CrossRef]
- Pin, C.; Avendaño-Perez, G.; Cosciani-Cunico, E.; Gómez, N.; Gounadakic, A.; Nychas, G.-J.; Skandamis, P.; Barker, G. Modelling Salmonella concentration throughout the pork supply chain by considering growth and survival in fluctuating conditions of temperature, pH and aw. Int. J. Food Microbiol. 2011, 145, S96–S102. [Google Scholar] [CrossRef]
- Wang, J.; Rahman, S.M.E.; Park, M.-S.; Park, J.-H.; Oh, D.-H. Modeling the response of Listeria monocytogenes at various storage temperatures in pork with/without electrolyzed water treatment. Food Sci. Biotechnol. 2012, 21, 1549–1555. [Google Scholar] [CrossRef]
- Ye, K.; Wang, K.; Liu, M.; Liu, J.; Zhu, L.; Zhou, G. Mathematical modelling of growth of Listeria monocytogenes in raw chilled pork. Lett. Appl. Microbiol. 2017, 64, 309–316. [Google Scholar] [CrossRef]
- Yoon, Y.; Yoon, Y.M.; Kim, J.-H.; Lee, J.-W. Modeling Salmonella Growth in Irradiated Pork for Specific Target Groups and Patients at Isothermal and Dynamic Temperature. J. Pure Appl. Microbiol. 2013, 7, 7. [Google Scholar]
- Zuliani, V.; Lebert, I.; Garry, P.; Vendeuvre, J.-L.; Augustin, J.-C.; Lebert, A. Effects of heat-processing regime, pH, water activity and their interactions on the behaviour of Listeria monocytogenes in ground pork. Modelling the boundary of the growth/no-growth areas as a function of pH, water activity and temperature. Int. J. Food Sci. Technol. 2006, 41, 1197–1206. [Google Scholar] [CrossRef]
- Anses. Opinion of the French Agency for Food, Environmental and Occupational Health & Safety on the Contamination of Raw Pork Delicatessen Products by Trichinella spp.; Collective Expert Appraisal Report; Anses: Maison-Alfort, France, 2017; p. 32.
- Bayarri, S.; Gracia, M.J.; Pérez-Arquillué, C.; Lázaro, R.; Herrera, A. Toxoplasma gondii in Commercially Available Pork Meat and Cured Ham: A Contribution to Risk Assessment for Consumers. J. Food Prot. 2012, 75, 597–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzales-Barron, U.; Redmond, G.; Butler, F. Modeling Prevalence and Counts from Most Probable Number in a Bayesian Framework: An Application to Salmonella Typhimurium in Fresh Pork Sausages. J. Food Prot. 2010, 73, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- McDowell, S.W.J.; Porter, R.; Madden, R.; Cooper, B.; Neill, S.D. Salmonella in slaughter pigs in Northern Ireland: Prevalence and use of statistical modelling to investigate sample and abattoir effects. Int. J. Food Microbiol. 2007, 118, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, W.; Rajić, A.; Waldner, C.; McFall, M.; Chow, E.; Muckle, A.; Rosengren, L. Distribution of Salmonella serovars in breeding, nursery, and grow-to-finish pigs, and risk factors for shedding in ten farrow-to-finish swine farms in Alberta and Saskatchewan. Can. J. Vet. Res. 2010, 74, 81–90. [Google Scholar]
- Afssa. Opinion of the French Food Safety Agency (AFSSA) on the Transport of Pig Carcasses That Have Not Reached the Required Temperature Upon Leaving the Slaughterhouse; Expert opinion; Afssa: Maisons-Alfort, France, 2009; p. 17. [Google Scholar]
- Crotta, M.; Luisi, E.; Dadios, N.; Guitian, J. Probabilistic modelling of events at evisceration during slaughtering of pigs using expert opinion: Quantitative data in support of stochastic models of risk of contamination. Microb. Risk Anal. 2019, 11, 57–65. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the public health risks related to mechanically separated meat (MSM) derived from poultry and swine. EFSA J. 2013, 11, 3137. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, X.; Wang, W.; Liu, Y.; Du, J.; Cui, Y.; Zhang, C.; Dong, Q. Modelling the cross-contamination of Listeria monocytogenes in pork during bowl chopping. Int. J. Food Sci. Technol. 2018, 53, 837–846. [Google Scholar] [CrossRef]
- Møller, C.O.A.; Nauta, M.J.; Christensen, B.B.; Dalgaard, P.; Hansen, T.B. Modelling transfer of Salmonella Typhimurium DT104 during simulation of grinding of pork. J. Appl. Microbiol. 2012, 112, 90–98. [Google Scholar] [CrossRef]
- Swanenburg, M.; Urlings, H.A.P.; Keuzenkamp, D.A.; Snijders, J.M.A. Salmonella in the Lairage of Pig Slaughterhouses. J. Food Prot. 2001, 64, 12–16. [Google Scholar] [CrossRef]
- Lurette, A.; Belloc, C.; Touzeau, S.; Hoch, T.; Ezanno, P.; Seegers, H.; Fourichon, C. Modelling Salmonella spread within a farrow-to-finish pig herd. Vet. Res. 2008, 39, 49. [Google Scholar] [CrossRef] [Green Version]
- van der Gaag, M.A.; Vos, H.J.P.M.; Saatkamp, H.W.; Huirne, R.B.M.; van Beek, P. Modelling the Epidemiology of Salmonella in the Supply Pork Chain. Acta Hortic. 2001, 159–164. [Google Scholar] [CrossRef]
- Arnold, M.E.; Cook, A.; Davies, R. A modelling approach to estimate the sensitivity of pooled faecal samples for isolation of Salmonella in pigs. J. R. Soc. Interface 2005, 2, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Boone, I.; Van der Stede, Y.; Bollaerts, K.; Vose, D.; Maes, D.; Dewulf, J.; Messens, W.; Daube, G.; Aerts, M.; Mintiens, K. NUSAP Method for Evaluating the Data Quality in a Quantitative Microbial Risk Assessment Model for Salmonella in the Pork Production Chain. Risk Anal. 2009, 29, 502–517. [Google Scholar] [CrossRef] [PubMed]
- Boone, I.; Van der Stede, Y.; Bollaerts, K.; Messens, W.; Vose, D.; Daube, G.; Aerts, M.; Mintiens, K. Expert judgement in a risk assessment model for Salmonella spp. in pork: The performance of different weighting schemes. Prev. Vet. Med. 2009, 92, 224–234. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on monitoring and assessment of the public health risk of “Salmonella Typhimurium-like” strains. EFSA J. 2010, 8, 1826. [Google Scholar] [CrossRef]
- Fosse, J.; Seegers, H.; Magras, C. Foodborne zoonoses due to meat: A quantitative approach for a comparative risk assessment applied to pig slaughtering in Europe. Vet. Res. 2008, 39, 1. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, B.; Borch, K.; Stärk, K.D.C. Functional modelling as basis for studying individual and organisational factors – application to risk analysis of Salmonella in pork. Food Control 2001, 12, 157–164. [Google Scholar] [CrossRef]
- Sadeleer, L.D.; Dewulf, J.; Zutter, L.D.; Houf, K.; Delhalle, L.; Grijspeerdt, K.; Maes, D. A qualitative risk assessment for human salmonellosis due to the consumption of fresh pork in Belgium. Vlaams Diergeneeskd. Tijdschr. 2008, 8, 34–43. [Google Scholar]
- Condoleo, R.; Gale, P.; Adkin, A.; Roberts, H.; Simons, R. Livestock Health and Food Chain Risk Assessment. EFSA J. 2018, 16. [Google Scholar] [CrossRef]
- De Knegt, L.V. A Multi-Country Approach for Attributing Human Salmonellosis to Animal Reservoirs: Global Perspectives and Application of Surveillance Data from the European Union; DTU Food, National Food Institute: Søborg, Denmark, 2013; ISBN 978-87-92763-46-4. [Google Scholar]
- Tadee, P.; Boonkhot, P.; Patchanee, P. Quantification of contamination levels and particular risk of Salmonella spp. in pigs in slaughterhouses in Chiang Mai and Lamphun provinces, Thailand. Jpn. J. Vet. Res. 2014, 62, 171–179. [Google Scholar]
- Hill, A.; Simons, R.; Ramnial, V.; Tennant, J.; Cheney, T.; Snary, E.; Swart, A.; Evers, E.; Nauta, M.; Swanenburg, M.; et al. Quantitative Microbiological Risk Assessment on Salmonella in Slaughter and Breeder pigs: Final Report. EFSA Support. Publ. 2010, 7, 4. [Google Scholar] [CrossRef] [Green Version]
Pathogen | Product | Country, Year | Population | Objective | References |
---|---|---|---|---|---|
Salmonella spp. (n = 29) | Pork products | France, 2018 | All | Risk assessment; intervention ranking | [23] |
U.S.A, 2007 | All | Risk assessment; intervention ranking | [50] | ||
E.U., 2010 | All | Risk assessment; intervention ranking | [34] | ||
E.U., 2016 | All | Risk assessment, analysis of risk mitigation measures | [45,46,56,57,58,59,61] | ||
Italy, 2004 | All | Risk assessment for consumption of Italian regional meat products | [38] | ||
Sausages | Denmark, 2002 | All | Risk assessment to design monitoring and management interventions according meat contamination. | [22] | |
Brazil, 2011 | All | Risk assessment after barbecue cooking | [52] | ||
Ireland, 2010–2012–2015 | All | Chilling-focused risk assessment | [24,39,40,42] | ||
Pork preparation | Thailand, 2004 | All | Risk assessment; correlation study between factors affecting exposure to Salmonella spp. and illness risk | [53] | |
Minced Pork | Belgium, 2009 | All | Risk assessment for household consumption | [27] | |
Risk assessment for food safety improvement | [32] | ||||
Pork meat | Colombia, 2020 | All | Comparative risk assessment to evaluate the impact of HACCP implementation in two slaughterhouses. | [35] | |
Burgers | Australia, 2018 | All | Commissioned risk assessment for risk management consulting | [44] | |
Ground pork | USA, 2019 | All | Risk assessment, identification of critical control points | [63] | |
Carcasses | Ireland, 2009–2013 | All | Meta-analysis supported exposure assessment carcasses | [25] | |
Assessment of the impact of chilling on Salmonella spp. occurrence in carcasses | [41] | ||||
Denmark, 2017–2008–2016 | All | Hygiene-performance based (E. coli levels) risk assessment | [28] | ||
Assessment of actual herd classification schemes, procedures comparison | [47] | ||||
Assessment of interventions oncarcasses | [33] | ||||
USA, 2005 | All | Benefit/cost process and interventions assessment | [51] | ||
Staphylococcus aureus (n = 3) | Pork meat | U.S.A, 2014 | All | Risk assessment, identification of data gaps and risk factors | [48] |
Korea, 2009 | All | Pathways to humans for MRSA 1 | [62] | ||
Carcasses | Germany, 2014 | All | Risk assessment for MRSA | [30] | |
Listeria monocytogenes (n = 2) | Ready-to-eat | Italy, 2010 | Susceptible | Risk assessment in support of risk management decisions | [49] |
Spain, 2010 | Susceptible | Risk assessment, intervention assessment | [37] | ||
Trichinella spiralis (n = 3) | Carcasses | Poland, 2018 | All | Risk assessment considering housing condition and meat inspection | [36] |
Pork meat | Singapore, 2009 | All | Risk assessment for imported chilled meat | [54] | |
Sausages | Argentina, 2016 | All | Risk assessment | [55] | |
Toxoplasma gondii (n = 3) | Pork meat | Italy, 2018 | Sensitive population | Risk assessment of fresh or frozen pork or cattle meat | [26] |
All; pregnant women | Risk assessment for Italian population, sensitivity analysis | [29] | |||
Fresh pork | U.S.A, 2017 | All; pregnant women | Review-based risk assessment | [43] | |
Taenia solium (n = 1) | Pork meat | Kenya, 2017 | All | Exposure assessment for western Kenyan population | [60] |
HEV 2 (n = 1) | Organs | Italy, 2018 | All | Exposure assessment for organs of food safety interest, impact of data gaps | [31] |
Reference | Farm Level | Slaughterhouse | Retail | Consumption |
---|---|---|---|---|
Anses, 2018 [64] | ✔ | ✔ | ✔ | |
McNamara et al., 2007 [50] | ✔ | ✔ | ✔ | ✔ |
EFSA, 2010 [34] | ✔ | ✔ | ✔ | ✔ |
Snary & Swart, Vigre and Simons & Hill et al., 2016 [46,56,57,58,59,61] | ✔ | ✔ | ✔ | ✔ |
Giovanini et al., 2004 [38] | ✔ | ✔ | ||
Alban et al., 2002 [22] | ✔ | ✔ | ||
Mürmann et al., 2011 [52] | ✔ | ✔ | ||
Gonzales-Barron and Butler, 2015; Gonzales-Barron et al., 2010, 2012 [24,39,40,42] | ✔ | ✔ | ||
Osiriphun et al., 2004 [53] | ✔ | |||
Bollaerts et al., 2009 [27] | ✔ | ✔ | ✔ | ✔ |
Delhalle et al., 2009 [32] | ✔ | ✔ | ✔ | ✔ |
Fajardo-Guerrero et al., 2020 [35] | ✔ | ✔ | ||
Zhang et al., 2019 [63] | ✔ | ✔ | ✔ | ✔ |
Gonzales-Barron et al., 2009 [25] | ✔ | |||
Gonzales-Barron et al., 2013 [41] | ✔ | |||
Bollerslev et al., 2017 [28] | ✔ | |||
Hurd et al.,2008 [47] | ✔ | |||
Duarte et al., 2016 [33] | ✔ | |||
Miller et al., 2005 [51] | ✔ | ✔ | ||
Total | 9 | 14 | 10 | 12 |
References | Lairage | Stunning | Scalding | Dehairing | Singeing | Polishing | Evisceration | Splitting | Trimming | Chilling |
---|---|---|---|---|---|---|---|---|---|---|
Anses 2018 [64] | + | − | + | − | ||||||
McNamara et al., 2007 [50] | + | − | ||||||||
EFSA 2010 [34] | + | − | + | − | + | + | + | − | − | |
Snary, Swart, Vigre, Simons, Hill et al. 2016 [46,56,57,58,61] | + | + | + | + | − | |||||
Bollaerts et al., 2009 [27] | + | + | − | + | + | − | ||||
Delhalle et al., 2009 [32] | + | − | + | − | + | + | − | |||
Fajardo-Guerrero et al., 2020 [35] a | + | − | − | − | ||||||
Zhang et al., 2019 [63] | + | |||||||||
Barron et al., 2009 [25] | + | + | + | + | + | + | + | − | ||
Gonzales-Barron et al., 2013 [41] | − | |||||||||
Bollerslev et al., 2017 [28] a | ||||||||||
Hurd et al., 2008 [47] | + | |||||||||
Duarte et al., 2016 [33] a | ||||||||||
Swart et al., 2016 [58] | +/− | + | − | + | + | + | − | − | ||
Miller et al., 2005 [51] | + | − | − | − | − | − | − | − | − | − |
Step | Risk Factors | Risk Mitigation Measures | References |
---|---|---|---|
Transport, lairage | Soiled environment |
| [11,32,50,51,57,58,64] |
Scalding, dehairing | Water temperature Duration Unclean water |
| [10,25,34,50,58] |
Singeing | Temperature Length |
| [11,23,32,34,58] |
Polishing, washing | Cross-contamination (machines) |
| [11,25,32] |
Evisceration | Gut rupture Cross-contamination (handler, knives) |
| [11,25,27,32,47,58,64] |
Splitting, trimming | Cross-contamination (machine) |
| [25,58] |
Chilling | Temperature Duration |
| [11,58] |
Logistic slaughter | Cross contamination (processing line) |
| [10,11,64,136] |
Washes containing organic acids | Level of contamination |
| [10] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hdaifeh, A.; Khalid, T.; Boué, G.; Cummins, E.; Guillou, S.; Federighi, M.; Tesson, V. Critical Analysis of Pork QMRA Focusing on Slaughterhouses: Lessons from the Past and Future Trends. Foods 2020, 9, 1704. https://doi.org/10.3390/foods9111704
Hdaifeh A, Khalid T, Boué G, Cummins E, Guillou S, Federighi M, Tesson V. Critical Analysis of Pork QMRA Focusing on Slaughterhouses: Lessons from the Past and Future Trends. Foods. 2020; 9(11):1704. https://doi.org/10.3390/foods9111704
Chicago/Turabian StyleHdaifeh, Ammar, Tahreem Khalid, Géraldine Boué, Enda Cummins, Sandrine Guillou, Michel Federighi, and Vincent Tesson. 2020. "Critical Analysis of Pork QMRA Focusing on Slaughterhouses: Lessons from the Past and Future Trends" Foods 9, no. 11: 1704. https://doi.org/10.3390/foods9111704
APA StyleHdaifeh, A., Khalid, T., Boué, G., Cummins, E., Guillou, S., Federighi, M., & Tesson, V. (2020). Critical Analysis of Pork QMRA Focusing on Slaughterhouses: Lessons from the Past and Future Trends. Foods, 9(11), 1704. https://doi.org/10.3390/foods9111704