The Role of Fruit by-Products as Bioactive Compounds for Intestinal Health
Abstract
:1. Introduction
2. Bioactive Compounds from Fruit by-Products
2.1. Phenolic Compounds
2.2. Dietary Fibres (DFs)
2.3. Proteins and Peptides
2.4. Lipids
3. Fruit by-Products and Intestinal Function
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.-W.; Verniquet, A.; Broeze, J. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Crit. Rev. Env. Sci. Tec. 2018, 48, 614–654. [Google Scholar] [CrossRef] [Green Version]
- Boccia, F.; Di Donato, P.; Covino, D.; Poli, A. Food waste and bio-economy: A scenario for the Italian tomato market. J. Clean. Prod. 2019, 227, 424–433. [Google Scholar] [CrossRef]
- FAO. Pertes et Gaspillages Alimentaires Dans le Monde–Ampleur, Causes et Prévention; FAO: Rome, Italy, 2012. [Google Scholar]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Tech. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energ. Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Kusch-Brandt, S.; Mumme, J.; Nashalian, O.; Girotto, F.; Lavagnolo, M.C.; Udenigwe, C. Valorization of Residues From Beverage Production. In Processing and Sustainability of Beverages; Elsevier: Woodhead Publishing: Cambridge, UK, 2019; pp. 451–494. [Google Scholar]
- Hossain, A.; Yusoff, W.M.W.; Veettil, V.N. Bioethanol Production from Fruit Biomass as Bio-antiseptic and Bio-antifermenter: Its Chemical and Biochemical Properties. J. Appl. Sci. 2019, 19, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Majerska, J.; Michalska, A.; Figiel, A. A review of new directions in managing fruit and vegetable processing by-products. Trends Food Sci. Tech. 2019, 88, 207–219. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products–Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1388–1416. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef]
- Ran, X.-l.; Zhang, M.; Wang, Y.; Adhikari, B. Novel technologies applied for recovery and value addition of high value compounds from plant byproducts: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 450–461. [Google Scholar] [CrossRef]
- Martínez-Ávila, G.C.; Aguilera-Carbó, A.F.; Rodríguez-Herrera, R.; Aguilar, C.N. Fungal enhancement of the antioxidant properties of grape waste. Ann. Microbiol. 2012, 62, 923–930. [Google Scholar] [CrossRef]
- Larios-Cruz, R.; Buenrostro-Figueroa, J.; Prado-Barragán, A.; Rodríguez-Jasso, R.M.; Rodríguez-Herrera, R.; Montañez, J.C.; Aguilar, C.N. Valorization of Grapefruit By-Products as Solid Support for Solid-State Fermentation to Produce Antioxidant Bioactive Extracts. Waste Biomass Valorization 2019, 10, 763–769. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Aguilera-Carbó, A.; Ascacio-Valdés, J.; Rodríguez-Herrera, R.; Martínez-Hernández, J.; Aguilar, C. Optimization of ellagic acid accumulation by Aspergillus niger GH1 in solid state culture using pomegranate shell powder as a support. Process Biochem. 2012, 47, 2199–2203. [Google Scholar] [CrossRef]
- Kareem, S.; Rahman, R. Utilization of banana peels for citric acid production by Aspergillus niger. Agric. Biol. J. N. Am. 2013, 4, 384–387. [Google Scholar] [CrossRef]
- John, I.; Muthukumar, K.; Arunagiri, A. A review on the potential of citrus waste for D-Limonene, pectin, and bioethanol production. Int. J. Green Energy 2017, 14, 599–612. [Google Scholar] [CrossRef]
- Rojas, R.; Alvarez-Pérez, O.B.; Contreras-Esquivel, J.C.; Vicente, A.; Flores, A.; Sandoval, J.; Aguilar, C.N. Valorisation of mango peels: Extraction of pectin and antioxidant and antifungal polyphenols. Waste Biomass Valorization 2020, 11, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Górnaś, P.; Rudzińska, M. Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Ind. Crop. Prod. 2016, 83, 329–338. [Google Scholar] [CrossRef]
- Ferreres, F.; Grosso, C.; Gil-Izquierdo, A.; Valentão, P.; Mota, A.T.; Andrade, P.B. Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chem. 2017, 230, 463–474. [Google Scholar] [CrossRef]
- Forgács, G.; Pourbafrani, M.; Niklasson, C.; Taherzadeh, M.J.; Hováth, I.S. Methane production from citrus wastes: Process development and cost estimation. J. Chem. Technol. Biotechnol. 2012, 87, 250–255. [Google Scholar] [CrossRef]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Schmidt, E.M.; Bonafe, E.G.; Eberlin, M.N.; Sawaya, A.C.; Visentainer, J.V. Antioxidant activity, phenolics and UPLC–ESI (–)–MS of extracts from different tropical fruits parts and processed peels. Food Res. Int. 2015, 77, 392–399. [Google Scholar] [CrossRef]
- Bonesi, M.; Saab, A.; Tenuta, M.; Leporini, M.; Saab, M.; Loizzo, M.; Tundis, R. Screening of traditional Lebanese medicinal plants as antioxidants and inhibitors of key enzymes linked to type 2 diabetes. Plant Biosyst. 2020, 154, 656–662. [Google Scholar] [CrossRef]
- Da Silva, L.M.R.; De Figueiredo, E.A.T.; Ricardo, N.M.P.S.; Vieira, I.G.P.; De Figueiredo, R.W.; Brasil, I.M.; Gomes, C.L. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014, 143, 398–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, R.; Bueno, M.; Herrero, M. Sub-and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae–An update. Trends. Analyt. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Villegas-Aguilar, M.d.C.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.d.l.L.; Pimentel-Moral, S.; Lozano-Sánchez, J.; Arráez-Román, D.; Segura-Carretero, A. Pleiotropic biological effects of dietary phenolic compounds and their metabolites on energy metabolism, inflammation and aging. Molecules 2020, 25, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín-Aguilar, F.; Pavillard, L.E.; Giampieri, F.; Bullón, P.; Cordero, M.D. Adenosine monophosphate (AMP)-activated protein kinase: A new target for nutraceutical compounds. Int. J. Mol. Sci. 2017, 18, 288. [Google Scholar] [CrossRef] [Green Version]
- Golshan Tafti, A.; Panahi, B. Chemical composition of seed and seed oil from Iranian commercial date cultivars. J. Food Bioprocess Eng. 2019, 3, 1–8. [Google Scholar]
- Taha, E.; Abd-Elkarim, N.; Ahmed, Z. Date seed oil as a potential natural additive to improve oxidative stability of edible vegetable oils. Egypt. J. Food Sci. 2019, 47, 105–113. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [Green Version]
- Smaoui, S.; Hlima, H.B.; Mtibaa, A.C.; Fourati, M.; Sellem, I.; Elhadef, K.; Ennouri, K.; Mellouli, L. Pomegranate peel as phenolic compounds source: Advanced analytical strategies and practical use in meat products. Meat Sci. 2019, 158, 107914. [Google Scholar] [CrossRef]
- Pal, J.; Raju, C.; Lakshmisha, I.; Pandey, G.; Raj, R.; Singh, R.R. Antioxidant activity of pomegranate peel extract and its effect on storage stability of cooked meat model system of indian mackerel (Rastrelliger Kanagurta) stored at 4±2 C. Biochem. Cell. Arch. 2017, 17, 183–187. [Google Scholar]
- Basiri, S.; Shekarforoush, S.S.; Aminlari, M.; Akbari, S. The effect of pomegranate peel extract (PPE) on the polyphenol oxidase (PPO) and quality of Pacific white shrimp (Litopenaeus vannamei) during refrigerated storage. LWT Food Sci. Technol. 2015, 60, 1025–1033. [Google Scholar] [CrossRef]
- Tavallali, H.; Bahmanzadegan, A.; Tavallali, V.; Rowshan, V. Phytochemical investigation of Punica granatum pomace: As source of bioactive and medicinal natural products. Adv. Med. Plant Res. 2020, 8, 1–13. [Google Scholar]
- Andrés, A.; Petrón, M.; Adámez, J.; López, M.; Timón, M. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Tańska, M.; Roszkowska, B.; Czaplicki, S.; Borowska, E.J.; Bojarska, J.; Dąbrowska, A. Effect of fruit pomace addition on shortbread cookies to improve their physical and nutritional values. Plant Food. Hum. Nutr. 2016, 71, 307–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reißner, A.M.; Al-Hamimi, S.; Quiles, A.; Schmidt, C.; Struck, S.; Hernando, I.; Turner, C.; Rohm, H. Composition and physicochemical properties of dried berry pomace. J. Sci. Food Agr. 2019, 99, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, R.; Ying, D.; Yu, J.; Sanguansri, L.; Augustin, M.A. Analysis of polyphenols in apple pomace: A comparative study of different extraction and hydrolysis procedures. Ind. Crop. Prod. 2020, 147, 112250. [Google Scholar] [CrossRef]
- Du, G.; Zhu, Y.; Wang, X.; Zhang, J.; Tian, C.; Liu, L.; Meng, Y.; Guo, Y. Phenolic composition of apple products and by-products based on cold pressing technology. J. Food Sci. Tech. 2019, 56, 1389–1397. [Google Scholar] [CrossRef]
- Ahmad, I.; Khalique, A.; Shahid, M.Q.; Ahid Rashid, A.; Faiz, F.; Ikram, M.A.; Ahmed, S.; Imran, M.; Khan, M.A.; Nadeem, M. Studying the Influence of Apple Peel Polyphenol Extract Fortification on the Characteristics of Probiotic Yoghurt. Plants 2020, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, J.; Wang, G.; Wang, C.; Huang, R. Extraction and characterization of phenolic compounds and dietary fibres from banana peel. Acta Aliment. 2019, 48, 525–537. [Google Scholar] [CrossRef]
- Jridi, M.; Souissi, N.; Salem, M.B.; Ayadi, M.; Nasri, M.; Azabou, S. Tunisian date (Phoenix dactylifera L.) by-products: Characterization and potential effects on sensory, textural and antioxidant properties of dairy desserts. Food Chem. 2015, 188, 8–15. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Gil-Izquierdo, Á.; Medina, S.; Ferreres, F. Phenolic composition profiling of different edible parts and by-products of date palm (Phoenix dactylifera L.) by using HPLC-DAD-ESI/MSn. Food Res. Int. 2017, 100, 494–500. [Google Scholar] [CrossRef]
- Kitrytė, V.; Laurinavičienė, A.; Syrpas, M.; Pukalskas, A.; Venskutonis, P.R. Modeling and optimization of supercritical carbon dioxide extraction for isolation of valuable lipophilic constituents from elderberry (Sambucus nigra L.) pomace. J. CO2 Util. 2020, 35, 225–235. [Google Scholar] [CrossRef]
- Waldbauer, K.; Seiringer, G.N.; Sykora, C.; Dirsch, V.M.; Zehl, M.; Kopp, B. Evaluation of Apricot, Bilberry, and Elderberry Pomace Constituents and Their Potential To Enhance the Endothelial Nitric Oxide Synthase (eNOS) Activity. ACS Omega 2018, 3, 10545–10553. [Google Scholar] [CrossRef] [PubMed]
- Vital, A.C.P.; Santos, N.W.; Matumoto-Pintro, P.T.; da Silva Scapim, M.R.; Madrona, G.S. Ice cream supplemented with grape juice residue as a source of antioxidants. Int. J. Dairy Technol. 2018, 71, 183–189. [Google Scholar] [CrossRef]
- Pezzini, V.; Agostini, F.; Smiderle, F.; Touguinha, L.; Salvador, M.; Moura, S. Grape juice by-products extracted by ultrasound and microwave-assisted with different solvents: A rich chemical composition. Food Sci. Biotechnol. 2019, 28, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, L.; Navarro, F.; Melo, R.; Báez, F.; Cotoras, M. Characterization of Polyphenol Profile of Extracts Obtained From Grape Pomace And Synergistic Effect of These Extracts And Fungicides Against Botrytis Cinerea. J. Chil. Chem. Soc. 2019, 64, 4607–4609. [Google Scholar] [CrossRef]
- Coman, V.; Teleky, B.-E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.-F.; Vodnar, D.C. Bioactive potential of fruit and vegetable wastes. In Advances in Food and Nutrition Research; Elsevier Academic Press: Cambridge, MA, USA, 2020; Volume 91, pp. 157–225. [Google Scholar]
- Jana, K.; Mantana, B.; Josef, B.; Pavel, H.; Jan, T.; Naděžda, V. Juices enriched with phenolic extracts from grapes. Czech J. Food Sci. 2018, 36, 261–267. [Google Scholar]
- Tian, Y.; Wang, Y.; Ma, Y.; Zhu, P.; He, J.; Lei, J. Optimization of subcritical water extraction of resveratrol from grape seeds by response surface methodology. Appl. Sci. 2017, 7, 321. [Google Scholar] [CrossRef] [Green Version]
- Mutua, J.K.; Imathiu, S.; Owino, W. Evaluation of the proximate composition, antioxidant potential, and antimicrobial activity of mango seed kernel extracts. Food Sci. Nutr. 2017, 5, 349–357. [Google Scholar] [CrossRef]
- Casarotti, S.N.; Borgonovi, T.F.; Batista, C.L.; Penna, A.L.B. Guava, orange and passion fruit by-products: Characterization and its impacts on kinetics of acidification and properties of probiotic fermented products. LWT Food Sci. Technol. 2018, 98, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Viuda-Martos, M.; Fernandez-Lopez, J.; Sayas-Barbera, E.; Sendra, E.; Perez-Alvarez, J.A. Physicochemical characterization of the orange juice waste water of a citrus by-product. J. Food Process. Pres. 2011, 35, 264–271. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Zhang, Y.; Sun, Y.; Shen, Y.; Ye, X.; Zhou, Z. Phenolic composition of Chinese wild mandarin (Citrus reticulata Balnco.) pulps and their antioxidant properties. Ind. Crop. Prod. 2014, 52, 466–474. [Google Scholar] [CrossRef]
- Sir Elkhatim, K.A.; Elagib, R.A.; Hassan, A.B. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 2018, 6, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; El-Wahed, A.; Shalaby, H.S.; Gaballa, A. Production of Feta Like Cheese Fortified With Pomegranate and Lemon Peels Extract as Natural Antioxidants. Zagazig J. Agr. Res. 2019, 46, 710–720. [Google Scholar]
- Selani, M.M.; Bianchini, A.; Ratnayake, W.S.; Flores, R.A.; Massarioli, A.P.; de Alencar, S.M.; Brazaca, S.G.C. Physicochemical, functional and antioxidant properties of tropical fruits co-products. Plant Food. Hum. Nutr. 2016, 71, 137–144. [Google Scholar] [CrossRef]
- Yılmaz, F.M.; Görgüç, A.; Karaaslan, M.; Vardin, H.; Ersus Bilek, S.; Uygun, Ö.; Bircan, C. Sour cherry by-products: Compositions, functional properties and recovery potentials–a review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3549–3563. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Serna-Saldivar, S.O.; Welti-Chanes, J. Dietary fiber concentrates from fruit and vegetable by-products: Processing, modification, and application as functional ingredients. Food Bioprocess Tech. 2018, 11, 1439–1463. [Google Scholar] [CrossRef]
- Maurya, A.K.; Pandey, R.K.; Rai, D.; Porwal, P.; Rai, D.C. Waste product of fruits and vegetables processing as a source of dietary fibre: A review. Trends Biosci. 2015, 8, 5129–5140. [Google Scholar]
- Zlatanović, S.; Ostojić, S.; Micić, D.; Rankov, S.; Dodevska, M.; Vukosavljević, P.; Gorjanović, S. Thermal behaviour and degradation kinetics of apple pomace flours. Thermochim. Acta 2019, 673, 17–25. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Jukić, M.; Komlenić, D.K.; Lukinac, J. Influence of apple peel powder addition on the physico-chemical characteristics and nutritional quality of bread wheat cookies. Food Sci. Technol. Int. 2020, 26, 574–582. [Google Scholar] [CrossRef]
- Ayar, A.; Siçramaz, H.; Öztürk, S.; Öztürk Yilmaz, S. Probiotic properties of ice creams produced with dietary fibres from by-products of the food industry. Int. J. Dairy Technol. 2018, 71, 174–182. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Ma, Y.-S.; Tsai, Y.-H.; Chang, S.K. In vitro hypoglycemic, cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion. Int. J. Biol. Macromol. 2019, 124, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Pérez-Carrillo, E.; Serna-Saldívar, S.O.; Campanella, O.H.; Welti-Chanes, J. Functional and compositional changes of orange peel fiber thermally-treated in a twin extruder. LWT Food Sci. Technol. 2019, 111, 673–681. [Google Scholar] [CrossRef]
- Mrabet, A.; Hammadi, H.; Rodríguez-Gutiérrez, G.; Jiménez-Araujo, A.; Sindic, M. Date Palm Fruits as a Potential Source of Functional Dietary Fiber: A Review. Food Sci. Technol. Res. 2019, 25, 1–10. [Google Scholar] [CrossRef]
- Essa, R.; Mohamed, E. Improvement of functional and technological characteristics of spaghetti by the integration of pomegranate peels powder. Am. J. Food Tech. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Jan, A. Health complication caused by protein deficiency. J. Food Sci. Nutr. 2017, 1, 645–647. [Google Scholar] [CrossRef]
- Ververi, M.; Goula, A.M. Pomegranate peel and orange juice by-product as new biosorbents of phenolic compounds from olive mill wastewaters. Chem. Eng. Process. Process Intensif. 2019, 138, 86–96. [Google Scholar] [CrossRef]
- Morales-Contreras, B.; Wicker, L.; Rosas-Flores, W.; Contreras-Esquivel, J.; Gallegos-Infante, J.; Reyes-Jaquez, D.; Morales-Castro, J. Apple pomace from variety “Blanca de Asturias” as sustainable source of pectin: Composition, rheological, and thermal properties. LWT Food Sci. Technol. 2020, 117, 108641. [Google Scholar] [CrossRef]
- Deng, Z.; Pan, Y.; Chen, W.; Chen, W.; Yun, Y.; Zhong, Q.; Zhang, W.; Chen, H. Effects of cultivar and growth region on the structural, emulsifying and rheological characteristic of mango peel pectin. Food Hydrocolloid. 2020, 103, 105707. [Google Scholar] [CrossRef]
- Gurumallesh, P.; Ramakrishnan, B.; Dhurai, B. A novel metalloprotease from banana peel and its biochemical characterization. Int. J. Biol. Macromol. 2019, 134, 527–535. [Google Scholar] [CrossRef]
- Kırbaş, Z.; Kumcuoglu, S.; Tavman, S. Effects of apple, orange and carrot pomace powders on gluten-free batter rheology and cake properties. J. Food Sci. Tech. 2019, 56, 914–926. [Google Scholar] [CrossRef] [PubMed]
- Lachos-Perez, D.; Baseggio, A.M.; Torres-Mayanga, P.C.; Ávila, P.F.; Tompsett, G.; Marostica, M.; Goldbeck, R.; Timko, M.T.; Rostagno, M.; Martinez, J. Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. J. Supercrit. Fluid. 2020, 160, 104789. [Google Scholar] [CrossRef]
- Iftikhar, M.; Wahab, S.; ul Haq, N.; Malik, S.N.; Amber, S.; Taran, N.U.; Rehman, S.U. 12. Utilization of citrus plant waste (peel) for the development of food product. Pure Appl. Biol. 2019, 8, 1991–1998. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, Y.L. Processing, nutrition, and functionality of hempseed protein: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 936–952. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, G.S. Protein Byproducts: Transformation from Environmental Burden Into Value-Added Products; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Marcet, I.; Álvarez, C.; Paredes, B.; Díaz, M. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters. Waste Manag. 2016, 49, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Prandi, B.; Faccini, A.; Lambertini, F.; Bencivenni, M.; Jorba, M.; Van Droogenbroek, B.; Bruggeman, G.; Schöber, J.; Petrusan, J.; Elst, K. Food wastes from agrifood industry as possible sources of proteins: A detailed molecular view on the composition of the nitrogen fraction, amino acid profile and racemisation degree of 39 food waste streams. Food Chem. 2019, 286, 567–575. [Google Scholar] [CrossRef]
- Baeza-Jiménez, R.; López-Martínez, L.X.; García-Varela, R.; García, H.S. Lipids in Fruits and Vegetables: Chemistry and Biological Activities. Fruit Vegetable Phytochem. Chem. Hum. Health 2017, 2, 423. [Google Scholar]
- Yahia, E.M. Postharvest physiology and biochemistry of fruits and vegetables. In Postharvest Physiology and Biochemistry of Fruits and Vegetables, 1st ed.; Yahia, E.M., Carrillo-López, A., Eds.; Woodhead Publishing: Duxford, UK, 2019; pp. 1–17. [Google Scholar]
- Raihana, A.N.; Marikkar, J.; Amin, I.; Shuhaimi, M. A review on food values of selected tropical fruits’ seeds. Int. J. Food Prop. 2015, 18, 2380–2392. [Google Scholar] [CrossRef]
- Natalello, A.; Priolo, A.; Valenti, B.; Codini, M.; Mattioli, S.; Pauselli, M.; Puccio, M.; Lanza, M.; Stergiadis, S.; Luciano, G. Dietary pomegranate by-product improves oxidative stability of lamb meat. Meat Sci. 2020, 162, 108037. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.R.; da Silva, L.P.; Penna, N.G. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT Food Sci. Technol. 2020, 117, 108652. [Google Scholar] [CrossRef]
- Martínez-Trujillo, M.A.; Bautista-Rangel, K.; García-Rivero, M.; Martínez-Estrada, A.; Cruz-Díaz, M.R. Enzymatic saccharification of banana peel and sequential fermentation of the reducing sugars to produce lactic acid. Bioproc. Biosyst. Eng. 2020, 43, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Imtiaz, H. Chemical Composition of Date Pits: Potential to Extract and Characterize the Lipid Fraction. In Sustainable Agriculture Reviews; Naushad, M., Lichtfouse, E., Eds.; Springer: Cham, Germany, 2019; Volume 34, pp. 55–77. [Google Scholar]
- Yukui, R.; Wenya, W.; Rashid, F.; Qing, L. Fatty acids composition of apple and pear seed oils. Int. J. Food Prop. 2009, 12, 774–779. [Google Scholar] [CrossRef] [Green Version]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mildner-Szkudlarz, S.; Różańska, M.; Siger, A.; Kowalczewski, P.Ł.; Rudzińska, M. Changes in chemical composition and oxidative stability of cold-pressed oils obtained from by-product roasted berry seeds. LWT Food Sci. Technol. 2019, 111, 541–547. [Google Scholar] [CrossRef]
- Regis, S.A.; Resende, E.D.d.; Antoniassi, R. Oil quality of passion fruit seeds subjected to a pulp-waste purification process. Cienc. Rural 2015, 45, 977–984. [Google Scholar] [CrossRef] [Green Version]
- Wadhwa, M.; Bakshi, M.P.S. Application of waste-derived proteins in the animal feed industry. In Protein Byproducts; Dhillon, G., Ed.; Academic Press: Oxford, UK, 2016; pp. 161–192. [Google Scholar]
- Tayengwa, T.; Chikwanha, O.C.; Dugan, M.E.; Mutsvangwa, T.; Mapiye, C. Influence of feeding fruit by-products as alternative dietary fibre sources to wheat bran on beef production and quality of Angus steers. Meat Sci. 2020, 161, 107969. [Google Scholar] [CrossRef] [PubMed]
- Yitbarek, M. Some Selected Vegetable and Fruit Wastes for Poultry Feed. J. Vet. Anim. Res. 2019, 1, 101. [Google Scholar]
- Azizi, M.; Seidavi, A.; Ragni, M.; Laudadio, V.; Tufarelli, V. Practical applications of agricultural wastes in poultry feeding in Mediterranean and Middle East regions. Part 1: Citrus, grape, pomegranate and apple wastes. World. Poultry Sci. J. 2018, 74, 489–498. [Google Scholar] [CrossRef]
- Caipang, C.M.A.; Mabuhay-Omar, J.; Gonzales-Plasus, M.M. Plant and fruit waste products as phytogenic feed additives in aquaculture. AACL Bioflux 2019, 12, 261–268. [Google Scholar]
- Andrade, M.A.; Lima, V.; Silva, A.S.; Vilarinho, F.; Castilho, M.C.; Khwaldia, K.; Ramos, F. Pomegranate and grape by-products and their active compounds: Are they a valuable source for food applications? Trends Food Sci. Tech. 2019, 86, 68–84. [Google Scholar] [CrossRef]
- Chiralt, A.; Menzel, C.; Hernandez-García, E.; Collazo, S.; Gonzalez-Martinez, C. Use of by-products in edible coatings and biodegradable packaging materials for food preservation. In Sustainability of the Food System; Betoret, N., Betoret, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 101–127. [Google Scholar]
- Struck, S.; Straube, D.; Zahn, S.; Rohm, H. Interaction of wheat macromolecules and berry pomace in model dough: Rheology and microstructure. J. Food Eng. 2018, 223, 109–115. [Google Scholar] [CrossRef]
- Šaponjac, V.T.; Ćetković, G.; Čanadanović-Brunet, J.; Pajin, B.; Djilas, S.; Petrović, J.; Lončarević, I.; Stajčić, S.; Vulić, J. Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chem. 2016, 207, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends Food Sci. Tech. 2017, 67, 150–159. [Google Scholar] [CrossRef]
- Anal, A.K. Food Processing By-Products and Their Utilization; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- EU. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives (1). Off. J. Eur. Union 2009, 51, 16–33. [Google Scholar]
- EU. Commission Directive 2008/84/EC of 27 August 2008 laying down specific purity criteria on food additives other than colours and sweeteners (Codified version). Off. J. Eur. Union 2009, 1–175. [Google Scholar]
- Saltmarsh, M. Food Additive Regulations in Europe. In Saltmarsh’s Essential Guide to Food Additives; Royal Society of Chemistry: London, UK, 2020; pp. 40–51. [Google Scholar]
- Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. Technol. 2008, 9, 85–91. [Google Scholar] [CrossRef]
- Ajila, C.; Naidu, K.; Bhat, S.; Rao, U.P. Bioactive compounds and antioxidant potential of mango peel extract. Food Chem. 2007, 105, 982–988. [Google Scholar] [CrossRef]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-food byproducts as a new source of natural food additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [Green Version]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of grape pomace: An approach that is increasingly reaching its maturity–A review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Martins, Z.; Pinho, O.; Ferreira, I. Food industry by-products used as functional ingredients of bakery products. Trends Food Sci. Tech. 2017, 67, 106–128. [Google Scholar] [CrossRef]
- Khoozani, A.A.; Birch, J.; Bekhit, A.E.-D.A. Production, application and health effects of banana pulp and peel flour in the food industry. J. Food Sci. Tech. 2019, 56, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Mildner-Szkudlarz, S.; Bajerska, J.; Górnaś, P.; Segliņa, D.; Pilarska, A.; Jesionowski, T. Physical and bioactive properties of muffins enriched with raspberry and cranberry pomace powder: A promising application of fruit by-products rich in biocompounds. Plant Food. Hum. Nutr. 2016, 71, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuervo, A.; Valdés, L.; Salazar, N.; de los Reyes-Gavilán, C.G.; Ruas-Madiedo, P.; Gueimonde, M.; Gonzalez, S. Pilot study of diet and microbiota: Interactive associations of fibers and polyphenols with human intestinal bacteria. J. Agr. Food Chem. 2014, 62, 5330–5336. [Google Scholar] [CrossRef]
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The gut microbiome in health and in disease. Curr. Opin. Gastroen. 2015, 31, 69. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Dutilh, B.E.; Hall, N.; Peters, W.H.; Roelofs, R.; Boleij, A.; Tjalsma, H. Towards the human colorectal cancer microbiome. PLoS ONE 2011, 6, e20447. [Google Scholar] [CrossRef] [Green Version]
- Seksik, P. Gut microbiota and IBD. Gastroen. Clin. Biol. 2010, 34, S44–S51. [Google Scholar] [CrossRef]
- Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol. 2011, 77, 6718–6721. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.L.; Hornig, M.; Parekh, T.; Lipkin, W.I. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio 2012, 3, e00261-11. [Google Scholar] [CrossRef] [Green Version]
- Barbut, F.; Joly, F. Le microbiote intestinal: Équilibre et dysbiose. Hépato-Gastro Oncol. Dig. 2010, 17, 511–520. [Google Scholar]
- Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2015, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-P.; Chen, G.-C.; Wang, X.-P.; Qin, L.; Bai, Y. Dietary fiber and metabolic syndrome: A meta-analysis and review of related mechanisms. Nutrients 2018, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, H.; Iwase, M.; Ohkuma, T.; Ogata-Kaizu, S.; Ide, H.; Kikuchi, Y.; Idewaki, Y.; Joudai, T.; Hirakawa, Y.; Uchida, K. Impact of dietary fiber intake on glycemic control, cardiovascular risk factors and chronic kidney disease in Japanese patients with type 2 diabetes mellitus: The Fukuoka Diabetes Registry. Nutr. J. 2013, 12, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Keefe, S.J. The association between dietary fibre deficiency and high-income lifestyle-associated diseases: Burkitt’s hypothesis revisited. Lancet Gastroenterol. Hepatol. 2019, 4, 984–996. [Google Scholar] [CrossRef]
- O’keefe, S.J. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastro. Hepat. 2016, 13, 691. [Google Scholar] [CrossRef]
- Yang, J.; Yu, J. The association of diet, gut microbiota and colorectal cancer: What we eat may imply what we get. Protein Cell 2018, 9, 474–487. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Saito, E.; Sawada, N.; Ishihara, J.; Takachi, R.; Nanri, A.; Shimazu, T.; Yamaji, T.; Iwasaki, M.; Sasazuki, S. Dietary patterns and colorectal cancer risk in middle-aged adults: A large population-based prospective cohort study. Clin. Nutr. 2018, 37, 1019–1026. [Google Scholar] [CrossRef]
- Tuohy, K.M.; Conterno, L.; Gasperotti, M.; Viola, R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J. Agr. Food Chem. 2012, 60, 8776–8782. [Google Scholar] [CrossRef]
- Bosaeus, I. Fibre effects on intestinal functions (diarrhoea, constipation and irritable bowel syndrome). Clin. Nutr. Suppl. 2004, 1, 33–38. [Google Scholar] [CrossRef]
- Seo, Y.S.; Lee, H.-B.; Kim, Y.; Park, H.-Y. Dietary Carbohydrate Constituents Related to Gut Dysbiosis and Health. Microorganisms 2020, 8, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laparra, J.M.; Sanz, Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res. 2010, 61, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Keum, Y.-S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Wichansawakun, S.; Buttar, H.S. Antioxidant Diets and Functional Foods Promote Healthy Aging and Longevity Through Diverse Mechanisms of Action. In The Role of Functional Food Security in Global Health; Singh, R.B., Watson, R.R., Takahashi, T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 541–563. [Google Scholar]
- Tejada-Ortigoza, V.; Garcia-Amezquita, L.E.; Kazem, A.E.; Campanella, O.H.; Cano, M.P.; Hamaker, B.R.; Serna-Saldívar, S.O.; Welti-Chanes, J. In vitro fecal fermentation of high pressure-treated fruit peels used as dietary fiber sources. Molecules 2019, 24, 697. [Google Scholar] [CrossRef] [Green Version]
- De Souza, C.B.; Jonathan, M.; Saad, S.M.I.; Schols, H.A.; Venema, K. Degradation of fibres from fruit by-products allows selective modulation of the gut bacteria in an in vitro model of the proximal colon. J. Funct. Foods 2019, 57, 275–285. [Google Scholar] [CrossRef]
- Chedea, V.S.; Palade, L.M.; Marin, D.E.; Pelmus, R.S.; Habeanu, M.; Rotar, M.C.; Gras, M.A.; Pistol, G.C.; Taranu, I. Intestinal absorption and antioxidant activity of grape pomace polyphenols. Nutrients 2018, 10, 588. [Google Scholar] [CrossRef] [Green Version]
- Maurer, L.H.; Cazarin, C.B.B.; Quatrin, A.; Minuzzi, N.M.; Costa, E.L.; Morari, J.; Velloso, L.A.; Leal, R.F.; Rodrigues, E.; Bochi, V.C. Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis: A major role for dietary fiber and fiber-bound polyphenols. Food Res. Int. 2019, 123, 425–439. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Bhardwaj, R.; Krishna, R.; Sharma, P. Investigation of Gastroprotective Potential of Grape Seed Proanthocyanidin Exract in Experimental Models of Gastric Ulcer, in Wistar Rats. J. Gastrointest. Dig. Syst. 2018, 8, 561. [Google Scholar] [CrossRef]
- Giuliani, C.; Marzorati, M.; Daghio, M.; Franzetti, A.; Innocenti, M.; Van de Wiele, T.; Mulinacci, N. Effects of Olive and Pomegranate By-Products on Human Microbiota: A Study Using the SHIME® In Vitro Simulator. Molecules 2019, 24, 3791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Long, X.; Yang, J.; Du, L.; Zhang, X.; Li, J.; Hou, C. Pomegranate peel polyphenols reduce chronic low-grade inflammatory responses by modulating gut microbiota and decreasing colonic tissue damage in rats fed a high-fat diet. Food Funct. 2019, 10, 8273–8285. [Google Scholar] [CrossRef] [PubMed]
- Mastrogiovanni, F.; Mukhopadhya, A.; Lacetera, N.; Ryan, M.T.; Romani, A.; Bernini, R.; Sweeney, T. Anti-inflammatory effects of pomegranate peel extracts on in vitro human intestinal caco-2 cells and ex vivo porcine colonic tissue explants. Nutrients 2019, 11, 548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboul Naser, A.; Younis, E.; El-Feky, A.; Elbatanony, M.; Hamed, M. Management of Citrus sinensis peels for protection and treatment against gastric ulcer induced by ethanol in rats. Biomarkers 2020, 25, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Pozo, C.; Speisky, H.; Brunser, O.; Pastene, E.; Gotteland, M. Apple peel polyphenols protect against gastrointestinal mucosa alterations induced by indomethacin in rats. J. Agr. Food Chem. 2011, 59, 6459–6466. [Google Scholar] [CrossRef]
- Mousa, W.K.; Afifi, M.S.; Zaghloul, M.G.; El-Sharkawy, S.H. Apple Pomace; A source of Pharmaceuticals. J. Am. Sci. 2012, 8, 1114–1119. [Google Scholar]
- Waldbauer, K.; McKinnon, R.; Kopp, B. Apple pomace as potential source of natural active compounds. Planta Med. 2017, 83, 994–1010. [Google Scholar] [CrossRef] [Green Version]
- Abboud, K.Y.; da Luz, B.B.; Dallazen, J.L.; de Paula Werner, M.F.; Cazarin, C.B.B.; Junior, M.R.M.; Iacomini, M.; Cordeiro, L.M. Gastroprotective effect of soluble dietary fibres from yellow passion fruit (Passiflora edulis f. flavicarpa) peel against ethanol-induced ulcer in rats. J. Funct. Foods 2019, 54, 552–558. [Google Scholar] [CrossRef]
- Athaydes, B.R.; Alves, G.M.; de Assis, A.L.E.M.; Gomes, J.V.D.; Rodrigues, R.P.; Campagnaro, B.P.; Nogueira, B.V.; Silveira, D.; Kuster, R.M.; Pereira, T.M.C. Avocado seeds (Persea americana Mill.) prevents indomethacin-induced gastric ulcer in mice. Food Res. Int. 2019, 119, 751–760. [Google Scholar] [CrossRef]
- Oluwole, F.S.; Onasanwo, S.A.; Olaleye, S.B. Effects of aqueous and methanolic extracts of Persea americana leaf (Avocado pear) on gastric acid secretion in male albino rats. Eur. J. Scient. Res. 2011, 61, 474–481. [Google Scholar]
- Nuraddin, S.M.; Amin, Z.A.; Sofi, S.H.; Osman, S. Antibacterial and anti-ulcerogenic effects of Punicagranatum peel extract against ethanol-induced acute gastric lesion in rats. Zanco J. Med. Sci. 2019, 23, 308–314. [Google Scholar] [CrossRef]
- Selmi, S.; Rtibi, K.; Grami, D.; Sebai, H.; Marzouki, L. Protective effects of orange (Citrus sinensis L.) peel aqueous extract and hesperidin on oxidative stress and peptic ulcer induced by alcohol in rat. Lipids Health Dis. 2017, 16, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastene, E.; Speisky, H.; García, A.; Moreno, J.; Troncoso, M.; Figueroa, G. In vitro and in vivo effects of apple peel polyphenols against Helicobacter pylori. J. Agr. Food Chem. 2010, 58, 7172–7179. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Lopes, N.P.; Adorno, M.A.T.; Sakamoto, I.K.; Genovese, M.I.; Saad, S.M.I.; Sivieri, K. Impact of combining acerola by-product with a probiotic strain on a gut microbiome model. Int. J. Food Sci. Nutr. 2019, 70, 182–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista, K.S.; Alves, A.F.; dos Santos Lima, M.; da Silva, L.A.; Lins, P.P.; de Sousa Gomes, J.A.; Silva, A.S.; Toscano, L.T.; de Albuquerque Meireles, B.R.L.; de Magalhães Cordeiro, A.M.T. Beneficial effects of consumption of acerola, cashew or guava processing by-products on intestinal health and lipid metabolism in dyslipidaemic female Wistar rats. Br. J. Nutr. 2018, 119, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.; Manuel, S.; Kale, R. Fruit waste pectin in enhancing the establishment of probiotic bacteria. J. Nutr. Health Food Eng. 2014, 1, 124–126. [Google Scholar]
- Fernández-López, J.; Fernández-Ginés, J.; Aleson-Carbonell, L.; Sendra, E.; Sayas-Barberá, E.; Pérez-Alvarez, J. Application of functional citrus by-products to meat products. Trends Food Sci. Technol. 2004, 15, 176–185. [Google Scholar] [CrossRef]
Fruit by-Product | TPC | Phenolic Compounds | References |
---|---|---|---|
Pomegranate peel | 139.4 * | Punicalagin A, punicalagin B, catechin, gallic acid, ellagic acid | [30,31,32] |
420.6 *** | |||
Pomegranate pomace | 134.8 ** | Gallic acid, catechin, ellagic acid, rosmarinic acid, hesperidin, p-coumaric acid, chlorogenic acid | [33,34] |
Rowanberry pomace | 167.4 **** | Cyanidin, Chlorogenic acid, quercetin, kaempferol | [35,36] |
Apple pomace | 13.8 * | Hydroxycinnamic acids, Hydroxycinnamates, phloretin glycosides, quercetin glycosides, catechins, procyanidins | [37,38] |
Apple peel | 34.3 * | Gallic acid, caffeic acid, vanillic acid, catechin, epicatechin gallate, chlorogenic acids, phloridzin, rutin | [38,39] |
Banana peel | 29.2 * | Epicatechin, rutin, hydroxybenzoic acid, myricetin, ferulic acid, chlorogenic acid, gallic acid | [40] |
Date by-products | 4.4 * | Quercetin, luteolin, apigenin, chrysoeriol, kaempferol, isorhamnetin, malonyl derivatives | [41,42] |
Elderberry pomace | 4.7 * | Cyanidin, rutin, oleanolic acid, ursolic acid, linoleic acid | [43,44] |
Grape juice by-product | 23.4 * | Benzoic and hydroxycinnamic derivatives, catechins, flavanols, anthocyanins, tannins, proanthocyanidins | [45,46] |
Grape pomace | 142.1 * | Phenolic acids (ferulic, p-coumaric, caffeic, gallic, vanillic, p-hydroxybenzoic), flavanols (proanthocyanidins), flavonols (kaempferol, quercetin, myricetin), stilbenes (resveratrol, piceid, astringin), anthocyanins | [47,48] |
Grape seed | 74.0 * | Gallic acid, caftaric acid, catechin, epicatechin, epicatechin gallate, procyanidins, resveratrol | [48,49,50] |
Mango kernel | 72.1 * | Gallates, gallotannins, gallic acid, ellagic acid and its derivatives | [48,51] |
Orange by-product | 4.21 * | Caffeic acid, Ferulic acid, p-Coumaric acid, Eriocitrin, Narirutin, Hesperidin, Neohesperidin | [52,53] |
Orange peel | 65.7 * | Caffeic acid, p-coumaric acid, naringin, kaempferol, neohesperidin, rutin | [54] |
Orange pulp | 22.3 * | Flavonone (Eriocitrin, Narirutin, Hesperidin, Didymin…), Flavone (Quercitrin, Nobiletin…), Kaemperol, Benzoic acids, Cinnamic acids, Chlorogenic acid, | [55] |
Lemon peel | 49.8 * | Caffeic acid, Coumaric acid, Ferulic acid, Sinapic acid | [56,57] |
Passion fruit by-products | 3.84 * | p-coumaric acid, Epicatechin | [52,58] |
Guava by-product | 19.9 * | Resveratrol, coumarin | [23] |
Cherry by-product | 91.3 * | Flavonoids, anthocyanidins, stilbenes, resveratrol, quercetin, gallic acid | [59] |
Fruit by-Product | TDF (g/100 DW) | References |
---|---|---|
Apple Pomace | 45.0 | [62] |
Apple Peel | 43.9 | [63] |
Apple by product | 75.8 | [64] |
Banana Peel | 49.6 | [40] |
Orange Pomace | 63.8 | [65] |
Orange Peel | 48.7 | [66] |
Orange by-product | 58.2 | [52] |
Passion fruit by-product | 64.2 | [52] |
Guava by-product | 89.8 | [52] |
Date seeds | 73.5 | [67] |
Grape fruit by-product | 67.2 | [64] |
Apricot by-product | 72.3 | [64] |
Pomegranate Peel | 56.2 | [68] |
Pomegranate pomace | 43.5 | [34] |
Fruit by-Product | Protein (%) | References |
---|---|---|
Orange by-product | 5.2 | [52] |
Passion fruit by-product | 12.6 | [52] |
Guava by-product | 2.1 | [52] |
Date seeds | 6.0 | [67] |
Pomegranate peels | 12.9 | [70] |
Pomegranate pomace | 11.1 | [34] |
Apple Pomace | 4.8 | [71] |
Apple Peel | 3.2 | [63] |
Mango peel | 4.3 | [72] |
Banana Peel | 7.0 | [73] |
Orange juice by-product | 18.9 | [70] |
Orange Pomace | 9.8 | [74] |
Orange Peel | 6.8 | [75] |
Citrus peel | 4.5 | [76] |
Grape fruit by-product | 5.8 | [13] |
Fruit by-Product | Lipid (%) | References |
---|---|---|
Orange juice by-product | 8.4 | [70] |
Pomegranate peel | 3.2 | [70] |
Pomegranate by-product | 4.0 | [84] |
Passion fruit by-product | 8.0 | [52] |
Guava by-product | 1.2 | [52] |
Apple Pomace | 4.2 | [85] |
Apple Peel | 10.1 | [63] |
Berry pomace | 20.2 | [36] |
Grape fruit pomace | 8.5 | [86] |
Banana Peel | 2.0 | [87] |
Date seeds | 8.8 | [88] |
Fruit by-Product | Food Products | Effects | References |
---|---|---|---|
Apple pomace | Bakery products, cakes, cookies, meat products, yoghurt, jams, juice |
| [85] |
Grape pomace and seeds | Bakery products, yoghurt, Meat product |
| [110] |
Banana peel | Bakery products, Pasta, Confectionaries |
| [111,112] |
Mango by-product | Bakery products, biscuits |
| [60,111] |
Orange by-product | Biscuits, sausage, Fermented milk, Ice cream, Pasta products |
| [60] |
Peach by-product | Muffins |
| [60] |
Raspberry and Cranberry by products | Muffins |
| [113] |
by-Product | Extract | Extraction Technique | Dose | Effect | References |
---|---|---|---|---|---|
Yellow passion fruit (Passiflora edulis) peel | Soluble dietary fibres | Enzymatic-gravimetric method | 0.1, 1 and 10 mg/kg (oral pre-treatment) |
| [149] |
1 mg/kg (intraperitoneal route) |
| ||||
Avocado (Persea americana Mill.) seeds | Ethyl acetate extract (SEAP) | Hydroalcoholic extraction with 70% ethylic alcohol | 10, 35 and 75 mg/kg (oral gavage) |
| [150] |
Avocado (Persea Americana) leaves | Aqueous and methanolic extracts |
| 200 mg/kg (intraperitoneal injection) | Significant inhibition of histamine-stimulated acid secretion through the action on H2-receptors | [151] |
Pomegranate (Punica granatum) peels | Ethanol extract | Ultrasonic extraction with 99% ethanol | 500 mg/kg (Oral) |
| [152] |
Orange (Citrus sinensis L.) peels | Flavonoids | Extraction with 80% aqueous methanol | 100, 200 and 400 mg/kg |
| [153] |
Apple (Malus domestica cv.) peels | Polyphenol-rich extract | Retention on absorber resin Sepabeads SP-850 | 150 and 300 mg/kg/day (Oral ingestion) | Avert the initial attachment of Helicobacter pylori to the antral mucosa and suppress inflammation | [154] |
Apple (Malus domestica) pomace | Pectin | Hot water-acid extraction | 25 mg/kg (oral) |
| [147] |
Grape seeds | Proanthocyanidins | Commercial product | 100 mg/kg |
| [141] |
Orange bagasse and passion fruit peels | Alcohol insoluble solids | Enzymatic extraction/Extraction with 80% aqueous EtOH (4°/1 h) | − |
| [138] |
Acerola (Malpighia emarginata) by-product (dried skin, seeds and pulp residues) | Polyphenol-rich extract | Extraction with 70% aqueous methanol | − |
| [155] |
By-products of acerola (Malpighia emarginata D.C.), cashew (Anacardium occidentale L.) and guava (Psidium guajava L.) fruits | Phenolic compounds and dietary fibres | Freezing in liquid N2 and freeze-drying | 400 mg/kg body weight (orogastric administration) |
| [156] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaouch, M.A.; Benvenuti, S. The Role of Fruit by-Products as Bioactive Compounds for Intestinal Health. Foods 2020, 9, 1716. https://doi.org/10.3390/foods9111716
Chaouch MA, Benvenuti S. The Role of Fruit by-Products as Bioactive Compounds for Intestinal Health. Foods. 2020; 9(11):1716. https://doi.org/10.3390/foods9111716
Chicago/Turabian StyleChaouch, Mohamed Aymen, and Stefania Benvenuti. 2020. "The Role of Fruit by-Products as Bioactive Compounds for Intestinal Health" Foods 9, no. 11: 1716. https://doi.org/10.3390/foods9111716
APA StyleChaouch, M. A., & Benvenuti, S. (2020). The Role of Fruit by-Products as Bioactive Compounds for Intestinal Health. Foods, 9(11), 1716. https://doi.org/10.3390/foods9111716