First Nation-Wide Analysis of Food Safety and Acceptability Data in Lebanon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alum, E.A.; Urom, S.; Ben, C.M.A. Microbiological contamination of food: The mechanisms, impacts and prevention. Int. J. Sci. Technol. Res 2016, 5, 65–78. [Google Scholar]
- Rather, I.A.; Koh, W.Y.; Paek, W.K.; Lim, J. The sources of chemical contaminants in food and their health implications. Front. Pharmacol. 2017, 8, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). WHO’s First Ever Global Estimates of Foodborne Diseases Find Children under 5 Account for Almost One Third of Deaths; World Health Organization: Geneva, Switzerland, 2015; Available online: https://www.who.int/en/news-room/detail/03-12-2015-who-s-first-ever-global-estimates-of-foodborne-diseases-find-children-under-5-account-for-almost-one-third-of-deaths (accessed on 17 January 2020).
- World Health Organization (WHO). WHO Estimates of the Global Burden of Foodborne diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- World Health Organization (WHO). Food Safety; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/en/news-room/fact-sheets/detail/food-safety (accessed on 17 January 2020).
- Jaffee, S.; Henson, S.; Unnevehr, L.; Grace, D.; Cassou, E. The Safe Food Imperative: Accelerating Progress in Low-and Middle-Income Countries; The World Bank: Wahington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Grace, D. Food Safety in Low and Middle Income Countries. Int. J. Environ. Res. Public Health 2015, 12, 10490–10507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortas, A. A Training Program in Food Safety in Lebanon. Int. J. Clin. Nutr. Diet. 2018, 4, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Jardali, F.; Hammoud, R.; Kamleh, R.; Jurdi, M. K2P Briefing Note: Protecting Consumers in Lebanon: The Need for Effective Food Safety System; American University of Beirut: Beirut, Lebanon, 2014; Available online: https://eventscal.lau.edu.lb/conferences/nfrd2014/abstracts/food/food-abstract13.pdf (accessed on 18 September 2020).
- Kassem, I.I.; Nasser, N.A.; Salibi, J. Prevalence and Loads of Fecal Pollution Indicators and the Antibiotic Resistance Phenotypes of Escherichia coli in Raw Minced Beef in Lebanon. Foods 2020, 9, 1543. [Google Scholar] [CrossRef]
- Hassan, J.; Eddine, R.Z.; Mann, D.; Li, S.; Deng, X.; Saoud, I.P.; Kassem, I.I. The Mobile Colistin Resistance Gene, mcr-1.1, Is Carried on IncX4 Plasmids in Multidrug Resistant E. coli Isolated from Rainbow Trout Aquaculture. Microorganisms 2020, 8, 1636. [Google Scholar] [CrossRef]
- Hassan, J.; El-Gemayel, L.; Bashour, I.; Kassem, I.I. On the edge of a precipice: The global emergence and dissemination of plasmid-borne mcr genes that confer resistance to colistin, a last-resort antibiotic. In Antibiotics and Antimicrobial Resistance Genes in the Environment; Elsevier BV: Amsterdam, The Netherlands, 2020; Volume 1, pp. 155–182. [Google Scholar]
- Malaeb, M.; Bizri, A.; Ghosn, N.; Berry, A.; Musharrafieh, U. Salmonella burden in Lebanon. Epidemiol. Infect. 2016, 144, 1761–1769. [Google Scholar] [CrossRef] [Green Version]
- Harb, C.; Mouannes, E.; Bou Zeidan, M.; Abdel Nour, A.M.; Hanna-Wakim, L. Foodborne pathogens dilemma in the Mediterranean diet: Case of Lebanon. J. Food Process. Technol. 2020, 11. [Google Scholar] [CrossRef]
- Unicomb, L.; Simmons, G.; Merritt, T.; Gregory, J.; Nicol, C.; Jelfs, P.; Kirk, M.; Tan, A.; Thomson, R.; Adamopoulos, J. Sesame seed products contaminated with Salmonella: Three outbreaks associated with tahini. Epidemiol. Infect. 2005, 133, 1065–1072. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Multistate outbreak of Salmonella serotype Bovismorbificans infections associated with hummus and tahini--United States, 2011. Morb. Mortal. Wkly. Rep. 2012, 61, 944–947. Available online: https://pubmed.ncbi.nlm.nih.gov/23169315/ (accessed on 20 September 2020).
- Canadian Food Inspection Agency (CFIA). Food Recall Warning—Alkanater Brand Tahina Recalled due to Salmonella; Canadian Food Inspection Agency: Ottawa, ON, USA, 2020; Available online: https://www.inspection.gc.ca/food-recall-warnings-and-allergy-alerts/2020-01-14/eng/1579039733281/1579039739334 (accessed on 20 September 2020).
- Alwan, N.; Saleh, I.; Beydoun, E.; Barbour, E.; Ghosn, N.; Harakeh, S. Resistance of Brucella abortus isolated from Lebanese dairy-based food products against commonly used antimicrobials. Dairy Sci. Technol. 2010, 90, 579–588. [Google Scholar] [CrossRef]
- Dabboussi, F.; Alam, S.; Mallat, H.; Hlais, S.; Hamze, M. Preliminary study on the prevalence of Campylobacter in childhood diarrhoea in North Lebanon. East. Mediterr. Health J. 2012, 18, 1225–1228. [Google Scholar] [PubMed]
- Elaridi, J.; Dimassi, H.; Hassan, H. Aflatoxin M1 and ochratoxin A in baby formulae marketed in Lebanon: Occurrence and safety evaluation. Food Control 2019, 106, 106680. [Google Scholar] [CrossRef]
- Fadlallah, S.M.; Shehab, M.; Cheaito, K.; Haidar-Ahmad, N.; El Hafi, B.; Saleh, M.; Nasser, Z.; El Hajj, R.; Ghosn, N.; Ammar, W. PulseNet Lebanon: An overview of its activities, outbreak investigations, and challenges. Foodborne Pathog. Dis. 2019, 16, 498–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadlallah, S.M.; Shehab, M.; Cheaito, K.; Saleh, M.; Ghosn, N.; Ammar, W.; El Hajj, R.; Matar, G.M. Molecular epidemiology and antimicrobial resistance of Salmonella species from clinical specimens and food Items in Lebanon. J. Infect. Dev. Ctries. 2017, 11, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haidar-Ahmad, N.; Kissoyan, K.A.B.; Fadlallah, S.M.; El Hajj, R.; Saleh, M.; Ghosn, N.; Matar, G.M. Genotypic and virulence characteristics of Listeria monocytogenes recovered from food items in Lebanon. J. Infect. Dev. Ctries. 2016, 10, 712–717. [Google Scholar] [CrossRef] [Green Version]
- Halablab, M.; Sheet, I.; Holail, H. Microbiological quality of raw vegetables grown in Bekaa Valley, Lebanon. Am. J. Food Technol. 2011, 6, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Harakeh, S.; Saleh, I.; Barbour, E.; Shaib, H. Highly resistant Yersinia enterocolitica isolated from dairy based foods in Lebanon. Int. Arab. J. Antimicrob. Agents 2012, 2. Available online: http://www.imed.pub/ojs/index.php/IAJAA/article/view/328 (accessed on 20 September 2020).
- Harakeh, S.; Saleh, I.; Zouhairi, O.; Baydoun, E.; Barbour, E.; Alwan, N. Antimicrobial resistance of Listeria monocytogenes isolated from dairy-based food products. Sci. Total Environ. 2009, 407, 4022–4027. [Google Scholar] [CrossRef]
- Hmede, Z.; Kassem, I.I. First report of the plasmid-borne colistin resistance gene (mcr-1) in Proteus mirabilis isolated from a toddler in non-clinical settings. IDCases 2019, 18, e00651. [Google Scholar] [CrossRef]
- Ibrahim, J.N.; Eghnatios, E.; El Roz, A.; Fardoun, T.; Ghssein, G. Prevalence, antimicrobial resistance and risk factors for campylobacteriosis in Lebanon. J. Infect. Dev. Ctries. 2019, 13, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Kassem, I.I.; Hijazi, M.A.; Saab, R. On a collision course: The availability and use of colistin-containing drugs in human therapeutics and food-animal farming in Lebanon. J. Glob. Antimicrob. Resist. 2019, 16, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Loukieh, M.; Mouannes, E.; Abou Jaoudeh, C.; Hanna Wakim, L.; Fancello, F.; Bou Zeidan, M. Street foods in Beirut city: An assessment of the food safety practices and of the microbiological quality. J. Food Saf. 2018, 38, e12455. [Google Scholar] [CrossRef]
- Rafei, R.; Al Kassaa, I.; Osman, M.; Dabboussi, F.; Hamze, M. Molecular epidemiology of Campylobacter isolates from broiler slaughterhouses in Tripoli, North of Lebanon. Br. Poult. Sci. 2019, 60, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Talhouk, R.S.; El Dana, R.; Araj, G.; Barbour, E.; Hashwa, F. Prevalence, antimicrobial susceptibility and molecular characterization of Campylobacter isolates recovered from humans and poultry in Lebanon. Lebanese Med. J. 1998, 46, 310–316. [Google Scholar]
- Kamleh, R.; Jurdi, M.; Annous, B.A. Management of microbial food safety in Arab countries. J. Food Prot. 2012, 75, 2082–2090. [Google Scholar] [CrossRef]
- The Lebanease Ministry of Public Health (MoPH). Quality and Safety. Food safety. Lists of Compliance and Non-Compliance Samples Taken from Food Institutions; Ministry of Public Health Beirut: Beirut, Lebanon, 2020. Available online: https://www.moph.gov.lb/en/Pages/4/126/food-safety (accessed on 17 January 2020).
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Chen, Y. Pathogenic bacteria: Gram-positive bacteria: Listeria monocytogenes. In Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd ed.; Lampel, K.A., Al-Khaldi, S., Cahill, S.M., Eds.; US Food and Drug Administration: Washington, DC, USA, 2012. [Google Scholar]
- Hait, J. Pathogenic bacteria: Gram-positive bacteria: Staphylococcus aureus. In Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd ed.; Lampel, K.A., Al-Khaldi, S., Cahill, S.M., Eds.; US Food and Drug Administration: Washington, DC, USA, 2012. [Google Scholar]
- Hammack, T. Pathogenic bacteria: Gram-negative bacteria: Salmonella species. In Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd ed.; Lampel, K.A., Al-Khaldi, S., Cahill, S.M., Eds.; US Food and Drug Administration: Washington, DC, USA, 2012. [Google Scholar]
- Sharma, S. Pathogenic bacteria: Gram-positive bacteria: Clostridium botulinum. In Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd ed.; Lampel, K.A., Al-Khaldi, S., Cahill, S.M., Eds.; US Food and Drug Administration: Washington, DC, USA, 2012. [Google Scholar]
- Kushkevych, I.; Leščanová, O.; Dordević, D.; Jančíková, S.; Hošek, J.; Vítězová, M.; Buňková, L.; Drago, L. The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small-Large Intestine Axis. J Clin Med. 2019, 8, 1656. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention (CDC). Norovirus Worldwide: Global Trends; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2018. Available online: https://www.cdc.gov/norovirus/trends-outbreaks/worldwide.html (accessed on 20 September 2020).
- Bizri, A.R.; Fares, J.; Musharrafieh, U. Infectious diseases in the era of refugees: Hepatitis A outbreak in Lebanon. Avicenna J. Med. 2018, 8, 147–152. [Google Scholar] [CrossRef]
- Bouhamdan, S.F.; Bitar, L.K.; Saghir, H.J.; Bayan, A.; Araj, G.F. Seroprevalence of Toxoplasma antibodies among individuals tested at hospitals and private laboratories in Beirut. Lebanese Med. J. 2010, 58, 8–11. [Google Scholar]
- Osman, M.; Benamrouz, S.; Guyot, K.; El Safadi, D.; Mallat, H.; Dabboussi, F.; Hamze, M.; Viscogliosi, E.; Certad, G. Molecular epidemiology of Cryptosporidium spp. in North Lebanon. J. Infect. Dev. Ctries. 2018, 12, 34S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, M.; El Safadi, D.; Benamrouz, S.; Guyot, K.; Dei-Cas, E.; Creusy, C.; Mallat, H.; Hamze, M.; Dabboussi, F.; Viscogliosi, E. Initial data on the molecular epidemiology of cryptosporidiosis in Lebanon. PLoS ONE 2015, 10, e0125129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Development Programme (UNDP). Poverty, Growth and Income Distribution in Lebanon; United Nations Development Programme: New York, NY, USA, 2008; Available online: http://www.undp.org/content/dam/lebanon/docs/Poverty/Publications/Poverty,%20Growth%20and%20Income%20Distribution%20in%20Lebanon.pdf (accessed on 20 September 2020).
- Central Administration for Statistics (CAS); World Bank Group. Snapshot of Poverty and Labor Market Outcomes in Lebanon Based on Household Budget Survey 2011/2012; World Bank: Washington, DC, USA, 2016. Available online: https://documents.worldbank.org/curated/en/279901468191356701/pdf/102819-REVISED-PUBLIC-Snapshot-of-Poverty-and-Labor-Market-in-Lebanon-10.pdf (accessed on 20 September 2020).
- Food and Drug Administration (FDA). Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins; US Food and Drug Administration: Washington, DC, USA, 2012.
- Hmede, Z.; Kassem, I.I. The colistin resistance gene, mcr-1, is prevalent in commensal E. coli isolated from Lebanese pre-harvest poultry. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. Available online: www.cdc.gov/DrugResistance/Biggest-Threats.html (accessed on 20 September 2020).
- Saadeh, L.; Mikhael, M. Lebanese Dairy Sector; Blom Bank: Beirut, Lebanon, 2016; Available online: https://blog.blominvestbank.com/wp-content/uploads/2016/05/Lebanese-Dairy-Sector2.pdf (accessed on 20 September 2020).
- United States Department of Agriculture: Foreign Agricultural Service (USDA FAS). Global Agricultural Information Network (GAIN): Lebanese Market Overview; United States Department of Agriculture, Foreign Agricultural Service: Washington, DC, USA, 2016; p. 10. Available online: https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Lebanese%20Market%20Overview_Cairo_Lebanon_6-26-2016.pdf (accessed on 10 December 2018).
- World Data Atlas (WDA). Lebanon: Live Stock Production-Production Quantity; Knoema Enterprise Data Solutions; Knoema: New York, NY, USA, 2018; Available online: https://knoema.com/atlas/Lebanon/topics/Agriculture/Live-Stock-Production-Production-Quantity (accessed on 29 May 2020).
- Odeyemi, O.A. Public health implications of microbial food safety and foodborne diseases in developing countries. Food Nutr. Res. 2016, 60, 29819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Food Categories | Unacceptable | Acceptable | Total | p-Value b |
---|---|---|---|---|
N (% a) | N (%) | N (%) | ||
Red Meat | 1132 (34.4) | 2154 (65.5) | 3286 (100) | < 0.001 |
Poultry Meat | 760 (30.9) | 1698 (69.1) | 2458 (100) | |
Dairy | 530 (28.3) | 1343 (71.7) | 1873 (100) | |
Bakery | 52 (11.2) | 413 (88.8) | 465 (100) | |
Fish | 51 (20.8) | 194 (79.2) | 245 (100) | |
Nuts | 40 (10.8) | 330 (89.2) | 370 (100) | |
Desserts | 167 (22.9) | 561 (77.1) | 728 (100) | |
Spices | 387 (49.3) | 398 (50.7) | 785 (100) | |
Water | 94 (55.0) | 77 (45.0) | 171 (100) | |
Other | 121 (9.7) | 1123 (90.3) | 1244 (100) | |
Total | 3334 (28.7) | 8291 (71.3) | 11,625 (100) |
Governorate | Unacceptable | Acceptable | Significance of Differences between Governorates | Odds Ratio (95% CI); p-Value c |
---|---|---|---|---|
N (% a) | N (%) | |||
North | 1121 (31.7) | 2413 (68.3) | χ2 = 39.73, p-value b < 0.001 | 1.48 (1.13, 1.95); p = 0.005 |
Mount Lebanon | 901 (27.3) | 2403 (72.7) | 1.20 (0.91, 1.58) | |
South | 767 (29.9) | 1799 (70.1) | 1.36 (1.03, 1.80); p < 0.029 | |
Bekaa | 473 (24.72) | 1446 (75.3) | 1.05 (0.79, 1.39) | |
Beirut | 72 (23.8) | 230 (76.2) | 1.0 | |
Total no. of samples (%) | 3334 (28.7) | 8291 (71.3) |
Governorate | Red Meat N = 1132 (%) | Poultry Meat N = 760 (%) | Dairy N = 530 (%) | Bakery N = 52 (%) | Fish N = 51 (%) | Nuts N = 40 (%) | Desserts N = 167 (%) | Spices N = 387 (%) | Water N = 94 (%) | Other N = 121 (%) | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
North N (%) | 439 (39.2) | 290 (25.9) | 184 (16.4) | 4 (0.4) | 8 (0.7) | 14 (1.2) | 44 (3.9) | 88 (7.9) | 12 (1.1) | 38 (3.4) | 1121 |
Mount Lebanon N (%) | 324 (36.0) | 231 (25.6) | 80 (8.9) | 8 (0.9) | 20 (2.2) | 12 (1.3) | 63 (7.0) | 98 (10.9) | 30 (3.3) | 35 (3.9) | 901 |
South N (%) | 230 (30.0) | 144 (18.8) | 156 (20.3) | 31 (4.0) | 12 (1.6) | 8 (1.0) | 31 (4.0) | 108 (14.1) | 36 (4.7) | 11 (1.4) | 767 |
Bekaa N (%) | 117 (24.7) | 88 (18.6) | 106 (22.4) | 8 (1.7) | 4 (0.8) | 6 (1.3) | 25 (5.3) | 85 (18.0) | 14 (3.0) | 20 (4.2) | 473 |
Beirut N (%) | 22 (30.6) | 7 (9.7) | 4 (5.6) | 1 (1.4) | 7 (9.7) | 0 (0.0) | 4 (5.6) | 8 (11.1) | 2 (2.8) | 17 (23.6) | 72 |
Food Categories | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Microbial Contaminant | Red Meat N = 1132 (% a) | Poultry Meat N = 760 (%) | Dairy N = 530 (%) | Bakery N = 52 (%) | Fish N = 51 (%) | Nuts N = 40 (%) | Desserts N = 167 (%) | Spices N = 387 (%) | Water N = 94 (%) | Other N = 121 (%) | Total N (% b) for Each Contaminant | p-Value c |
Sulfate-reducing bacteria (SRB) | 534 (46.2) | 391 (33.8) | 8 (0.7) | 5 (0.4) | 11 (0.95) | 11 (0.95) | 3 (0.3) | 159 (13.8) | 27 (2.3) | 7 (0.6) | 1156 (34.7) | < 0.001 |
E. coli | 592 (55.3) | 200 (18.7) | 211 (19.7) | 7 (0.7) | 8 (0.7) | 4 (0.4) | 17 (1.6) | 8 (0.7) | 10 (0.9) | 14 (1.3) | 1071 (32.1) | < 0.001 |
Aerobic bacteria | 190 (26.3) | 168 (23.2) | 57 (7.9) | 26 (3.6) | 31 (4.3) | - | 58 (8.0) | 82 (11.3) | 69 (9.5) | 42 (5.8) | 723 (21.7) | < 0.001 |
Coliforms | 26 (4.0) | 9 (1.4) | 253 (38.7) | 16 (2.4) | 1 (0.2) | 6 (0.9) | 115 (17.6) | 99 (15.1) | 71(10.9) | 58 (8.87) | 654 (19.6) | < 0.001 |
S. aureus | 279 (65.2) | 43 (10.0) | 67 (15.7) | 3 (0.7) | 8 (1.9) | - | 18 (4.2) | 3 (0.7) | 1 (0.2) | 6 (1.4) | 428 (12.8) | < 0.001 |
Salmonella spp. | 126 (32.6) | 240 (62.0) | 6 (1.6) | - | 1 (0.3) | - | 5 (1.3) | 2 (0.5) | - | 7 (1.8) | 387 (11.6) | < 0.001 |
Streptococcus spp. | 7 (8.9) | 3 (3.8) | 5 (6.3) | - | 2 (2.5) | - | 4 (5.1) | 14 (17.7) | 39 (49.4) | 5 (6.3) | 79 (2.4) | < 0.001 |
Listeria monocytogenes | 31 (52.5) | 13 (22.0) | 14 (23.7) | 1 (1.7) | - | - | - | - | - | - | 59 (1.8) | < 0.001 |
Pseudomonas aeruginosa | - | - | - | - | - | - | - | - | 48 (100.0) | - | 48 (1.4) | < 0.001 |
Clostridium botulinum | 4 (18.2) | 2 (9.1) | 1(4.5) | - | 1 (4.5) | - | 1(4.5) | 2(9.1) | 1(4.5) | 10 (45.5) | 22 (0.7) | < 0.001 |
Yeast/fungi | 11 (2.6) | 8 (1.9) | 160 (37.1) | 24 (5.6) | 3 (0.7) | 17 (3.9) | 20 (4.6) | 151 (35.0) | - | 37 (8.6) | 431 (12.9) | < 0.001 |
Aflatoxin | 1 (3.7) | - | - | - | - | 5 (18.5) | - | 20 (74.1) | - | 1 (3.7) | 27 (0.8) | < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharroubi, S.; Nasser, N.A.; El-Harakeh, M.D.; Sulaiman, A.A.; Kassem, I.I. First Nation-Wide Analysis of Food Safety and Acceptability Data in Lebanon. Foods 2020, 9, 1717. https://doi.org/10.3390/foods9111717
Kharroubi S, Nasser NA, El-Harakeh MD, Sulaiman AA, Kassem II. First Nation-Wide Analysis of Food Safety and Acceptability Data in Lebanon. Foods. 2020; 9(11):1717. https://doi.org/10.3390/foods9111717
Chicago/Turabian StyleKharroubi, Samer, Nivin A. Nasser, Marwa Diab El-Harakeh, Abdallah Alhaj Sulaiman, and Issmat I. Kassem. 2020. "First Nation-Wide Analysis of Food Safety and Acceptability Data in Lebanon" Foods 9, no. 11: 1717. https://doi.org/10.3390/foods9111717
APA StyleKharroubi, S., Nasser, N. A., El-Harakeh, M. D., Sulaiman, A. A., & Kassem, I. I. (2020). First Nation-Wide Analysis of Food Safety and Acceptability Data in Lebanon. Foods, 9(11), 1717. https://doi.org/10.3390/foods9111717