Starch Retrogradation in Rice Cake: Influences of Sucrose Stearate and Glycerol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Rice Cake
2.3. Hardness
2.4. X-ray diffraction Pattern
2.5. DSC Thermal Properties
2.6. H NMR Analysis
2.7. Retrogradation Kinetics
- θ is the region of nonretrograded material remaining after time t.
- EL is the maximum value of hardness, relative crystallinity, DSC results (Tg’, ΔHi and ΔHr), and T2 from NMR result.
- Et indicates the value of hardness, relative crystallinity, DSC results (Tg’, ΔHi and ΔHr), and T2 from NMR result at time t.
- E0 represents the value of hardness, relative crystallinity, DSC results (Tg’, ΔHi and ΔHr), and T2 from NMR result at time 0.
- k is a rate constant.
- n is the Avrami exponent.
2.8. Statistical Analysis
3. Results and Discussion
3.1. Hardness
3.2. X-ray Diffraction Pattern
3.3. DSC Thermal Properties
3.4. Solid-State 1H NMR Transverse Relaxation Time (T2)
3.5. Retrogradation Kinetics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Radhika Reddy, K.; Subramanian, R.; Zakiuddin Ali, S.; Bhattacharya, K. Viscoelastic properties of rice-flour pastes and their relationship to amylose content and rice quality. Cereal Chem. 1994, 71, 548–552. [Google Scholar]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Kim, S.-S.; Chung, H.-Y. Texture properties of a Korean rice cake (Karedduk) with addition of carbohydrate materials. J. Korean Soc. Food Sci. Nutr. 2007, 36, 1205–1210. [Google Scholar] [CrossRef] [Green Version]
- Oh, M.-H.; Shin, H.-C.; Park, J.-D.; Lee, H.-Y.; Kim, K.-S.; Kum, J.-S. Effect of added trehalose and enzymes on the qualities of Backsulgie. J. Korean Soc. Food Sci. Nutr. 2010, 39, 992–998. [Google Scholar] [CrossRef]
- Song, J.; Park, H. Effect of starch degradation enzymes on the retrogradation of a Korean rice cakes. J. Korean Soc. Food Sci. Nutr. 2003, 32, 1262–1269. [Google Scholar]
- Meng, Y.-C.; Sun, M.-H.; Fang, S.; Chen, J.; Li, Y.-H. Effect of sucrose fatty acid esters on pasting, rheological properties and freeze–thaw stability of rice flour. Food Hydrocoll. 2014, 40, 64–70. [Google Scholar] [CrossRef]
- Nakamura, S. Application of sucrose fatty acid esters as food emulsifiers. In Industrial Applications of surfactants IV; Karsa, D.R., Ed.; The Royal Society of Chemistry: Cambridge, UK, 1999; pp. 73–87. [Google Scholar]
- Wang, F.C.; Marangoni, A.G. Advances in the application of food emulsifier α-gel phases: Saturated monoglycerides, polyglycerol fatty acid esters, and their derivatives. J. Colloid Interface Sci. 2016, 483, 394–403. [Google Scholar] [CrossRef]
- Katsuta, K.; Tsutsui, K.; Maruyama, E.; Miura, M. Anti-firming efficiency of food emulsifiers on rice starch gel. J. Appl. Glycosci. 2002, 49, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Mathew, A.P.; Dufresne, A. Plasticized waxy maize starch: Effect of polyols and relative humidity on material properties. Biomacromolecules 2002, 3, 1101–1108. [Google Scholar] [CrossRef]
- Baik, M.Y.; Chinachoti, P. Effects of glycerol and moisture redistribution on mechanical properties of white bread. Cereal Chem. 2002, 79, 376–382. [Google Scholar] [CrossRef]
- Van Soest, J.; De Wit, D.; Tournois, H.; Vliegenthart, J. The influence of glycerol on structural changes in waxy maize starch as studied by Fourier transform infra-red spectroscopy. Polymer 1994, 35, 4722–4727. [Google Scholar] [CrossRef] [Green Version]
- Nara, S.; Komiya, T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch-Stärke 1983, 35, 407–410. [Google Scholar] [CrossRef]
- Oh, S.-M.; Choi, H.-W.; Kim, B.-Y.; Baik, M.-Y. Retrogradation kinetics of chestnut starches cultivated in three regions of Korea. Food Sci. Biotechnol. 2017, 26, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-M.; Kim, H.-Y.; Bae, J.-E.; Ye, S.-J.; Kim, B.-Y.; Choi, H.D.; Choi, H.-W.; Baik, M.-Y. Physicochemical and retrogradation properties of modified chestnut starches. Food Sci. Biotechnol. 2019, 28, 1723–1731. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. I General theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Park, H.-J.; Song, J.-C.; Shin, W.-C. Optimization of modified starches on retrogradation of Korean rice cake (Garaeduk). Korean J. Food Nutr. 2006, 19, 279–287. [Google Scholar]
- Levine, H.; Slade, L. Glass transitions in foods. In Physical Chemistry of Food; Schwartzberg, H.G., Hartel, R.W., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1992; pp. 83–199. [Google Scholar]
- Zhou, C.F.; Qian, P.; Meng, J.; Gao, S.M.; Lu, R.R. Effect of glycerol and sorbitol on the properties of dough and white bread. Cereal Chem. 2016, 93, 196–200. [Google Scholar] [CrossRef]
- Mun, S.-H.; Kim, J.-O.; Lee, S.-K.; Shin, M.-S. Retrogradation of sucrose fatty acid ester and soybean oil added rice flour gels. Korean J. Food Sci. Technol. 1996, 28, 305–310. [Google Scholar]
- Xiong, H.; Wang, Z.; Chen, L.; Ullah, I. Effects of sucrose fatty acid ester addition on the structural, rheological and retrogradation behavior of high amylose starch-based wood adhesive. Int. J. Adhes. Adhes. 2019, 89, 51–58. [Google Scholar]
- Ji, Y.; Zhu, K.; Zhou, H.; Qian, H. Study of the retrogradation behaviour of rice cake using rapid visco analyser, Fourier transform infrared spectroscopy and X-ray analysis. Int. J. Food Sci. Technol. 2010, 45, 871–876. [Google Scholar] [CrossRef]
- Kim, H.; Kim, K.; Han, G.; Lee, H.; Kim, M. Effect of added wheat flour on retardation of retrogradation in Garaetteok. Food Eng. Prog. 2014, 18, 1–6. [Google Scholar] [CrossRef]
- Putseys, J.; Lamberts, L.; Delcour, J. Amylose-inclusion complexes: Formation, identity and physico-chemical properties. J. Cereal Sci. 2010, 51, 238–247. [Google Scholar] [CrossRef]
- Slade, L.; Levine, H. Glass transitions and water-food structure interactions. Adv. Food Nutr. Res. 1995, 38, 103–269. [Google Scholar] [PubMed]
- Zeleznak, K.; Hoseney, R. The glass transition in starch. Cereal Chem. 1987, 64, 121–124. [Google Scholar]
- Zhang, Y.; Rempel, C. Retrogradation and antiplasticization of thermoplastic starch. In Thermoplastic Elastomers; Adel, E., Ed.; InTech: Rijeka, Croatia, 2012; pp. 117–132. [Google Scholar]
- Chung, H.-J.; Lee, E.-J.; Lim, S.-T. Comparison in glass transition and enthalpy relaxation between native and gelatinized rice starches. Carbohyd. Polym. 2002, 48, 287–298. [Google Scholar] [CrossRef]
- Kim, S.-K.; Choi, S.-H.; Choi, H.-W.; Ko, J.-H.; Kim, W.; Kim, D.-O.; Kim, B.-Y.; Baik, M.-Y. Retrogradation kinetics of cross-linked and acetylated corn starches under high hydrostatic pressure. Food Sci. Biotechnol. 2015, 24, 85–90. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, J.; Luo, S.J.; Liu, C.M.; Liu, W. Effect of food additives on starch retrogradation: A review. Starch-Stärke 2015, 67, 69–78. [Google Scholar] [CrossRef]
- Muira, M.; Nishimura, A.; Katsuta, K. Influence of addition of polyols and food emulsifiers on the retrogradation rate of starch. Food Struct. 1992, 11, 5. [Google Scholar]
- Chinachoti, P.; Steinberg, M. Interaction of sucrose with starch during dehydration as shown by water sorption. J. Food Sci. 1984, 49, 1604–1608. [Google Scholar] [CrossRef]
- Leung, H.; Magnuson, J.; Bruinsma, B. Pulsed nuclear magnetic resonance study of water mobility in flour doughs. J. Food Sci. 1979, 44, 1408–1411. [Google Scholar] [CrossRef]
- Curti, E.; Carini, E.; Diantom, A.; Cassotta, F.; Najm, N.; D’Alessandro, A.; Vittadini, E. Effect of Glycerol and Gluten on Mechanical Properties and 1H NMR Mobility of Cooked Pasta. Food Biophys. 2015, 10, 474–480. [Google Scholar] [CrossRef]
- Lin, Y.S.; Yeh, A.I.; Lii, C.Y. Correlation between starch retrogradation and water mobility as determined by differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR). Cereal Chem. 2001, 78, 647–653. [Google Scholar] [CrossRef]
Coefficient of Determination (R2) | ||||||||
---|---|---|---|---|---|---|---|---|
Control | RGLY1 | RGLY5 | RGLY10 | RES0.1 | RSE0.3 | RSE0.5 | ||
Avrami | Hardness | 0.81 | 0.83 | 0.94 | 0.85 | 0.81 | 0.89 | 0.90 |
XRD | 0.94 | 0.93 | 0.96 | 0.99 | 0.94 | 0.98 | 0.94 | |
Tg’ | 0.83 | 0.83 | 0.81 | 0.94 | 0.85 | 0.87 | 0.82 | |
ΔHi | 0.96 | 0.81 | 0.79 | 0.84 | 0.91 | 0.93 | 0.94 | |
ΔHr | 0.95 | 0.99 | 0.95 | 0.95 | 0.96 | 0.97 | 0.98 | |
T2 | 0.78 | 0.71 | 0.48 | 0.79 | 0.82 | 0.69 | N.D. | |
Exponential rise to maximum | Hardness | 0.99 | 0.93 | 0.95 | 0.88 | 0.95 | 0.91 | 0.92 |
T2 | 0.96 | 0.95 | 0.85 | 0.90 | 0.92 | 0.86 | 0.92 | |
Tg’ | 0.89 | 0.95 | 0.94 | 0.95 | 0.92 | 0.94 | 0.92 | |
ΔHi | 0.98 | 0.96 | 0.94 | 0.97 | 0.96 | 0.98 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.-M.; Choi, H.-D.; Choi, H.-W.; Baik, M.-Y. Starch Retrogradation in Rice Cake: Influences of Sucrose Stearate and Glycerol. Foods 2020, 9, 1737. https://doi.org/10.3390/foods9121737
Oh S-M, Choi H-D, Choi H-W, Baik M-Y. Starch Retrogradation in Rice Cake: Influences of Sucrose Stearate and Glycerol. Foods. 2020; 9(12):1737. https://doi.org/10.3390/foods9121737
Chicago/Turabian StyleOh, Seon-Min, Hee-Don Choi, Hyun-Wook Choi, and Moo-Yeol Baik. 2020. "Starch Retrogradation in Rice Cake: Influences of Sucrose Stearate and Glycerol" Foods 9, no. 12: 1737. https://doi.org/10.3390/foods9121737
APA StyleOh, S. -M., Choi, H. -D., Choi, H. -W., & Baik, M. -Y. (2020). Starch Retrogradation in Rice Cake: Influences of Sucrose Stearate and Glycerol. Foods, 9(12), 1737. https://doi.org/10.3390/foods9121737