Application of Fat-Tailed Sheep Tail and Backfat to Develop Novel Warthog Cabanossi with Distinct Sensory Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Harvesting and Meat Sampling
2.2. Preparation of Cabanossi
2.3. Physicochemical Analyses
2.4. Fatty Acid Composition
2.5. Lipid Oxidation
2.6. Descriptive Sensory Analysis
2.7. Consumer Preference
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Attributes
3.2. Fatty Acid Composition
3.3. Lipid Oxidation
3.4. Descriptive Sensory Analysis
3.5. Consumer Preference
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiménez-Colmenero, F.; Reig, M.; Toldrá, F. New approaches for the development of functional meat products. In Advanced Technologies For Meat Processing; CRC Press: Boca Raton, FL, USA, 2006; pp. 275–308. ISBN 978-1-4200-1731-1. [Google Scholar]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Sinclair, A.J.; Egan, A.R.; Ferrier, G.R.; Leury, B.J. Dietary manipulation of muscle long-chain omega-3 and omega-6 fatty acids and sensory properties of lamb meat. Meat Sci. 2002, 60, 125–132. [Google Scholar] [CrossRef]
- Vasta, V.; Nudda, A.; Cannas, A.; Lanza, M.; Priolo, A. Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Anim. Feed Sci. Technol. 2008, 147, 223–246. [Google Scholar] [CrossRef]
- Baer, A.A.; Dilger, A.C. Effect of fat quality on sausage processing, texture, and sensory characteristics. Meat Sci. 2014, 96, 1242–1249. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Martelli, G.; Brogna, N.; Nannoni, E.; Vignola, G.; Zaghini, G.; Sardi, L. Effects of a soybean-free diet supplied to Italian heavy pigs on fattening performance, and meat and dry-cured ham quality. Ital. J. Anim. Sci. 2012, 11, 459–465. [Google Scholar] [CrossRef]
- Della Casa, G.; Bochicchio, D.; Faeti, V.; Marchetto, G.; Poletti, E.; Rossi, A.; Panciroli, A.; Mordenti, A.L.; Brogna, N. Performance and fat quality of heavy pigs fed maize differing in linoleic acid content. Meat Sci. 2010, 84, 152–158. [Google Scholar] [CrossRef]
- Yousefi, A.R.; Kohram, H.; Zare Shahneh, A.; Nik-khah, A.; Campbell, A.W. Comparison of the meat quality and fatty acid composition of traditional fat-tailed (Chall) and tailed (Zel) Iranian sheep breeds. Meat Sci. 2012, 92, 417–422. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2003, 66, 21–32. [Google Scholar] [CrossRef]
- Ospina-E, J.C.; Sierra-C, A.; Ochoa, O.; Pérez-Álvarez, J.A.; Fernández-López, J. Substitution of saturated fat in processed meat products: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 113–122. [Google Scholar] [CrossRef]
- Sasaki, K.; Mitsumoto, M.; Nishioka, T.; Irie, M. Differential scanning calorimetry of porcine adipose tissues. Meat Sci. 2006, 72, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Świątkiewicz, M.; Oczkowicz, M.; Ropka-Molik, K.; Hanczakowska, E. The effect of dietary fatty acid composition on adipose tissue quality and expression of genes related to lipid metabolism in porcine livers. Anim. Feed Sci. Technol. 2016, 216, 204–215. [Google Scholar] [CrossRef]
- Cunha, L.C.M.; Lúcia, M.; Monteiro, G.; Lorenzo, J.M.; Munekata, P.E.S.; Muchenje, V.; Allan, F.; De Carvalho, L.; Conte-junior, C.A. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res. Int. 2018, 111, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Hugo, A.; Roodt, E. Significance of porcine fat quality in meat technology: A review. Food Rev. Int. 2007, 23, 175–198. [Google Scholar] [CrossRef]
- Ščetar, M.; Kurek, M.; Galić, K. Trends in meat and meat products packaging—A review. Croat. J. Food Sci. Technol. 2010, 2, 32–48. [Google Scholar]
- Stasiewicz, M.; Lipiński, K.; Cierach, M. Quality of meat products packaged and stored under vacuum and modified atmosphere conditions. J. Food Sci. Technol. 2014, 51, 1982–1989. [Google Scholar] [CrossRef] [Green Version]
- Estevez, M. Oxidative damage to poultry: From farm to fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Bragagnolo, N. Influence of salt on lipid oxidation in meat and seafood products: A review. Food Res. Int. 2017, 94, 90–100. [Google Scholar] [CrossRef]
- Arnaud, E.; Santchurn, S.; Collignan, A. Fermented Poultry Sausages. In Handbook of Fermented Meat and Poultry; Toldrá, F., Hui, Y.H., Astiasaran, I., Nip, W.-K., Sebranek, J.G., Silveira, E.-T., Talon, R., Eds.; Blackwell Publishing Ltd.: Iowa City, IA, USA, 2015. [Google Scholar]
- Ruiz, J. Ingredients. In Handbook of Fermented Meat and Poultry; Toldrá, F., Hui, Y.H., Astiasaran, I., Nip, W.-K., Sebranek, J.G., Silveira, E.-T., Talon, R., Eds.; Blackwell Publishing Ltd.: Iowa City, IA, USA, 2007; pp. 59–76. [Google Scholar]
- Kashan, N.E.J.; Manafi Azar, G.H.; Afzalzadeh, A.; Salehi, A. Growth performance and carcass quality of fattening lambs from fat-tailed and tailed sheep breeds. Small Rumin. Res. 2005, 60, 267–271. [Google Scholar] [CrossRef]
- Moharrery, A. Effect of docking and energy of diet on carcass fat characteristics in fat-tailed Badghisian sheep. Small Rumin. Res. 2007, 69, 208–216. [Google Scholar] [CrossRef]
- Khaldari, M.; Kashan, N.E.J.; Afzalzadeh, A.; Salehi, A. Growth and carcass characteristics of crossbred progeny from lean tailed and fat tailed sheep breeds. S. Afr. J. Anim. Sci. 2007, 37, 51–56. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhong, R.Z.; Fang, Y.; Zhou, D.W. Influence of tail docking on carcass characteristics, meat quality and fatty acid composition of fat-tail lambs. Small Rumin. Res. 2018, 162, 17–21. [Google Scholar] [CrossRef]
- Alves, S.P.; Bessa, R.J.B.; Quaresma, M.A.G.; Kilminster, T.; Scanlon, T.; Oldham, C.; Milton, J.; Greeff, J.; Almeida, A.M. Does the Fat Tailed Damara Ovine Breed Have a Distinct Lipid Metabolism Leading to a High Concentration of Branched Chain Fatty Acids in Tissues? PLoS ONE 2013, 8, e77313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Harten, S.; Kilminster, T.; Scanlon, T.; Milton, J.; Oldham, C.; Greeff, J.; Almeida, A.M. Fatty acid composition of the ovine longissimus dorsi muscle: Effect of feed restriction in three breeds of different origin. J. Sci. Food Agric. 2016, 96, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- North, M.K.; Dalle Zotte, A.; Hoffman, L.C. The use of dietary flavonoids in meat production: A review. Anim. Feed Sci. Technol. 2019, 257, 114291. [Google Scholar] [CrossRef]
- Gagaoua, M.; Boudechicha, H.R. Ethnic meat products of the North African and Mediterranean countries: An overview. J. Ethn. Foods 2018, 5, 83–98. [Google Scholar] [CrossRef]
- Teixeira, A.; Silva, S.; Guedes, C.; Rodrigues, S. Sheep and Goat Meat Processed Products Quality: A Review. Foods 2020, 9, 960. [Google Scholar] [CrossRef]
- Çiçek, Ü.; Polat, N. Investigation of physicochemical and sensorial quality of a type of traditional meat product: Bez sucuk. LWT—Food Sci. Technol. 2016, 65, 145–151. [Google Scholar] [CrossRef]
- Jones, M.; Hoffman, L.C.; Muller, M. Effect of rooibos extract (Aspalathus linearis) on lipid oxidation over time and the sensory analysis of blesbok (Damaliscus pygargus phillipsi) and springbok (Antidorcas marsupialis) droëwors. Meat Sci. 2015, 103, 54–60. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Muller, M.; Schutte, D.W.; Calitz, F.J.; Crafford, K. Consumer expectations, perceptions and purchasing of South African game meat. S. Afr. J. Wildl. Res. 2005, 35, 33–42. [Google Scholar]
- Swanepoel, M.; Leslie, A.J.; Hoffman, L.C. Comparative analyses of the chemical and sensory parameters and consumer preference of a semi-dried smoked meat product (cabanossi) produced with warthog (Phacochoerus africanus) and domestic pork meat. Meat Sci. 2016, 114, 103–113. [Google Scholar] [CrossRef]
- Chakanya, C.; Arnaud, E.; Muchenje, V.; Hoffman, L.C. Fermented meat sausages from game and venison: What are the opportunities and limitations? J. Sci. Food Agric. 2017. [Google Scholar] [CrossRef]
- Jones, M.; Arnaud, E.; Gouws, P.; Hoffman, L.C. Processing of South African biltong—A review. S. Afr. J. Anim. Sci. 2017, 47, 743–757. [Google Scholar] [CrossRef] [Green Version]
- Mahachi, L.N.; Rudman, M.; Arnaud, E.; Muchenje, V.; Hoffman, L.C. Development of semi dry sausages (cabanossi) with warthog (Phacochoerus africanus) meat: Physicochemical and sensory attributes. LWT—Food Sci. Technol. 2019, 115, 108454. [Google Scholar] [CrossRef]
- Tyburcy, A.; Kozyra, D. Effects of composite surface coating and pre-drying on the properties of kabanosy dry sausage. Meat Sci. 2010, 86, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Law in the EU. Eur. Food Feed Law Rev. 2011, 6, 351–353.
- Chmiel, M.; Adamczak, L.; Wronska, K.; Pietrzak, D.; Florowski, T. The effect of drying parameters on the quality of pork and poultry-pork kabanosy produced according to the traditional specialties guaranteed recipe. J. Food Qual. 2017, 1597432. [Google Scholar] [CrossRef]
- Swanepoel, M.; Leslie, A.J.; van der Rijst, M.; Hoffman, L.C. Physical and chemical characteristics of warthog (Phacochoerus africanus) meat. Afr. J. Wildl. Res. 2016, 46, 103–120. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Sales, J. Physical and chemical quality characteristics of warthog (Phacochoerus aethiopicus) meat. Livest. Res. Rural Dev. 2007, 19, 153. [Google Scholar]
- Rudman, M.; Leslie, A.J.; van der Rijst, M.; Hoffman, L.C. Quality characteristics of warthog (Phacochoerus africanus) meat. Meat Sci. 2018, 145, 266–272. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2006. [Google Scholar]
- Lee, C.M.; Trevino, B.; Chaiyawat, M. A simple and rapid solvent extraction method for determining total lipids in fish tissue. J. AOAC Int. 1996, 79, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Neethling, J.; Britz, T.J.; Hoffman, L.C. Impact of season on the fatty acid profiles of male and female blesbok (Damaliscus pygargus phillipsi) muscles. Meat Sci. 2014, 98, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Mukumbo, F.E.; Arnaud, E.; Collignan, A.; Hoffman, L.C.; Descalzo, A.M.; Muchenje, V. Physico-chemical composition and oxidative stability of South African beef, game, ostrich and pork droëwors. J. Food Sci. Technol. 2018, 55, 4833–4840. [Google Scholar] [CrossRef] [PubMed]
- Lawless, H.T.; Heimann, H. Sensory Evaluation of Food, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Ekine-Dzivenu, C.; Chen, L.; Vinsky, M.; Aldai, N.; Dugan, M.E.R.; McAllister, T.A.; Wang, Z.; Okine, E.; Li, C. Estimates of genetic parameters for fatty acids in brisket adipose tissue of Canadian commercial crossbred beef steers. Meat Sci. 2014, 96, 1517–1526. [Google Scholar] [CrossRef]
- Mora-Gallego, H.; Serra, X.; Guàrdia, M.D.; Miklos, R.; Lametsch, R.; Arnau, J. Effect of the type of fat on the physicochemical, instrumental and sensory characteristics of reduced fat non-acid fermented sausages. Meat Sci. 2013, 93, 668–674. [Google Scholar] [CrossRef]
- Tyburcy, A.; Wasiak, P.; Cegiełka, A. Application of composite protective coatings on the surface of sausages with different water content. Acta Sci. Pol. Technol. Aliment. 2010, 9, 151–159. [Google Scholar]
- McQuestin, O.J.; Shadbolt, C.T.; Ross, T. Quantification of the relative effects of temperature, pH, and water activity on inactivation of Escherichia coli in fermented meat by meta-analysis. Appl. Environ. Microbiol. 2009, 75, 6963–6972. [Google Scholar] [CrossRef] [Green Version]
- Toldrá, F. Biochemistry of fermented meat. In Food Biochemistry and Food Processing; Simpson, B.K., Nollet, L.M., Toldrá, F., Benjakul, S., Paliyath, G., Hui, Y.H., Eds.; Johnn Wiley & Sons, Inc.: Oxford, UK, 2012; pp. 331–343. [Google Scholar]
- Ross, T.; Shadbolt, C.T. Predicting Escherichia coli Inactivation in Uncooked Comminuted Fermented Meat Products; Meat and Livestock Australia: Sydney, Australia, 2001; Volume 364. [Google Scholar]
- Muguerza, E.; Fista, G.; Ansorena, D.; Astiasaran, I.; Bloukas, J.G. Effect of fat level and partial replacement of pork backfat with olive oil on processing and quality characteristics of fermented sausages. Meat Sci. 2002, 61, 397–404. [Google Scholar] [CrossRef]
- Gómez, M.; Lorenzo, J.M. Effect of fat level on physicochemical, volatile compounds and sensory characteristics of dry-ripened “chorizo” from Celta pig breed. Meat Sci. 2013, 95, 658–666. [Google Scholar] [CrossRef]
- Ammor, M.S.; Mayo, B. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 2007, 76, 138–146. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Fontan, M.C.G.; Cachaldora, A.; Franco, I.; Carballo, J. Study of the lactic acid bacteria throughout the manufacture of dry-cured lacón (a Spanish traditional meat product). Effect of some additives. Food Microbiol. 2010, 27, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.C.; Jones, M.; Muller, N.; Joubert, E.; Sadie, A. Lipid and protein stability and sensory evaluation of ostrich (Struthio camelus) droewors with the addition of rooibos tea extract (Aspalathus linearis) as a natural antioxidant. Meat Sci. 2014, 96, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Yim, D.G.; Jang, K.H.; Chung, K.Y. Effect of fat level and the ripening time on quality traits of fermented sausages. Asian-Australas. J. Anim. Sci. 2016, 29, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warris, P. Meat Science; CAB Publishing: Oxon, UK, 2000. [Google Scholar]
- Lorenzo, J.M.; Montes, R.; Purriños, L.; Cobas, N.; Franco, D. Fatty acid composition of Celta pig breed as influenced by sex and location of fat in the carcass. J. Sci. Food Agric. 2012, 92, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Valencak, T.G.; Gamsjäger, L.; Ohrnberger, S.; Culbert, N.J.; Ruf, T. Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking. BMC Res. Notes 2015, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Romero, M.C.; Romero, A.M.; Doval, M.M.; Judis, A. Nutritional value and fatty acid composition of some traditional Argentinean meat sausages. Food Sci. Technol. 2013, 33, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Del Nobile, M.A.; Conte, A.; Incoronato, A.L.; Panza, O.; Sevi, A.; Marino, R. New strategies for reducing the pork back-fat content in typical Italian salami. Meat Sci. 2009, 81, 263–269. [Google Scholar] [CrossRef]
- Mukumbo, F.E.; Descalzo, A.M.; Collignan, A.; Hoffman, L.C.; Servent, A.; Muchenje, V.; Arnaud, E. Effect of Moringa oleifera leaf powder on drying kinetics, physico-chemical properties, ferric reducing antioxidant power, α-tocopherol, β-carotene, and lipid oxidation of dry pork sausages during processing and storage. J. Food Process. Preserv. 2020, 44, 1–12. [Google Scholar] [CrossRef]
- Channon, H.A.; Lyons, R.; Bruce, H. Sheepmeat Flavour and Odour: A Review. Sheep CRC Project Number Sheep CRC 1.3.2. 2003. Available online: http://www.sheepcrc.org.au/images/pdfs/CRC1/CRC1_Meat/SMEQ/Sheepmeat_flavour_review.pdf (accessed on 8 November 2016).
- Young, O.A.; Berdague, J.-L.; Viallon, C.; Rousset-Akrim, S.; Theriez, M. Fat-borne volatiles and sheepmeat odour. Meat Sci. 1997, 45, 183–200. [Google Scholar] [CrossRef]
- Watkins, P.J.; Frank, D. Heptadecanoic acid as an indicator of BCFA content in sheep fat. Meat Sci. 2019, 151, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Watkins, P.J.; Kearney, G.; Rose, G.; Allen, D.; Ball, A.J.; Pethick, D.W.; Warner, R.D. Effect of branched-chain fatty acids, 3-methylindole and 4-methylphenol on consumer sensory scores of grilled lamb meat. Meat Sci. 2014, 96, 1088–1094. [Google Scholar] [CrossRef]
- Hamm, R. Kolloidchemie des Fleisches; Parey: Berlin/Hamburg, Germany, 1972. [Google Scholar]
- Ruusunen, M.; Simolin, M.; Puolanne, E. The effect of fat content and flavor enhancers on the perceived saltiness of cooked “bologna-type” sausages. J. Muscle Foods 2001, 27, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Temperán, S.; Bermúdez, R.; Purriños, L.; Franco, D. Effect of fat level on physicochemical and sensory properties of dry-cured duck sausages. Poult. Sci. 2011, 90, 1334–1339. [Google Scholar] [CrossRef] [PubMed]
- Guiné, R.P.F.; Florença, S.G.; Barroca, M.J.; Anjos, O. The Link between the Consumer and the Innovations in Food Product Development. Foods 2020, 9, 1317. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.C.; De Brún, A.; Henchion, M.; Li, C.; Murrin, C. Consumer evaluations of processed meat products reformulated to be healthier—A conjoint analysis study. Meat Sci. 2017, 131, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, A.P.; Ferreira, V.; Leal, M.; Ferreira, M.; Campos, S.; Guiné, R.P.F. Perceptions about healthy eating and emotional factors conditioning eating behaviour: A study involving Portugal, Brazil and Argentina. Foods 2020, 9, 1236. [Google Scholar] [CrossRef]
- Burger, J. Daily consumption ofwild fish and game: Exposures of high end recreationists. Int. J. Environ. Health Res. 2002, 12, 343–354. [Google Scholar] [CrossRef]
- Radder, L.; le Roux, R. Factors affecting food choice in relation to venison: A South African example. Meat Sci. 2005, 583–589. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Wiklund, E. Game and venison—Meat for the modern consumer. Meat Sci. 2006, 74, 197–208. [Google Scholar] [CrossRef]
- Arihara, K. Strategies for designing novel functional meat products. Meat Sci. 2006, 74, 219–229. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Carballo, J.; Cofrades, S. Healthier meat and meat products: Their role as functional foods. Meat Sci. 2001, 59, 5–13. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef]
- Girolami, A.; Napolitano, F.; Faraone, D.; Di Bello, G.; Braghieri, A. Image analysis with the computer vision system and the consumer test in evaluating the appearance of Lucanian dry sausage. Meat Sci. 2014, 96, 610–616. [Google Scholar] [CrossRef]
AROMA 0 = None, 100 = Prominent | Description of Attributes | Description of References |
Overall aroma intensity | The overall intensity of aroma upon removing the cover | |
Smokey aroma | Aroma associated with wood smoke | Low, moderate and high intensity liquid smoke solution a |
Charred aroma | Aroma associated with blackened sheep meat cooked over high heat/flames | Braaied (barbequed) sheep meat |
Fermented sour aroma | Aroma associated with all fermented meat products | Black forest ham/salami sticks |
Cured pork aroma | Aroma associated with cured pork products | Cured unsmoked pork product (Ham) |
Pork fat aroma | Aroma associated with roasted pork fat | Fat from roasted pork loin b |
Mutton aroma | Aroma associated with mutton | Mutton chops b |
Sheep-like fatty aroma | Aroma associated with mutton fat | Mutton fat b |
Peppery aroma | Aroma associated with black pepper | Crushed black peppercorns |
Sweet aroma | Sweet aroma associated with molasses | Low, moderate and high intensity molasses solution |
Herbaceous aroma | General mixed herbs aroma | Rosemary, thyme, parsley and organum |
FLAVOUR 0 = None, 100 = Prominent | Description of Attributes | Description of References |
Overall flavour intensity | The overall intensity of flavour upon chewing | |
Smokey flavour | Flavour associated with wood smoked pork | Fried bacon c |
Woody flavour | Flavour associated with the wood from smoking | Wood sawdust solution d |
Cured pork flavour | Flavour associated with cured pork products | Black forest ham/Fried bacon |
Fermented sour flavour | Flavour associated with all fermented meat products | Black forest ham/Salami sticks |
Pork fat flavour | Flavour associated with roasted pork fat | Roasted pork loin fat |
Mutton flavour | Flavour associated with mutton | Mutton chops |
Sheep-like fatty flavour | Flavour associated with mutton fat | Mutton fat |
Peppery flavour | Flavour associated with black pepper | Crushed black peppercorns |
Herbaceous flavour | General mixed herbs flavour | Rosemary, thyme, parsley and organum |
Salty taste | Salty taste | Low, moderate, high intensity salt solution e |
Sweet taste | Sweet aroma associated with molasses | Salami sticks |
Fatty mouthfeel 0 = low, 100 = extremely high | The amount of fatty coating left on palate after swallowing | |
APPEARANCE | Description of Attributes | Description of References |
Red/brown colour intensity 0 = light, 100 = dark | Red/brown colour associated with different meat products | Dry cabanossi f |
Fatty/Oily/Shininess 0 = dull, 100 = shiny | A measure of how oily the product looks (shininess) | Dry cabanossi/salami sticks |
Percentage fat 0 = lean, 100 = fatty/abundant | The percentage perceived fat in the products | Dry cabanossi/pepper salami |
TEXTURE | Description of Attributes | Description of References |
First bite 0 = low, 100 = high | The amount of pressure required to bite through the cabanossi | Vienna’s/salami |
Sustained juiciness 0 = dry, 100 = extremely juicy | The impression of juiciness after first 5 chews | |
Chewiness 0 = soft, 100 = extremely hard | The ease of chewing | Vienna’s/salami sticks |
Residue 0 = none, 100 = abundant | The amount of residue left in mouth after 10 chews |
Gender | Proportion * | Age Group | Proportion * |
---|---|---|---|
Male | 60 | 18–23 | 20 |
Female | 40 | 24–29 | 28 |
30–39 | 22 | ||
40–49 | 18 | ||
50+ | 12 | ||
Total | 100 | 100 |
Treatment | Raw Batter | p-Value | Finished Cabanossi Product | p-Value | ||
---|---|---|---|---|---|---|
PF | SF | PF | SF | |||
Weight (kg) | 2.6 ± 0.14 | 2.8 ± 0.16 | 0.302 | 1.7 ± 0.14 | 1.8 ± 0.21 | 0.097 |
Weight loss (%) | - | - | - | 35.9 ± 4.75 | 33.2 ± 5.16 | 0.067 |
Moisture loss (%) | - | - | - | 33.0 ± 0.85 | 29.9 ± 0.67 | 0.031 |
Water activity | - | - | - | 0.94 ± 0.01 | 0.94 ± 0.01 | 0.146 |
pH | 5.58 ± 0.17 | 5.56 ± 0.14 | 0.563 | 5.16 ± 0.10 | 5.14 ± 0.11 | 0.578 |
Moisture (%) | 63.1 ± 0.88 | 60.7 ± 1.39 | <0.0001 | 46.0 ± 1.16 | 46.2 ± 2.16 | 0.364 |
Protein (%) | 19.9 ± 3.80 | 16.7 ± 3.34 | 0.030 | 27.8 ± 3.70 | 25.9 ± 2.09 | 0.032 |
Fat (%) | 16.2 ± 4.28 | 20.5 ± 3.50 | 0.001 | 23.2 ± 4.40 | 24.8 ± 2.91 | 0.027 |
Ash (%) | 2.7 ± 0.12 | 2.7 ± 0.10 | 0.502 | 4.0 ± 0.26 | 3.8 ± 0.22 | 0.006 |
Salt (%) | 1.9 ± 0.11 | 1.9 ± 0.10 | 0.688 | 2.8 ± 0.25 | 2.7 ± 0.14 | 0.744 |
TBARS (mg/kg) | 0.21 ± 0.07 | 0.24 ± 0.06 | 0.259 | 0.35 ± 0.09 | 0.37 ± 0.08 | 0.390 |
* FATTY ACID | Raw Batter | p-Value | Finished Cabanossi Product | p-Value | ||
---|---|---|---|---|---|---|
PF | SF | PF | SF | |||
Saturated fatty acids | ||||||
C14:0 Myristic | 1.69 ± 0.19 | 2.42 ± 0.48 | 0.001 | 1.38 ± 0.31 | 1.37 ± 0.30 | 0.356 |
C16:0 Palmitic | 22.8 ± 1.34 | 21.95 ± 2.24 | 0.062 | 21.90 ± 1.92 | 22.16 ± 1.38 | 0.902 |
C18:0 Stearic | 14.56 ± 2.21 | 12.79 ± 3.02 | 0.001 | 14.33 ± 2.03 | 14.27 ± 2.04 | 0.908 |
Monounsaturated fatty acids | ||||||
C16:1 Palmitoleic | 2.10 ± 0.37 | 3.96 ± 1.08 | 0.000 | 1.9 ± 0.21 | 2.0 ± 0.43 | 0.741 |
C18:1n9c Oleic | 23.49 ± 2.16 | 32.57 ± 5.10 | <0.0001 | 24.4 ± 2.99 | 33.8 ± 2.75 | 0.637 |
Polyunsaturated fatty acids | ||||||
C18:2n6c Linoleic | 22.32 ± 1.91 | 8.27 ± 6.15 | <0.0001 | 21.47 ± 5.60 | 5.24 ± 0.65 | <0.0001 |
C18:3n3 γ-α-Linolenic | 2.59 ± 0.61 | 2.24 ± 0.49 | 0.030 | 2.58 ± 0.63 | 2.40 ± 0.77 | 0.040 |
SFA | 42.95 ± 3.35 | 42.30 ± 4.53 | 0.864 | 43.18 ± 4.57 | 43.73 ± 5.80 | 0.580 |
MUFA | 28.38 ± 2.50 | 43.30 ± 8.57 | <0.0001 | 29.27 ± 3.84 | 45.38 ± 5.68 | <0.0001 |
PUFA | 28.67 ± 1.88 | 13.90 ± 6.15 | <0.0001 | 27.55 ± 6.00 | 10.88 ± 1.32 | <0.0001 |
PUFA: SFA | 0.67 ± 0.09 | 0.32 ± 0.13 | <0.0001 | 0.65 ± 0.18 | 0.25 ± 0.05 | <0.0001 |
Total n-6 | 25.35 ± 1.85 | 10.96 ± 6.12 | <0.0001 | 24.28 ± 5.78 | 7.82 ± 0.74 | <0.0001 |
Total n-3 | 3.32 ± 0.64 | 2.94 ± 0.51 | 0.033 | 3.27 ± 0.71 | 3.07 ± 0.79 | 0.361 |
n-6:n-3 | 7.88 ± 1.49 | 3.79 ± 2.11 | 0.0001 | 7.33 ± 2.25 | 2.65 ± 0.50 | <0.0001 |
Health indices | ||||||
Atherogenic index | 0.43 ± 0.02 | 0.59 ± 0.07 | <0.0001 | 0.44 ± 0.06 | 0.62 ± 0.04 | 0.050 |
Thrombogenic index | 0.87 ± 0.12 | 0.94 ± 0.18 | 0.118 | 0.90 ± 0.19 | 0.99 ± 0.23 | 0.040 |
AROMA | PF | SF | p-Value |
---|---|---|---|
Overall aroma intensity | 66.28 ± 1.85 | 56.66 ± 2.28 | 0.002 |
Smoky aroma | 63.47 ± 1.77 | 52.34 ± 2.64 | 0.001 |
Charred aroma | 4.94 ± 1.65 | 16.75 ± 1.92 | 0.001 |
Fermented sour aroma | 19.27 ± 1.59 | 13.86 ± 1.41 | 0.006 |
Cured pork aroma | 25.94 ± 1.97 | 15.44 ± 1.62 | 0.000 |
Pork fat aroma | 17.10 ± 2.00 | 4.40 ± 1.79 | 0.000 |
Mutton aroma | 1.02 ± 0.96 | 8.68 ± 1.29 | 0.000 |
Sheep-like fatty aroma | 1.05 ± 0.98 | 8.67 ± 0.97 | 0.000 |
Peppery aroma | 15.51 ± 0.70 | 14.86 ± 0.93 | 0.554 |
Sweet aroma | 18.77 ± 0.42 | 14.14 ± 0.81 | 0.000 |
Herbaceous aroma | 0.86 ± 0.12 | 3.99 ± 1.02 | 0.000 |
FLAVOUR | |||
Overall flavour intensity | 63.03 ± 1.60 | 54.79 ± 1.45 | 0.000 |
Smoky flavour | 57.27 ± 1.52 | 45.92 ± 2.43 | 0.000 |
Woody flavour | 18.22 ± 0.96 | 12.75 ± 0.97 | 0.000 |
Cured pork flavour | 34.54 ± 1.88 | 22.92 ± 1.50 | 0.000 |
Fermented sour flavour | 23.05 ± 0.71 | 16.17 ± 1.74 | 0.000 |
Pork fat flavour | 18.27 ± 2.05 | 3.98 ± 1.87 | 0.000 |
Mutton flavour | 1.32 ± 1.47 | 21.41 ± 2.18 | 0.000 |
Sheep-like fatty flavour | 1.52 ± 0.64 | 15.47 ± 1.70 | 0.000 |
Peppery flavour | 17.15 ± 0.99 | 15.86 ± 0.87 | 0.176 |
Herbaceous flavour | 2.17 ± 0.59 | 8.32 ± 1.22 | 0.000 |
Salty taste | 19.72 ± 0.75 | 18.58 ± 0.74 | 0.031 |
Sweet taste | 19.61 ± 1.27 | 16.13 ± 1.37 | 0.002 |
Fatty mouthfeel | 16.17 ± 1.07 | 22.03 ± 1.14 | 0.000 |
APPEARANCE | |||
Red/brown colour intensity | 52.89 ± 2.73 | 47.85 ± 4.46 | 0.027 |
Fatty/Oily/Shininess | 48.95 ± 3.99 | 47.84 ± 4.65 | 0.991 |
Perceived Percentage fat | 46.09 ± 1.00 | 44.57 ± 1.72 | 0.642 |
TEXTURE | |||
First bite | 29.91 ± 1.63 | 28.67 ± 2.00 | 0.218 |
Sustained juiciness | 45.16 ± 1.24 | 50.74 ± 2.46 | 0.014 |
Chewiness | 25.42 ± 0.70 | 22.29 ± 0.89 | 0.002 |
Residue | 23.12 ± 1.54 | 18.21 ± 1.08 | 0.000 |
Product | Least Significant Mean | Factor | Least Significant Mean |
---|---|---|---|
Biltong | 7.7 a ± 1.69 | Availability | 6.2 c,d ± 1.91 |
Cabanossi | 6.3 d ± 2.01 | Fat content | 6.5 b,c ± 1.87 |
Droëwors | 6.9 b ± 1.84 | Origin | 5.5 e ± 2.52 |
Fresh meat | 6.7 b,c ± 1.89 | Price | 7.2 a ± 1.77 |
Fresh/raw sausage | 6.6 b ± 1.81 | Safety | 6.7 b ± 2.16 |
Salami | 6.3 c,d ± 1.94 | Species | 5.8 d,e ± 2.26 |
Attribute | PF | SF |
---|---|---|
Appearance | 6.75 a ± 1.38 | 6.27 b ± 1.61 |
Taste | 6.75 a ± 1.64 | 6.12 b ± 1.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahachi, L.N.; Rudman, M.; Arnaud, E.; Muchenje, V.; Hoffman, L.C. Application of Fat-Tailed Sheep Tail and Backfat to Develop Novel Warthog Cabanossi with Distinct Sensory Attributes. Foods 2020, 9, 1822. https://doi.org/10.3390/foods9121822
Mahachi LN, Rudman M, Arnaud E, Muchenje V, Hoffman LC. Application of Fat-Tailed Sheep Tail and Backfat to Develop Novel Warthog Cabanossi with Distinct Sensory Attributes. Foods. 2020; 9(12):1822. https://doi.org/10.3390/foods9121822
Chicago/Turabian StyleMahachi, Leo Nyikadzino, Monlee Rudman, Elodie Arnaud, Voster Muchenje, and Louwrens Christiaan Hoffman. 2020. "Application of Fat-Tailed Sheep Tail and Backfat to Develop Novel Warthog Cabanossi with Distinct Sensory Attributes" Foods 9, no. 12: 1822. https://doi.org/10.3390/foods9121822
APA StyleMahachi, L. N., Rudman, M., Arnaud, E., Muchenje, V., & Hoffman, L. C. (2020). Application of Fat-Tailed Sheep Tail and Backfat to Develop Novel Warthog Cabanossi with Distinct Sensory Attributes. Foods, 9(12), 1822. https://doi.org/10.3390/foods9121822