Nutrient Effect on the Taste of Mineral Waters: Evidence from Europe
Abstract
:1. Introduction
1.1. Mineral Nutrients
1.1.1. Calcium
1.1.2. Magnesium
1.1.3. Sodium
1.1.4. Potassium
1.1.5. Chlorine
1.1.6. Neutralization Capacity and
2. Literature Review
3. Materials and Methods
3.1. Determination of Composition
3.2. Sensory Analysis
3.2.1. Grouping
- VPM = very poorly mineralized, with the dissolved substances up to 50 mg/L;
- PM = poorly mineralized, with the content of solutes 50 to 500 mg/L;
- MM = moderately mineralized, with the content of solutes 500 to 1500 mg/L;
- SM = strongly mineralized, with the content of solutes 1500 to 5000 mg/L;
- VSM = very strongly mineralized, with the content of solutes greater than 5000 mg/L.
- base;
- neutral;
- acidic.
3.2.2. Panelists, Water Samples, and Preparation
3.2.3. Descriptive Sensory Analysis
3.3. Regression Analysis
4. Results
4.1. Atomic Absorption Spectrometry Results
4.2. Results of Sensory Analysis and Hedonic Pricing
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hansen, J.T.; Netter, F.H.; Koeppen, B.M. Netter’s Atlas of Human Physiology; Icon Learning Systems: Teterbobo, NJ, USA, 2002; ISBN 978-1-929007-01-1. [Google Scholar]
- Heidi, G. How Much Water Should You Drink? Available online: https://www.health.harvard.edu/staying-healthy/how-much-water-should-you-drink (accessed on 29 August 2019).
- Zakonyprolidi.cz 275/2004 Sb. Vyhláška o Požadavcích na Jakost a Zdravotní Nezávadnost Balených Vod a o Způsobu Jejich Úpravy. Available online: https://www.zakonyprolidi.cz/cs/2004-275 (accessed on 4 October 2019).
- Kozisek, F. Health risk from drinking demineralized water. In Rolling Revision of the WHO Guidelines for Drinking Water Quality; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Cockell, K.A. Mineral nutrients. In Encyclopedia of Cancer; Schwab, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 2318–2322. ISBN 978-3-642-16482-8. [Google Scholar]
- EUR-Lex Directive 2009/54/EC of the European Parliament and of the Council of 18 June 2009 on the Exploitation and Marketing of Natural Mineral Waters. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0054 (accessed on 4 October 2019).
- Palmer, B.F. Regulation of potassium homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1050–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Sodium in Drinking-Water. Available online: https://www.who.int/water_sanitation_health/dwq/chemicals/sodium.pdf (accessed on 1 October 2019).
- Mizéhoun-Adissoda, C.; Houinato, D.; Houehanou, C.; Chianea, T.; Dalmay, F.; Bigot, A.; Aboyans, V.; Preux, P.-M.; Bovet, P.; Desport, J.-C. Dietary sodium and potassium intakes: Data from urban and rural areas. Nutrition 2017, 33, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, J.T.; Patterson, K.Y.; Bodner, J.E.; Douglas, L.W.; Veillon, C.; Kelsay, J.L.; Mertz, W.; Smith, J.C. Sodium and potassium intake and balance in adults consuming self-selected diets. Am. J. Clin. Nutr. 1984, 40, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Kvasničková, A. Minerální látky a stopové prvky: Esenciální minerální prvky ve výživě; Ústav zemědělských a potravinářských informací: Prague, Czech Republic, 1998; ISBN 978-80-85120-94-3. [Google Scholar]
- World Health Organization (WHO). Chloride in Drinking-Water. Available online: https://www.who.int/water_sanitation_health/water-quality/guidelines/chemicals/chloride.pdf (accessed on 1 October 2019).
- Horáková, M. Analytika vody; Vysoká škola chemicko-technologická v Praze: Prague, Czech Republic, 2003; ISBN 978-80-7080-520-6. [Google Scholar]
- Wilhelm, Z. What is good to know about calcium. Prakt. Lékárenství 2007, 3, 184–189. (In Czech) [Google Scholar]
- Parfitt, A.M. Bone histomorphometry: Proposed system for standardization of nomenclature, symbols, and units. Calcif. Tissue Int. 1988, 42, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Burlingame, G.A.; Dietrich, A.M.; Whelton, A.J. Understanding the basics of tap water taste. J. Am. Water Work. Assoc. 2007, 99, 100–111. [Google Scholar] [CrossRef]
- World Health Organization (Ed.) Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland; Food and Agriculture Organisation: Rome, Italy, 2004; ISBN 978-92-4-154612-6. [Google Scholar]
- Whelton, A.J.; Dietrich, A.M.; Burlingame, G.A.; Schechs, M.; Duncan, S.E. Minerals in drinking water: Impacts on taste and importance to consumer health. Water Sci. Technol. 2007, 55, 283–291. [Google Scholar] [CrossRef]
- Lawless, H.T.; Rapacki, F.; Horne, J.; Hayes, A. The taste of calcium and magnesium salts and anionic modifications. Food Qual. Prefer. 2003, 14, 319–325. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (Ed.) Dietary Reference Intakes: For Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academy Press: Washington, DC, USA, 1997; ISBN 978-0-309-06350-0. [Google Scholar]
- Smith, D.V.; Margolskee, R.F. Making sense of taste. Sci. Am. 2001, 284, 32–39. [Google Scholar] [CrossRef]
- Moncrieff, R.W. The Chemical Senses; CRC Press: Boca Raton, FL, USA, 1967. [Google Scholar]
- Zoeteman, B.C.J.; de Grunt, F.E.; Köster, E.P.; Smit, K.G.J.; Punter, P.H. Taste assessment of individual salts in water: Methodology and preliminary findings by a selected national panel. Chem. Sens. 1978, 3, 127–139. [Google Scholar] [CrossRef]
- Lockhart, E.E.; Tucker, C.L.; Merritt, M.C. The effect of water impurities on the flavor of brewed coffee. J. Food Sci. 1955, 20, 598–605. [Google Scholar] [CrossRef]
- Svačina, Š. Klinická dietologie; Grada: Prague, Czech Republic, 2008; ISBN 978-80-247-2256-6. [Google Scholar]
- Wiesenthal, K.E.; McGuire, M.J.; Suffet, I.H. Characteristics of salt taste and free chlorine or chloramine in drinking water. Water Sci. Technol. 2007, 55, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, C.P.; MacLean, A. Salt taste threshold of humans. Am. J. Physiol. Leg. Content 1939, 126, 1–6. [Google Scholar] [CrossRef]
- Platikanov, S.; Hernández, A.; González, S.; Luis Cortina, J.; Tauler, R.; Devesa, R. Predicting consumer preferences for mineral composition of bottled and tap water. Talanta 2017, 162, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, S.S.; Manning, M.P.; Warwick, Z.S.; Crumblissi, A.L. Detection thresholds of potassium salts are related to the molar conductivity of the anion. Brain Res. Bull. 1995, 37, 623–626. [Google Scholar] [CrossRef]
- Teillet, E.; Schlich, P.; Urbano, C.; Cordelle, S.; Guichard, E. Sensory methodologies and the taste of water. Food Qual. Prefer. 2010, 21, 967–976. [Google Scholar] [CrossRef]
- Bruvold, W.H.; Pangborn, R.M. Rated acceptability of mineral taste in water. J. Appl. Psychol. 1966, 50, 22–32. [Google Scholar] [CrossRef]
- Stone, H.; Sidel, J.; Oliver, S.; Woolsey, A.; Singleton, R.C. Sensory evaluation by quantitative descriptive analysis. In Descriptive Sensory Analysis in Practice; Gacula, M.C., Ed.; Food & Nutrition Press, Inc.: Trumbull, CT, USA, 2004; pp. 23–34. ISBN 978-0-470-38503-6. [Google Scholar]
- Davodeau, S.; Adam, C. Quantitative flavour profiling. In Descriptive Analysis in Sensory Evaluation; Kemp, S.E., Hort, J., Hollowood, T., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2018; pp. 355–388. ISBN 978-1-118-99165-7. [Google Scholar]
- Krasner, S.W.; McGuire, M.J.; Ferguson, V.B. Tastes and odors: The flavor profile method. J. Am. Water Work. Assoc. 1985, 77, 34–39. [Google Scholar] [CrossRef]
- Suffet, I.H.; Brady, B.M.; Bartels, J.H.M.; Burlingame, G.; Mallevialle, J.; Yohe, T. Development of the flavor profile analysis method into a standard method for sensory analysis of water. Water Sci. Technol. 1988, 20, 1–9. [Google Scholar] [CrossRef]
- American Water Works Association. Flavor Profile Analysis: Screening and Training of Panelists; American Water Works Association: Denver, CO, USA, 1993; ISBN 978-0-89867-656-3. [Google Scholar]
- Karagül-Yüceer, Y.; Vlahovich, K.N.; Drake, M.; Cadwallader, K.R. Characteristic aroma components of rennet casein. J. Agric. Food Chem. 2003, 51, 6797–6801. [Google Scholar] [CrossRef]
- Young, H.; Rossiter, K.; Wang, M.; Miller, M. Characterization of royal gala apple aroma using electronic nose technologypotential maturity indicator. J. Agric. Food Chem. 1999, 47, 5173–5177. [Google Scholar] [CrossRef] [PubMed]
- Ömür-Özbek, P.; Dietrich, A.M. Developing hexanal as an odor reference standard for sensory analysis of drinking water. Water Res. 2008, 42, 2598–2604. [Google Scholar] [CrossRef] [PubMed]
- Rey-Salgueiro, L.; Gosálbez-García, A.; Pérez-Lamela, C.; Simal-Gándara, J.; Falqué-López, E. Training of panellists for the sensory control of bottled natural mineral water in connection with water chemical properties. Food Chem. 2013, 141, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Harmon, D.; Gauvain, M.; Reisz, Z.; Arthur, I.; Story, S.D. Preference for tap, bottled, and recycled water: Relations to PTC taste sensitivity and personality. Appetite 2018, 121, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Koseki, M.; Nakagawa, A.; Tanaka, Y.; Noguchi, H.; Omochi, T. Sensory evaluation of taste of alkali-ion water and bottled mineral waters. J. Food Sci. 2003, 68, 354–358. [Google Scholar] [CrossRef]
- Platikanov, S.; Garcia, V.; Fonseca, I.; Rullán, E.; Devesa, R.; Tauler, R. Influence of minerals on the taste of bottled and tap water: A chemometric approach. Water Res. 2013, 47, 693–704. [Google Scholar] [CrossRef]
- Obergruber, P.; Hrubcova, G. Experiments in economics. Procedia Econ. Financ. 2016, 39, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Ciaburro, G. Regression Analysis with R: Design and Develop Statistical Nodes to Identify Unique Relationships Within Data at Scale; Packt Publishing Ltd.: Birmingham, UK, 2018; ISBN 978-1-78862-730-6. [Google Scholar]
- Obergruber, P. Experiment design in economic science. In Proceedings of the 11th International Days of Statistics and Economics, Prague, Czech Republic, 14–16 September 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Khan, N.B.; Chohan, A.N. Accuracy of bottled drinking water label content. Environ. Monit. Assess. 2010, 166, 169–176. [Google Scholar] [CrossRef]
- Pena, E.A.; Slate, E.H. Gvlma: Global validation of linear models assumptions. J. Am. Stat. Assoc. 2019, 101, 341–354. [Google Scholar] [CrossRef]
- Zeileis, A.; Hothorn, T. Diagnostic checking in regression relationships. R News 2002, 2, 7–10. [Google Scholar]
- Bruvold, W.H.; Daniels, J.I. Standards for mineral content in drinking water. J. Am. Water Work. Assoc. 1990, 82, 59–65. [Google Scholar] [CrossRef]
- Daniels, J.I.; Anspaugh, L.R.; Layton, D.W. Evaluation of Military Field-Water Quality: Volume 4, Health Criteria and Recommendations for Standards: Part 2, Interim Standards for Selected Threat Agents and Risks from Exceeding These Standards; Lawrence Livermore National Lab.: Livermore, CA, USA, 1988. [Google Scholar]
- Whelton, A.J.; Dietrich, A.M. Relationship between intensity, concentration, and temperature for drinking water odorants. Water Res. 2004, 38, 1604–1614. [Google Scholar] [CrossRef] [PubMed]
- Pangborn, R.M.; Bertolero, L.L. Influence of temperature on taste intensity and degree of liking of drinking water. J. Am. Water Work. Assoc. 1972, 64, 511–515. [Google Scholar] [CrossRef]
- Chidya, R.C.G.; Singano, L.; Chitedze, I.; Mourad, K.A. Standards compliance and health implications of bottled water in malawi. Int. J. Environ. Res. Public Health 2019, 16, 951. [Google Scholar] [CrossRef] [Green Version]
- Zuliani, T.; Kanduč, T.; Novak, R.; Vreča, P. Characterization of bottled waters by multielemental analysis, stable and radiogenic isotopes. Water 2020, 12, 2454. [Google Scholar] [CrossRef]
- Teillet, E.; Urbano, C.; Cordelle, S.; Schlich, P. Consumer perception and preference of bottled and tap water. J. Sens. Stud. 2010, 25, 463–480. [Google Scholar] [CrossRef]
- Marcussen, H.; Holm, P.E.; Hansen, H.C.B. Composition, flavor, chemical foodsafety, and consumer preferences of bottled water. Compr. Rev. Food Sci. Food Saf. 2013, 12, 333–352. [Google Scholar] [CrossRef]
- Dietrich, A.M.; Burlingame, G.A. Critical review and rethinking of USEPA secondary standards for maintaining consumer acceptability of organoleptic quality of drinking water. Environ. Sci. Technol. 2015, 49, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Vingerhoeds, M.H.; de Vries, M.A.N.; Ruepert, N.; van der Laan, H.; Bredie, W.L.; Kremer, S. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation. Water Res. 2016, 94, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Devesa, R.; Dietrich, A. Guidance for optimizing drinking water taste by adjusting mineralization as measured by total dissolved solids (TDS). Desalination 2018, 49, 147–154. [Google Scholar] [CrossRef]
Indications | Criteria |
---|---|
Very low mineral content | Mineral salt content, calculated as a fixed residue, not greater than 50 mg/L |
Low mineral content | Mineral salt content, calculated as a fixed residue, not greater than 500 mg/L |
Rich in mineral salts | Mineral salt content, calculated as a fixed residue, greater than 1500 mg/L |
Contains bicarbonate | Bicarbonate content greater than 600 mg/L |
Contains sulphate | Sulphate content greater than 200 mg/L |
Contains chloride | Chloride content greater than 200 mg/L |
Contains calcium | Calcium content greater than 150 mg/L |
Contains magnesium | Magnesium content greater than 50 mg/L |
Contains fluoride | Fluoride content greater than 1 mg/L |
Contains iron | Bivalent iron content greater than 1 mg/L |
Acidic | Free carbon dioxide content greater than 250 mg/L |
Contains sodium | Sodium content greater than 200 mg/L |
Suitable for the preparation of infant food | — |
Suitable for a low-sodium diet | Sodium content less than 20 mg/L |
Maybe laxative | — |
Mineral | Volume | Form in Body | Taste | Intake | Dislike | Threshold |
---|---|---|---|---|---|---|
Calcium | 1000 g | Ca10(PO4)6(OH)2, Ca(HCO3)2, CaSO4, CaCl2, Ca3SiO5, Ca2SiO4, CaCO3 | Bitter, sour [20] | Up to 100 mg | Ca(HCO3)2 > 610 mg/L CaCl2 > 350 mg/L. | 100–300 mg/L |
Magnesium | 25 g | MgCO3, Mg(HCO3)2, MgSO4, MgCl2, CaMg(CO3)2 | Bitter or salty-bitter | 10 mg | MgCl2 > 47 mg/L Mg(HCO3)2 > 58 mg/L. | 45–60 mg/L |
Sodium | 92 g | NaHCO3, Na2SO4, Na2CO3, NaCl | salty taste | 5–20 g | NaHCO3 > 630 mg/L Na2CO3 > 75 mg/L | 2 mmol/L |
Potassium | 110–137 g | KHCO3, K2SO4, KCl, K2HPO4, K2CO3 | Salty-bitter, salty-alkaline | 90 mmol (3510 mg) | NaCl > 465 mg/L | 43.3 mmol/L |
Chlorine | 81.7 g | NaCl, CaCl2, KCl, MgCl2 | Bitter tasting | 9 mg/kg | NaCl > 465 mg/L CaCl2 > 350 mg/L | 200–300 mg/L |
Carbonate, bicarbonate | – | NaHCO3, Mg(HCO3)2, Ca(HCO3)2, KHCO3 | Typical mineral tart taste | - | - | 180–285 mg/L |
Anonymized Name | Composition mg·L−1 | Sum 1 | Taste | |||||
---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | Cl− | ||||
Very Poorly and Poorly Mineralized | ||||||||
Czech VPM neutral 1 | 20.21 | 2.81 | 4.86 | 1.1 | 70.15 | 8.49 | 107.6 | 5.52 |
Czech VPM neutral 3 | 6 | 8.6 | 11.3 | 10.7 | 111 | 1.01 | 148.6 | 5.4 |
Czech VPM neutral luxury 1 | 26.8 | 3.24 | 5.47 | 0.424 | 110 | 1.5 | 147.4 | 6.79 |
Czech PM neutral 1 | 82.35 | 3.45 | 1.05 | 1.07 | 231.8 | 5.23 | 325.0 | 5.53 |
Czech PM neutral 2 | 43.6 | 14.12 | 25.7 | 4.92 | 213.5 | 3.02 | 304.9 | 6.14 |
Czech PM neutral luxury 1 | 76.7 | 2.75 | 2.65 | 1.41 | 202 | 1.54 | 287.1 | 6.79 |
French PM neutral luxury 1 | 94 | 20 | 7.7 | 5 | 248 | 4 | 378.7 | 6.06 |
Slovak PM neutral 1 | 79 | 38.5 | 16.4 | 2.4 | 317 | 17 | 470.3 | 6.01 |
Slovak PM neutral 2 | 87 | 19.2 | 2.6 | 1.1 | 324 | 4.8 | 438.7 | 6.25 |
Croatian PM neutral 1 | 64.2 | 32.1 | 1.7 | 0.6 | 372.3 | 2.8 | 473.7 | 5.63 |
Moderately Mineralized | ||||||||
Czech MM neutral 1 | 73.51 | 20.16 | 47.41 | 18.42 | 469.7 | 10.45 | 639.7 | 4.83 |
Czech MM neutral 2 | 84.5 | 25 | 69.9 | 15.01 | 528 | 12 | 734.4 | 3.44 |
Czech MM neutral 3 | 255.78 | 21.06 | 26.65 | 1.48 | 863.15 | 7.19 | 1175.3 | 4.73 |
Strongly Mineralized | ||||||||
Czech SM acidic 1 | 426 | 128 | 10.8 | 17.5 | 1763 | 34.7 | 2380.0 | 3.09 |
Healing (Very Strongly Mineralized) | ||||||||
Czech VSM acidic 2 | 279 | 143 | 93.5 | 89 | 1600 | 39.3 | 2243.8 | 3.19 |
Term | Estimate | p-Value | Significance 1 |
---|---|---|---|
(Intercept) | 5.937 | 1.2·10−10 | *** |
Ca2+ | 0.010 | 0.015 | * |
Mg2+ | 0.028 | 0.054 | . |
Na+ | −0.017 | 1.4·10−3 | ** |
−0.004 | 3.6·10−3 | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honig, V.; Procházka, P.; Obergruber, M.; Roubík, H. Nutrient Effect on the Taste of Mineral Waters: Evidence from Europe. Foods 2020, 9, 1875. https://doi.org/10.3390/foods9121875
Honig V, Procházka P, Obergruber M, Roubík H. Nutrient Effect on the Taste of Mineral Waters: Evidence from Europe. Foods. 2020; 9(12):1875. https://doi.org/10.3390/foods9121875
Chicago/Turabian StyleHonig, Vladimir, Petr Procházka, Michal Obergruber, and Hynek Roubík. 2020. "Nutrient Effect on the Taste of Mineral Waters: Evidence from Europe" Foods 9, no. 12: 1875. https://doi.org/10.3390/foods9121875
APA StyleHonig, V., Procházka, P., Obergruber, M., & Roubík, H. (2020). Nutrient Effect on the Taste of Mineral Waters: Evidence from Europe. Foods, 9(12), 1875. https://doi.org/10.3390/foods9121875