Blending Emotions and Cross-Modality in Sonic Seasoning: Towards Greater Applicability in the Design of Multisensory Food Experiences
Abstract
:1. Introduction
1.1. Theoretical Framework
1.2. The Present Study
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Stimuli
2.4. Procedure
2.5. Data Analysis
3. Results
3.1. Interpretation of Results
3.2. Tasting Chocolate While Listening to Music Primarily Chosen Due to its Cross-Modal Features (Soft vs. Hard)
3.3. Tasting Chocolate While Listening to Music Mainly Chosen Due to its Emotional Characteristics (Positive vs. Negative)
4. Discussion
4.1. The Effects of Blending Cross-Modality and Emotions in Sonic Seasoning
4.2. Towards Greater Applicability of Sonic Seasoning
4.3. Sonic Seasoning: A Bayesian Approach
4.4. Final Thoughts from the Practitioner Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethics Statement
Appendix A
Data Analysis of the Pre-Test
References
- Crisinel, A.-S.; Cosser, S.; King, S.; Jones, R.R.K.; Petrie, J.; Spence, C. A bittersweet symphony: Systematically modulating the taste of food by changing the sonic properties of the soundtrack playing in the background. Food Qual. Prefer. 2012, 24, 201–204. [Google Scholar] [CrossRef]
- Carvalho, F.R.; Gunn, L.; Molina, G.; Narumi, T.; Spence, C.; Suzuki, Y.; Ter Horst, E.; Wagemans, J. A sprinkle of emotions vs a pinch of crossmodality: Towards globally meaningful sonic seasoning strategies for enhanced multisensory tasting experiences. J. Bus. Res. 2020, 117, 389–399. [Google Scholar] [CrossRef]
- Wang, Q.J.; Spence, C. Assessing the influence of music on wine perception among wine professionals. Food Sci. Nutr. 2018, 6, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spence, C.; Reinoso-Carvalho, F.; Velasco, C.; Wang, Q.J. Extrinsic auditory contributions to food perception & consumer behaviour: An interdisciplinary review. Multisens. Res. 2019, 32, 275–318. [Google Scholar] [CrossRef] [PubMed]
- Spence, C. Crossmodal correspondences: A tutorial review. Atten. Percept. Psychophys. 2011, 73, 971–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallace, A.; Spence, C. Multisensory synesthetic interactions in the speeded classification of visual size. Percept. Psychophys. 2006, 68, 1191–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parise, C.V.; Knorre, K.; Ernst, M.O. Natural auditory scene statistics shapes human spatial hearing. Proc. Natl. Acad. Sci. USA 2014, 111, 6104–6108. [Google Scholar] [CrossRef] [Green Version]
- Kellaris, J.J.; Kent, R.J. An exploratory investigation of responses elicited by music varying in tempo, tonality, and texture. J Consum. Psychol. 1993, 2, 381–401. [Google Scholar] [CrossRef]
- Caldwell, C.; Hibbert, S.A. The influence of music tempo and musical preference on restaurant patrons’ behavior. Psychol. Mark. 2002, 19, 895–917. [Google Scholar] [CrossRef]
- Mathiesen, S.L.; Mielby, L.A.; Byrne, D.V.; Wang, Q.J. Music to eat by: A systematic investigation of the relative importance of tempo and articulation on eating time. Appetite 2020, 104801. [Google Scholar] [CrossRef]
- Roballey, T.C.; McGreevy, C.; Rongo, R.R.; Schwantes, M.L.; Steger, P.J.; Wininger, M.A.; Gardner, E.B. The effect of music on eating behavior. Bull. Psychon. Soc. 1985, 23, 221–222. [Google Scholar] [CrossRef]
- Milliman, R.E. The influence of background music on the behavior of restaurant patrons. J. Consum. Res. 1986, 13, 286–289. [Google Scholar] [CrossRef] [Green Version]
- McCarron, A.; Tierney, K.J. The effect of auditory stimulation on the consumption of soft drinks. Appetite 1989, 13, 155–159. [Google Scholar] [CrossRef]
- Stafford, L.D.; Fernandes, M.; Agobiani, E. Effects of noise and distraction on alcohol perception. Food Qual. Prefer. 2012, 24, 218–224. [Google Scholar] [CrossRef]
- Woods, A.T.; Poliakoff, E.; Lloyd, D.M.; Dijksterhuis, G.B.; Thomas, A. Flavor Expectation: The effect of assuming homogeneity on drink perception. Chemosens. Percept. 2010, 3, 174–181. [Google Scholar] [CrossRef]
- Spence, C. Noise and its impact on the perception of food and drink. Flavour 2014, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Holt-Hansen, K. Taste and pitch. Percept. Mot. Ski. 1968, 27, 59–68. [Google Scholar] [CrossRef]
- Knöferle, K.; Spence, C.; Knoeferle, K. Crossmodal correspondences between sounds and tastes. Psychon. Bull. Rev. 2012, 19, 992–1006. [Google Scholar] [CrossRef] [Green Version]
- Reinoso Carvalho, F.; Wang, Q.J.; De Causmaecker, B.; Steenhaut, K.; Van Ee, R.; Spence, C. Tune that beer! Listening to the pitch of beer. Beverages 2016, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Rudmin, F.; Cappelli, M. Tone-taste synesthesia: A replication. Percept. Mot. Ski. 1983, 56, 118. [Google Scholar] [CrossRef]
- Crisinel, A.-S.; Spence, C. As bitter as a trombone: Synesthetic correspondences in non-synesthetes between tastes and flavors and musical instruments and notes. Atten. Percept. Psychophys. 2010, 72, 1994–2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guetta, R.; Loui, P. When music is salty: The crossmodal associations between sound and taste. PLoS ONE 2017, 12, e0173366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesz, B.; Trevisan, M.A.; Sigman, M. The taste of music. Percept. 2011, 40, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Reinoso-Carvalho, F.; Wang, Q.J.; Van Ee, R.; Persoone, D.; Spence, C. “Smooth operator”: Music modulates the perceived creaminess, sweetness, and bitterness of chocolate. Appetite 2017, 108, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Reinoso-Carvalho, F.; Van Ee, R.; Rychtarikova, M.; Touhafi, A.; Steenhaut, K.; Persoone, D.; Spence, C.; Leman, M. Does music influence the multisensory tasting experience? J. Sens. Stud. 2015, 30, 404–412. [Google Scholar] [CrossRef]
- Watson, Q.J.; Gunther, K.L. Trombones elicit bitter more strongly than do clarinets: A partial replication of three studies of Crisinel and Spence. Multisens. Res. 2017, 30, 321–335. [Google Scholar] [CrossRef]
- Spence, C. Sonic seasoning. In Audio Branding: Using Sound to Build Your Brand; Minsky, L., Fahey, C., Eds.; Kogan Page: London, UK, 2017; pp. 52–58. [Google Scholar]
- Velasco, C.; Reinoso-Carvalho, F.; Petit, O.; Nijholt, A. A multisensory approach for the design of food and drink enhancing sonic systems. In Proceedings of the 1st Workshop on Multi-sensorial Approaches to Human-Food Interaction—ICMI ′16, Tokyo, Japan, 12–16 November 2016. [Google Scholar] [CrossRef] [Green Version]
- Kantono, K.; Hamid, N.; Shepherd, D.; Lin, Y.H.T.; Skiredj, S.; Carr, B.T. Emotional and electrophysiological measures correlate to flavor perception in the presence of music. Physiol Behav. 2019, 199, 154–164. [Google Scholar] [CrossRef]
- Kantono, K.; Hamid, N.; Shepherd, D.; Yoo, M.J.Y.; Carr, B.T.; Grazioli, G. The effect of background music on food pleasantness ratings. Psychol. Music. 2016, 44, 1111–1125. [Google Scholar] [CrossRef]
- Reinoso-Carvalho, F.; Dakduk, S.; Wagemans, J.; Spence, C. Not just another pint! The role of emotion induced by music on the consumer’s tasting experience. Multisens. Res. 2019, 32, 367–400. [Google Scholar] [CrossRef]
- Ziv, N. Musical flavor: The effect of background music and presentation order on taste. Eur. J. Mark. 2018, 52, 1485–1504. [Google Scholar] [CrossRef]
- Cheskin, L. Marketing Success: How To Achieve It; Cahners Books: Boston, MA, USA, 1972. [Google Scholar]
- Wang, Q.J.; Spence, C. ‘Striking a sour note’: Assessing the influence of consonant and dissonant music on taste perception. Multisens. Res. 2016, 29, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.-S.; Hummel, T. Effects of olfactory dysfunction on sensory evaluation and preparation of foods. Appetite 2009, 53, 314–321. [Google Scholar] [CrossRef]
- Spence, C. Just how much of what we taste derives from the sense of smell? Flavour 2015, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.J.; Boakes, R.A.; Wilson, J.P. Counter-conditioning following human odor–taste and color–taste learning. Learn. Motiv. 2000, 31, 114–127. [Google Scholar] [CrossRef]
- Velasco, C.; Balboa, D.; Marmolejo-Ramos, F.; Spence, C. Crossmodal effect of music and odor pleasantness on olfactory quality perception. Front. Psychol. 2014, 5, 1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spence, C. On the relative nature of (pitch-based) crossmodal correspondences. Multisens. Res. 2019, 32, 235–265. [Google Scholar] [CrossRef]
- Bravo-Moncayo, L.; Reinoso-Carvalho, F.; Velasco, C. The effects of noise control in coffee tasting experiences. Food Qual. Prefer. 2020, 86, 104020. [Google Scholar] [CrossRef]
- Sherif, M.; Taub, D.; Hovland, C.I. Assimilation and contrast effects of anchoring stimuli on judgments. J. Exp. Psychol. 1958, 55, 150–155. [Google Scholar] [CrossRef] [Green Version]
- North, A.C. The effect of background music on the taste of wine. Br. J. Psychol. 2011, 103, 293–301. [Google Scholar] [CrossRef]
- Reinoso-Carvalho, F.; Van Ee, R.; Rychtáriková, M.; Touhafi, A.; Steenhaut, K.; Persoone, D.; Spence, C. Using sound-taste correspondences to enhance the subjective value of tasting experiences. Front. Psychol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.J.; Spence, C. Assessing the effect of musical congruency on wine tasting in a live performance setting. i-Perception 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.J.; Keller, S.; Spence, C. Sounds spicy: Enhancing the evaluation of piquancy by means of a customised crossmodally congruent soundtrack. Food Qual. Prefer. 2017, 58, 1–9. [Google Scholar] [CrossRef]
- Crisinel, A.-S.; Spence, C. The impact of pleasantness ratings on crossmodal associations between food samples and musical notes. Food Qual. Prefer. 2012, 24, 136–140. [Google Scholar] [CrossRef]
- Wichberg, A. The world´s Fastest Growing Region. Business Sweden. July 2020. Available online: https://marketing.business-sweden.se/acton/media/28818/apac-consumer-study (accessed on 20 October 2020).
- World Economic Forum. Future of Consumption in Fast-Growth Consumer Markets: ASEAN 2030. Bain & Company. July 2020. Available online: https://www.bain.com/insights/future-of-consumption-in-fast-growing-markets-asean-2030/ (accessed on 20 October 2020).
- Benjamin, D.J.; Berger, J.O. Three recommendations for improving the use of p-values. Am. Stat. 2019, 73, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Wasserstein, R.L.; Lazar, N.A. The ASA statement on p-values: Context, process, and purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Wasserstein, R.L.; Schirm, A.L.; Lazar, N.A. Moving to a world beyond “p < 0.05 ”. Am Stat. 2019, 73 (Suppl. 1), 1–19. [Google Scholar] [CrossRef] [Green Version]
- Reinoso-Carvalho, F.; Narumi, T.; Suzuki, Y. Large-scale self-report crowdsourcing sampling for sonic seasoning studies conducted in Asia (RAW DATA), PART 1. Mendeley Data 2020, 1. [Google Scholar] [CrossRef]
- Brabham, D.C. Crowdsourcing; MIT Press: Boston, MA, USA, 2013. [Google Scholar]
- Estellés-Arolas, E.; González-Ladrón-De-Guevara, F. Towards an integrated crowdsourcing definition. J. Inf. Sci. 2012, 38, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Friedman, H. Simplified determinations of statistical power, magnitude of effect and research sample sizes. Educ. Psychol. Meas. 1982, 42, 521–526. [Google Scholar] [CrossRef]
- Köhler, W. Gestalt Psychology: An Introduction to New Concepts in Modern Psychology; Liveright: New York, NY, USA, 1947. [Google Scholar]
- Eitan, Z.; Rothschild, I. How music touches: Musical parameters and listeners’ audio-tactile metaphorical mappings. Psychol. Music 2011, 39, 449–467. [Google Scholar] [CrossRef]
- Hutchison, K.A. Is semantic priming due to association strength or feature overlap? A microanalytic review. Psychon. Bull. Rev. 2003, 10, 785–813. [Google Scholar] [CrossRef]
- Labroo, A.A.; Dhar, R.; Schwarz, N. Of frog wines and frowning watches: Semantic priming, perceptual fluency, and brand evaluation. J. Consum. Res. 2008, 34, 819–831. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M. Semantic priming without association: A meta-analytic review. Psychon. Bull. Rev. 2000, 7, 618–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, J.R.; Henry, J.D. The Positive and Negative Affect Schedule (PANAS): Construct validity, measurement properties and normative data in a large non-clinical sample. Br. J. Clin. Psychol. 2004, 43, 245–265. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Pers. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Lesaffre, E.; Rizopoulos, D.; Tsonaka, R. The logistic transform for bounded outcome scores. Biostatistics 2006, 8, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Spiegelhalter, D.; Thomas, A.; Best, N.; Lunn, D. OpenBUGS User Manual. 2014. Available online: http://www.openbugs.net/Manuals/Manual.html (accessed on 20 October 2020).
- Atchison, J.; Shen, S.M. Logistic-normal distributions: Some properties and uses. Biometrika 1980, 67, 261–272. [Google Scholar] [CrossRef]
- Mahdavi, M.; Barbosa, B.; Oliveira, Z.; Chkoniya, V. Sounds of scents: Olfactory-auditory correspondences in the online purchase experience of perfume. Rev. Bras. Gestao Negocios. 2020, 22, 836–853. [Google Scholar]
- Softec. IOT and the Art of Brand Engagement. Softec. 2017. Available online: https://www.softecspa.com/en/portfolio/campari/ (accessed on 3 December 2020).
- Godiva. A Symphony of Taste: Milk Chocolate. Godiva Europe. 1 April 2019. Available online: https://www.youtube.com/watch?v=rph6oyIEJ9o (accessed on 3 December 2020).
- Jagermeister. Taste Remastered. Jagermeister DE. 2019. Available online: https://www.jagermeister.com/de-DE/taste-remastered (accessed on 3 December 2020).
- Advertising. Tramontina Transforma Música em Receita em Parceria com SPOTIFY; Portal Press: New Orleans, LA, USA, 29 May 2019; Available online: http://revistapress.com.br/advertising/tramontina-transforma-musica-em-receita-em-parceria-com-spotify/ (accessed on 3 December 2020).
Section of Questionnaire | Variable | Measurement System |
---|---|---|
| Age | Open numerical |
Gender | 1 = male; 2 = female; 3 = other | |
| Flavor liking | 100-point rating scales (1 being ‘not at all’; 100 being ‘very much’) |
Flavor–music matching | ||
Chocolate sweetness | ||
Chocolate bitterness | ||
Chocolate sourness | ||
Song liking | ||
Flavor intensity | ||
Buying intention | ||
Texture hardness | ||
Texture softness | ||
Open question | Willingness to pay (WTP) | Numerical, which included a message with local reference |
nPositive Emotional Song Mean Age (SD) Gender Ratio | nNegative Emotional Song Mean Age (SD) Gender Ratio | nCross-Modally Corresponding Music Smooth Song Mean Age (SD) Gender Ratio | nCross-Modally Corresponding Music Hard Song Mean Age (SD) Gender Ratio | nTotal Mean Age (SD) Gender Ratio |
---|---|---|---|---|
376 30.1 (10) 65% females | 450 30.8 (11) 68% females | 365 30.7 (11) 63% females | 420 30.5 (12) 64% females | 1611 30.5 (11) 65% females |
Variable | Mean | SD | 95% Credible Interval | Median | Variable | Mean | SD | 95% Credible Interval | Median | ||
---|---|---|---|---|---|---|---|---|---|---|---|
α[1,] Intercept | Flavor liking | 2.197 | 0.283 | (1.638, 2.752) | 2.198 | α[4,] Age | Flavor liking | −0.019 | 0.007 | (−0.033, −0.005) | −0.019 |
Flavor–music match | −1.106 | 0.273 | (−1.642, −0.570) | −1.106 | Flavor–music match | 0.011 | 0.007 | (−0.003, 0.024) | 0.011 | ||
Sweetness | 2.621 | 0.278 | (2.081, 3.166) | 2.620 | Sweetness | −0.024 | 0.007 | (−0.038, −0.010) | −0.024 | ||
Bitterness | −3.098 | 0.274 | (−3.64, −2.559) | −3.097 | Bitterness | 0.007 | 0.007 | (−0.006, 0.021) | 0.007 | ||
Sourness | −3.639 | 0.272 | (−4.179, −3.106) | −3.637 | Sourness | 0.020 | 0.007 | (0.007, 0.034) | 0.020 | ||
Flavor intensity | −0.313 | 0.275 | (−0.849, 0.224) | −0.313 | Flavor Intensity | −0.005 | 0.007 | (−0.019, 0.008) | −0.005 | ||
Texture softness | 1.745 | 0.272 | (1.216, 2.279) | 1.744 | Texture softness | 0.004 | 0.007 | (−0.009, 0.017) | 0.004 | ||
Texture hardness | −1.828 | 0.266 | (−2.351, −1.303) | −1.828 | Texture hardness | −0.010 | 0.007 | (−0.023, 0.003) | −0.010 | ||
Song liking | −0.479 | 0.262 | (−0.986, 0.039) | −0.481 | Song liking | 0.003 | 0.007 | (−0.010, 0.015) | 0.003 | ||
Buying intention | −0.936 | 0.281 | (−1.485, −0.385) | −0.937 | Buying intention | −0.001 | 0.007 | (−0.014, 0.013) | −0.001 | ||
α[2,] Music | Flavor liking | −0.472 | 0.163 | (−0.791, −0.151) | −0.473 | α[5,] Gender (Male/Female) | Flavor liking | −0.047 | 0.168 | (−0.375, 0.282) | −0.048 |
Flavor–music match | −0.897 | 0.154 | (−1.199, −0.594) | −0.898 | Flavor–music match | 0.036 | 0.159 | (−0.275, 0.348) | 0.036 | ||
Sweetness | −0.237 | 0.160 | (−0.550, 0.076) | −0.237 | Sweetness | 0.050 | 0.165 | (−0.273, 0.374) | 0.049 | ||
Bitterness | 0.137 | 0.156 | (−0.169, 0.442) | 0.137 | Bitterness | 0.114 | 0.162 | (−0.203, 0.431) | 0.114 | ||
Sourness | 0.036 | 0.154 | (−0.265, 0.338) | 0.035 | Sourness | 0.028 | 0.159 | (−0.284, 0.339) | 0.027 | ||
Flavor intensity | −0.344 | 0.157 | (−0.651, −0.036) | −0.345 | Flavor intensity | −0.071 | 0.162 | (−0.389, 0.246) | −0.070 | ||
Texture softness | −0.360 | 0.154 | (−0.662, −0.059) | −0.360 | Texture softness | −0.154 | 0.158 | (−0.465, 0.155) | −0.154 | ||
Texture hardness | −0.037 | 0.152 | (−0.335, 0.262) | −0.037 | Texture hardness | 0.071 | 0.158 | (−0.239, 0.377) | 0.071 | ||
Song liking | −1.438 | 0.149 | (−1.732, −1.148) | −1.438 | Song liking | 0.017 | 0.152 | (−0.283, 0.312) | 0.017 | ||
Buying intention | −0.313 | 0.158 | (−0.625, −0.003) | −0.314 | Buying intention | −0.096 | 0.165 | (−0.419, 0.226) | −0.096 | ||
α[3,] Type of chocolate | Flavor liking | −0.641 | 0.166 | (−0.968, −0.316) | −0.641 | α[6,] Gender (Male/Other) | Flavor liking | −0.403 | 0.681 | (−1.738, 0.933) | −0.401 |
Flavor–music match | −0.047 | 0.158 | (−0.357, 0.262) | −0.047 | Flavor–music match | 0.042 | 0.649 | (−1.234, 1.309) | 0.043 | ||
Sweetness | −1.314 | 0.163 | (−1.634, −0.994) | −1.313 | Sweetness | −0.863 | 0.672 | (−2.180, 0.459) | −0.863 | ||
Bitterness | 2.229 | 0.159 | (1.917, 2.542) | 2.229 | Bitterness | 0.176 | 0.659 | (−1.116, 1.464) | 0.180 | ||
Sourness | 0.563 | 0.157 | (0.255, 0.872) | 0.564 | Sourness | 0.330 | 0.646 | (−0.938, 1.593) | 0.332 | ||
Flavor intensity | 0.187 | 0.160 | (−0.126, 0.499) | 0.187 | Flavor intensity | 0.278 | 0.658 | (−1.018, 1.563) | 0.279 | ||
Texture softness | −1.582 | 0.157 | (−1.890, −1.274) | −1.581 | Texture softness | −0.292 | 0.644 | (−1.546, 0.973) | −0.292 | ||
Texture hardness | 1.813 | 0.155 | (1.508, 2.115) | 1.813 | Texture hardness | −0.801 | 0.642 | (−2.059, 0.467) | −0.801 | ||
Song liking | 0.185 | 0.151 | (−0.110, 0.481) | 0.185 | Song liking | 0.409 | 0.626 | (−0.818, 1.636) | 0.409 | ||
Buying intention | −0.497 | 0.161 | (−0.814, −0.181) | −0.498 | Buying intention | −0.099 | 0.669 | (−1.409, 1.211) | −0.103 |
Variable | Mean | SD | 95% Credible Interval | Median | Variable | Mean | SD | 95% Credible Interval | Median | ||
---|---|---|---|---|---|---|---|---|---|---|---|
α[1,] Intercept | Flavor liking | 2.245 | 0.297 | (1.663, 2.823) | 2.245 | α[4,] Age | Flavor liking | −0.026 | 0.007 | (−0.040, −0.013) | −0.026 |
Flavor–music match | 0.380 | 0.306 | (−0.220, 0.981) | 0.377 | Flavor–music match | 0.000 | 0.007 | (−0.014, 0.014) | 0.000 | ||
Sweetness | 3.049 | 0.280 | (2.504, 3.598) | 3.048 | Sweetness | −0.032 | 0.007 | (−0.045, −0.019) | −0.032 | ||
Bitterness | −2.449 | 0.290 | (−3.017, −1.878) | −2.449 | Bitterness | −0.014 | 0.007 | (−0.027, 0.000) | −0.013 | ||
Sourness | −2.998 | 0.286 | (−3.555, −2.435) | −2.999 | Sourness | 0.001 | 0.007 | (−0.012, 0.014) | 0.001 | ||
Flavor intensity | 0.003 | 0.286 | (−0.561, 0.553) | 0.006 | Flavor intensity | −0.025 | 0.007 | (−0.038, −0.012) | −0.025 | ||
Texture softness | 1.242 | 0.306 | (0.647, 1.843) | 1.242 | Texture softness | −0.006 | 0.007 | (−0.020, 0.008) | −0.006 | ||
Texture hardness | −0.834 | 0.301 | (−1.420, −0.243) | −0.836 | Texture hardness | −0.010 | 0.007 | (−0.023, 0.004) | −0.010 | ||
Song liking | 1.348 | 0.303 | (0.757, 1.946) | 1.345 | Song liking | −0.005 | 0.007 | (−0.019, 0.009) | −0.005 | ||
Buying intention | −0.635 | 0.288 | (−1.203, −0.077) | −0.634 | Buying intention | −0.010 | 0.007 | (−0.023, 0.003) | −0.010 | ||
α[2,] Music | Flavor liking | −0.250 | 0.152 | (−0.548, 0.049) | −0.250 | α[5,] Gender (Male/Female) | Flavor liking | 0.261 | 0.163 | (−0.060, 0.581) | 0.261 |
Flavor–music match | −1.602 | 0.155 | (−1.905, −1.297) | −1.601 | Flavor–music match | 0.140 | 0.166 | (−0.185, 0.467) | 0.140 | ||
Sweetness | −0.440 | 0.144 | (−0.721, −0.158) | −0.439 | Sweetness | 0.108 | 0.153 | (−0.192, 0.408) | 0.108 | ||
Bitterness | 0.232 | 0.147 | (−0.056, 0.520) | 0.232 | Bitterness | 0.079 | 0.157 | (−0.227, 0.386) | 0.079 | ||
Sourness | 0.006 | 0.148 | (−0.282, 0.295) | 0.006 | Sourness | −0.175 | 0.157 | (−0.487, 0.132) | −0.174 | ||
Flavor intensity | 0.150 | 0.145 | (−0.132, 0.434) | 0.149 | Flavor intensity | −0.012 | 0.155 | (−0.314, 0.294) | −0.011 | ||
Texture softness | −2.866 | 0.156 | (−3.173, −2.562) | −2.866 | Texture softness | −0.051 | 0.167 | (−0.380, 0.273) | −0.051 | ||
Texture hardness | 2.541 | 0.154 | (2.239, 2.844) | 2.540 | Texture hardness | −0.218 | 0.166 | (−0.542, 0.107) | −0.217 | ||
Song liking | −2.333 | 0.156 | (−2.639, −2.028) | −2.333 | Song liking | 0.029 | 0.165 | (−0.294, 0.355) | 0.029 | ||
Buying intention | −0.384 | 0.150 | (−0.679, −0.090) | −0.383 | Buying intention | 0.094 | 0.160 | (−0.218, 0.408) | 0.094 | ||
α[3,] Type of chocolate | Flavor liking | −0.689 | 0.154 | (−0.990, −0.387) | −0.690 | α[6,] Gender (Male/Other) | Flavor liking | −0.038 | 0.519 | (−1.058, 0.974) | −0.037 |
Flavor–music match | −0.048 | 0.159 | (−0.358, 0.264) | −0.047 | Flavor–music match | −0.457 | 0.529 | (−1.496, 0.583) | −0.457 | ||
Sweetness | −1.488 | 0.145 | (−1.773, −1.202) | −1.487 | Sweetness | 0.357 | 0.488 | (−0.606, 1.315) | 0.356 | ||
Bitterness | 2.214 | 0.150 | (1.922, 2.508) | 2.213 | Bitterness | 0.665 | 0.502 | (−0.324, 1.645) | 0.666 | ||
Sourness | 0.946 | 0.150 | (0.653, 1.239) | 0.945 | Sourness | −0.048 | 0.504 | (−1.031, 0.950) | −0.047 | ||
Flavor intensity | 0.522 | 0.148 | (0.231, 0.812) | 0.523 | Flavor intensity | 0.899 | 0.494 | (−0.069, 1.866) | 0.897 | ||
Texture softness | 0.095 | 0.159 | (−0.216, 0.405) | 0.095 | Texture softness | 0.518 | 0.532 | (−0.526, 1.562) | 0.518 | ||
Texture hardness | 0.107 | 0.157 | (−0.199, 0.416) | 0.107 | Texture hardness | −0.966 | 0.528 | (−2.001, 0.065) | −0.967 | ||
Song liking | −0.098 | 0.158 | (−0.408, 0.210) | −0.097 | Song liking | −0.256 | 0.531 | (−1.299, 0.785) | −0.254 | ||
Buying intention | −0.265 | 0.152 | (−0.564, 0.035) | −0.266 | Buying intention | −0.701 | 0.512 | (−1.703, 0.306) | −0.701 |
Cross-Modal | Emotional | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Mean | SD | 95% Posterior Interval | Median | Parameter | Mean | SD | 95% Posterior Interval | Median |
β[1]—Intercept | 6.626 | 0.005 | (6.616, 6.636) | 6.626 | β[1]—Intercept | 6.922 | 0.005 | (6.913, 6.932) | 6.922 |
β[2]—Music | −0.404 | 0.003 | (−0.409, −0.399) | −0.404 | β[2]—Music | −0.010 | 0.002 | (−0.015, −0.005) | −0.010 |
β[3]—Type of Chocolate | 0.313 | 0.003 | (0.307, 0.318) | 0.313 | β[3]—Type of Chocolate | −0.162 | 0.002 | (−0.166, −0.157) | −0.162 |
β[4]—Age | −0.008 | 0.000 | (−0.008, −0.008) | −0.008 | β[4]—Age | −0.006 | 0.000 | (−0.007, −0.006) | −0.006 |
β[5]—Gender (Male/Female) | 0.347 | 0.003 | (0.341, 0.353) | 0.347 | β[5]—Gender (Male/Female) | 0.197 | 0.003 | (0.192, 0.202) | 0.197 |
β[6]—Gender (Male/Other) | 0.357 | 0.011 | (0.335, 0.380) | 0.357 | β[6]—Gender (Male/Other) | −0.300 | 0.010 | (−0.32, −0.281) | −0.300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinoso-Carvalho, F.; Gunn, L.H.; Horst, E.t.; Spence, C. Blending Emotions and Cross-Modality in Sonic Seasoning: Towards Greater Applicability in the Design of Multisensory Food Experiences. Foods 2020, 9, 1876. https://doi.org/10.3390/foods9121876
Reinoso-Carvalho F, Gunn LH, Horst Et, Spence C. Blending Emotions and Cross-Modality in Sonic Seasoning: Towards Greater Applicability in the Design of Multisensory Food Experiences. Foods. 2020; 9(12):1876. https://doi.org/10.3390/foods9121876
Chicago/Turabian StyleReinoso-Carvalho, Felipe, Laura H. Gunn, Enrique ter Horst, and Charles Spence. 2020. "Blending Emotions and Cross-Modality in Sonic Seasoning: Towards Greater Applicability in the Design of Multisensory Food Experiences" Foods 9, no. 12: 1876. https://doi.org/10.3390/foods9121876
APA StyleReinoso-Carvalho, F., Gunn, L. H., Horst, E. t., & Spence, C. (2020). Blending Emotions and Cross-Modality in Sonic Seasoning: Towards Greater Applicability in the Design of Multisensory Food Experiences. Foods, 9(12), 1876. https://doi.org/10.3390/foods9121876