Unique Distribution of Diacyl-, Alkylacyl-, and Alkenylacyl-Phosphatidylcholine Species Visualized in Pork Chop Tissues by Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Pork Samples
2.3. Preparation of Pork Sections
2.4. MALDI–MSI and MS/MS Analysis
2.5. Preparation of Total Lipid Extracts
2.6. LC–ESI–MS/MS Analysis
2.7. Statistical Analyses
3. Results
3.1. Mass Spectrum Obtained from a Section of Pork Chop
3.2. Identification of PC Species in Pork Chop Section
3.3. Distribution of Diacyl-PC Species in Pork Chop
3.4. Distribution of Alkylacyl- and/or Alkenylacyl-PC Species in Pork Chop
3.5. Amounts of Diacyl-, Alkylacyl-, and Alkenylacyl-PC Species in Pork Chop
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Smet, S.; Vossen, E. Meat: The balance between nutrition and health. A review. Meat Sci. 2016, 120, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Feng, Q.; Yin, Z.; Shuang, J.; Bai, B.; Yu, P.; Guo, M.; Zhao, Q. Red and processed meat consumption and colorectal cancer risk: A systematic review and meta-analysis. Oncotarget 2017, 8, 83306–83314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boselli, E.; Pacetti, D.; Curzi, F.; Frega, N.G. Determination of phospholipid molecular species in pork meat by high performance liquid chromatography–tandem mass spectrometry and evaporative light scattering detection. Meat Sci. 2008, 78, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Jiang, Z.; Lai, C. Significance of increasing n-3 PUFA content in pork on human health. Crit. Rev. Food Sci. Nutr. 2016, 56, 858–870. [Google Scholar] [CrossRef] [PubMed]
- Bekdash, R.A. Neuroprotective effects of choline and other methyl donors. Nutrients 2019, 11, 2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, E.D.; Zhao, Y.-Y.; Richard, C.; Bruce, H.L.; Jacobs, R.L.; Field, C.J.; Curtis, J.M. Measurement of the abundance of choline and the distribution of choline-containing moieties in meat. Int. J. Food Sci. Nutr. 2015, 66, 743–748. [Google Scholar] [CrossRef]
- Van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1558–1572. [Google Scholar] [CrossRef]
- Hsu, F.-F.; Lodhi, I.J.; Turk, J.; Semenkovich, C.F. Structural distinction of diacyl-, alkylacyl, and alk-1-enylacyl glycerophosphocholines as [M – 15]− ions by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 2014, 25, 1412–1420. [Google Scholar] [CrossRef] [Green Version]
- Dean, J.M.; Lodhi, I.J. Structural and functional roles of ether lipids. Protein Cell 2018, 9, 196–206. [Google Scholar] [CrossRef]
- Senanayake, V.; Goodenowe, D.B. Plasmalogen deficiency and neuropathology in Alzheimer’s disease: Causation or coincidence? Alzheimer’s Dement. (N. Y.) 2019, 5, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Messias, M.C.F.; Mecatti, G.C.; Priolli, D.G.; de Oliveira Carvalho, P. Plasmalogen lipids: Functional mechanism and their involvement in gastrointestinal cancer. Lipids Health Dis. 2018, 17, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimukai, M.; Maeba, R.; Ikuta, A.; Asakawa, N.; Kamiya, K.; Yamada, S.; Yokota, T.; Sakakibara, M.; Tsutsui, H.; Sakurai, T.; et al. Serum choline plasmalogens—those with oleic acid in sn-2—are biomarkers for coronary artery disease. Clin. Chim. Acta 2014, 437, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, H.; Sugiura, Y.; Setou, M.; Zaima, N. Visualization of phosphatidylcholine, lysophosphatidylcholine and sphingomyelin in mouse tongue body by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal. Bioanal. Chem. 2011, 400, 1913–1921. [Google Scholar] [CrossRef]
- Enomoto, H.; Sensu, T.; Sato, K.; Sato, F.; Paxton, T.; Yumoto, E.; Miyamoto, K.; Asahina, M.; Yokota, T.; Yamane, H. Visualisation of abscisic acid and 12-oxo-phytodienoic acid in immature Phaseolus vulgaris L. seeds using desorption electrospray ionisation-imaging mass spectrometry. Sci. Rep. 2017, 7, 42977. [Google Scholar] [CrossRef]
- Caprioli, R.M.; Farmer, T.B.; Gile, J. Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 1997, 69, 4751–4760. [Google Scholar] [CrossRef]
- Stoeckli, M.; Chaurand, P.; Hallahan, D.E.; Caprioli, R.M. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 2001, 7, 493–496. [Google Scholar] [CrossRef]
- Cornett, D.S.; Reyzer, M.L.; Chaurand, P.; Caprioli, R.M. MALDI imaging mass spectrometry: Molecular snapshots of biochemical systems. Nat. Methods 2007, 4, 828–833. [Google Scholar] [CrossRef]
- Setou, M.; Shrivas, K.; Sroyraya, M.; Yang, H.; Sugiura, Y.; Moribe, J.; Kondo, A.; Tsutsumi, K.; Kimura, Y.; Kurabe, N.; et al. Developments and applications of mass microscopy. Med. Mol. Morphol. 2010, 43, 1–5. [Google Scholar] [CrossRef]
- Morisasa, M.; Sato, T.; Kimura, K.; Mori, T.; Goto-Inoue, N. Application of matrix-assisted laser desorption/ionization mass spectrometry imaging for food analysis. Foods 2019, 8, 633. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, Y.; Goto-Inoue, N.; Moriyama, T.; Zaima, N. Significant advancement of mass spectrometry imaging for food chemistry. Food Chem. 2016, 210, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Zaima, N.; Hayasaka, T.; Goto-Inoue, N.; Setou, M. Matrix-assisted laser desorption/ionization imaging mass spectrometry. Int. J. Mol. Sci. 2010, 11, 5040–5055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto-Inoue, N.; Hayasaka, T.; Zaima, N.; Setou, M. Imaging mass spectrometry for lipidomics. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2011, 1811, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Zaima, N.; Sasaki, T.; Tanaka, H.; Cheng, X.W.; Onoue, K.; Hayasaka, T.; Goto-Inoue, N.; Enomoto, H.; Unno, N.; Kuzuya, M.; et al. Imaging mass spectrometry-based histopathologic examination of atherosclerotic lesions. Atherosclerosis 2011, 217, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, H.; Sensu, T.; Yumoto, E.; Yokota, T.; Yamane, H. Derivatization for detection of abscisic acid and 12-oxo-phytodienoic acid using matrix-assisted laser desorption/ionization imaging mass spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Enomoto, H.; Moriyama, T.; Kawamura, Y.; Setou, M.; Zaima, N. Visualization of anthocyanin species in rabbiteye blueberry Vaccinium ashei by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal. Bioanal. Chem. 2012, 403, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, H.; Sato, K.; Miyamoto, K.; Ohtsuka, A.; Yamane, H. Distribution analysis of anthocyanins, sugars, and organic acids in strawberry fruits using matrix-assisted laser desorption/ionization-imaging mass spectrometry. J. Agric. Food Chem. 2018, 66, 4958–4965. [Google Scholar] [CrossRef]
- Enomoto, H.; Takahashi, S.; Takeda, S.; Hatta, H. Distribution of flavan-3-ol species in ripe strawberry fruit revealed by matrix-assisted laser desorption/ionization-mass spectrometry imaging. Molecules 2020, 25, 103. [Google Scholar] [CrossRef] [Green Version]
- Goto-Inoue, N.; Sato, T.; Morisasa, M.; Igarashi, Y.; Mori, T. Characterization of metabolite compositions in wild and farmed red sea bream (Pagrus major) using mass spectrometry imaging. J. Agric. Food Chem. 2019, 67, 7197–7203. [Google Scholar] [CrossRef]
- Zaima, N.; Goto-Inoue, N.; Hayasaka, T.; Enomoto, H.; Setou, M. Authenticity assessment of beef origin by principal component analysis of matrix-assisted laser desorption/ionization mass spectrometric data. Anal. Bioanal. Chem. 2011, 400, 1865–1871. [Google Scholar] [CrossRef]
- Sugiura, Y.; Konishi, Y.; Zaima, N.; Kajihara, S.; Nakanishi, H.; Taguchi, R.; Setou, M. Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J. Lipid Res. 2009, 50, 1776–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayasaka, T.; Goto-Inoue, N.; Zaima, N.; Kimura, Y.; Setou, M. Organ-specific distributions of lysophosphatidylcholine and triacylglycerol in mouse embryo. Lipids 2009, 44, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, H.; Takeda, S.; Hatta, H.; Zaima, N. Tissue-specific distribution of sphingomyelin species in pork chop revealed by matrix-assisted laser desorption/ionization-imaging mass spectrometry. J. Food Sci. 2019, 84, 1758–1763. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Pellegrin, V. Molecular formulas of organic compounds: The nitrogen rule and degree of unsaturation. J. Chem. Educ. 1983, 60, 626. [Google Scholar] [CrossRef]
- Ockerman, H.W.; Basu, L. By-products. In Encyclopedia of Meat Sciences; Jensen, W.K., Devine, C., Dikeman, M., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands; London, UK, 2004; pp. 104–112. [Google Scholar]
[M + H]+, m/z | Molecular Species | Relative Intensity (%) | Product ions for Assignment, m/z |
---|---|---|---|
732.5 | (diacyl 16:0/16:1) | 1.20 ± 0.08 | 184, 476, 478 |
734.5 | (diacyl 16:0/16:0) | 1.08 ± 0.07 | 184, 478 |
758.5 | (diacyl 16:0/18:2) | 27.13 ± 0.96 | 184, 478, 502 |
760.5 | (diacyl 16:0/18:1) | 16.77 ± 0.51 | 184, 478, 504 |
782.6 | (diacyl 16:0/20:4) | 0.88 ± 0.07 | 184, 478, 526 |
784.6 | (diacyl 18:1/18:2) | 2.53 ± 0.07 | 184, 502, 504 |
786.6 | (diacyl 18:0/18:2) (diacyl 18:1/18:1) | 5.04 ± 0.09 2.34 ± 0.05 | 184, 502, 506 184, 504 |
788.6 | (diacyl 18:0/18:1) | 2.67 ± 0.10 | 184, 504, 506 |
808.6 | (diacyl 18:1/20:4) | 0.28 ± 0.03 | 184, 504, 526 |
810.6 | (diacyl 18:0/20:4) | 0.43 ± 0.01 | 184, 506, 526 |
Total | 60.34 | ||
720.5 | (alkylacyl 16:0/16:0) | 0.48 ± 0.02 | 184, 482, 478 |
742.5 | (alkenylacyl 16:0/18:2) | 8.67 ± 0.21 | 184, 480, 502 |
744.5 | (alkylacyl 16:0/18:2) (alkenylacyl 16:0/18:1) | 11.40 ± 0.29 1.40 ± 0.06 | 184, 482, 502 184, 480, 504 |
746.5 | (alkylacyl 16:0/18:1) | 3.88 ± 0.20 | 184, 482, 504 |
766.6 | (alkenylacyl 16:0/20:4) | 1.50 ± 0.04 | 184, 480, 526 |
768.6 | (alkylacyl 16:0/20:4) (alkenylacyl 18:1/18:2) | 2.20 ± 0.12 2.13 ± 0.03 | 184, 482, 526 184, 506, 502 |
770.6 | (alkylacyl 18:1/18:2) | 3.59 ± 0.18 | 184, 502, 508 |
772.6 | (alkylacyl 18:0/18:2) (alkylacyl 18:1/18:1) (alkenylacyl 18:0/18:1) | 0.86 ± 0.04 0.97 ± 0.03 1.15 ± 0.01 | 184, 510, 502 184, 508, 502 184, 508, 504 |
794.6 | (alkenylacyl 18:0/20:4) | 1.43 ± 0.01 | 184, 508, 526 |
Total | 39.66 |
[M + K]+, m/z | Molecular Species | Relative Intensity (%) | Product Ions for Assignment, m/z |
---|---|---|---|
772.5 | (diacyl 16:0/16:0) | 0.45 ± 0.03 | 163, 713 |
796.5 | (diacyl 16:0/18:2) | 31.21 ± 3.79 | 163, 737 |
798.5 | (diacyl 16:0/18:1) | 24.38 ± 2.77 | 163, 739 |
820.5 | (diacyl 16:0/20:4) | 2.87 ± 0.11 | 163, 761 |
822.5 | (diacyl 18:1/18:2) | 3.65 ± 0.07 | 163, 763 |
824.5 | (diacyl 18:0/18:2), (diacyl 18:1/18:1) | 8.59 ± 0.97 | 163, 765 |
826.5 | (diacyl 18:0/18:1) | 5.88 ± 0.60 | 163, 767 |
846.5 | (diacyl 18:1/20:4) | 0.24 ± 0.01 | 163, 787 |
848.5 | (diacyl 18:0/20:4) | 0.83 ± 0.06 | 163, 789 |
Total | 78.10 | ||
758.5 | (alkylacyl 16:0/16:0) | 1.76 ± 0.16 | 163, 699 |
780.5 | (alkenylacyl 16:0/18:2) | 2.53 ± 0.08 | 163, 721 |
782.5 | (alkylacyl 16:0/18:2) (alkenylacyl 16:0/18:1) | 8.15 ± 0.86 | 163, 723 |
784.5 | (alkylacyl 16:0/18:1) | 2.88 ± 0.25 | 163, 725 |
804.6 | (alkenylacyl 16:0/20:4) | 0.59 ± 0.04 | 163, 745 |
806.6 | (alkylacyl 16:0/20:4) (alkenylacyl 18:1/18:2) | 2.01 ± 0.12 | 163, 747 |
808.6 | (alkylacyl 18:1/18:2) | 2.33 ± 0.11 | 163, 749 |
810.6 | (alkylacyl 18:0/18:2) (alkylacyl 18:1/18:1) (alkenylacyl 18:0/18:1) | 1.76 ± 0.16 | 163, 751 |
832.6 | (alkenylacyl 18:0/20:4) | 0.44 ± 0.04 | 163, 773 |
Total | 21.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enomoto, H.; Furukawa, T.; Takeda, S.; Hatta, H.; Zaima, N. Unique Distribution of Diacyl-, Alkylacyl-, and Alkenylacyl-Phosphatidylcholine Species Visualized in Pork Chop Tissues by Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry Imaging. Foods 2020, 9, 205. https://doi.org/10.3390/foods9020205
Enomoto H, Furukawa T, Takeda S, Hatta H, Zaima N. Unique Distribution of Diacyl-, Alkylacyl-, and Alkenylacyl-Phosphatidylcholine Species Visualized in Pork Chop Tissues by Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry Imaging. Foods. 2020; 9(2):205. https://doi.org/10.3390/foods9020205
Chicago/Turabian StyleEnomoto, Hirofumi, Tomohiro Furukawa, Shiro Takeda, Hajime Hatta, and Nobuhiro Zaima. 2020. "Unique Distribution of Diacyl-, Alkylacyl-, and Alkenylacyl-Phosphatidylcholine Species Visualized in Pork Chop Tissues by Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry Imaging" Foods 9, no. 2: 205. https://doi.org/10.3390/foods9020205
APA StyleEnomoto, H., Furukawa, T., Takeda, S., Hatta, H., & Zaima, N. (2020). Unique Distribution of Diacyl-, Alkylacyl-, and Alkenylacyl-Phosphatidylcholine Species Visualized in Pork Chop Tissues by Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry Imaging. Foods, 9(2), 205. https://doi.org/10.3390/foods9020205