Fast Quantification of Honey Adulteration with Laser-Induced Breakdown Spectroscopy and Chemometric Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. LIBS Measurement
2.3. Data Analysis
3. Results and Discussion
3.1. LIBS Spectral Characteristics
3.2. Univariate Analysis
3.3. Quantification of Adulterant Content Based on Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, L.; Du, B.; Vander Heyden, Y.; Chen, L.; Zhao, L.; Wang, M.; Xue, X. Recent advancements in detecting sugar-based adulterants in honey–A challenge. Trends Anal. Chem. 2017, 86, 25–38. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, J. Economically motivated food fraud and adulteration in China: An analysis based on 1553 media reports. Food Control 2016, 67, 192–198. [Google Scholar] [CrossRef]
- Kendall, H.; Clark, B.; Rhymer, C.; Kuznesof, S.; Hajslova, J.; Tomaniovab, M.; Breretonc, P.; Frewera, L. A systematic review of consumer perceptions of food fraud and authenticity: A European perspective. Trends Food Sci. Technol. 2019, 94, 79–90. [Google Scholar] [CrossRef]
- Amiry, S.; Esmaiili, M.; Alizadeh, M. Classification of adulterated honeys by multivariate analysis. Food Chem. 2017, 224, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Manzanares, N.; Garcia-Nicolas, M.; Castell, A.; Campillo, N.; Vinas, P.; Lopez-Garcia, I.; Hernandez-Cordoba, M. Untargeted headspace gas chromatography-Ion mobility spectrometry analysis for detection of adulterated honey. Talanta 2019, 205. [Google Scholar] [CrossRef]
- Gan, Z.; Yang, Y.; Li, J.; Wen, X.; Zhu, M.; Jiang, Y.; Ni, Y. Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. J. Food Eng. 2016, 178, 151–158. [Google Scholar] [CrossRef]
- Dramicanin, T.; Ackovic, L.L.; Zekovic, I.; Dramicaninn, M.D. Detection of Adulterated Honey by Fluorescence Excitation-Emission Matrices. J. Spectrosc. 2018. [Google Scholar] [CrossRef] [Green Version]
- Ferreiro-Gonzalez, M.; Espada-Bellido, E.; Guillen-Cueto, L.; Palma, M.; Barroso, C.G.; Barbero, G.F. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta 2018, 188, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Jose Aliano-Gonzalez, M.; Ferreiro-Gonzalez, M.; Espada-Bellido, E.; Palma, M.; Barbero, G.F. A screening method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey. Talanta 2019, 203, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Zorov, N.B.; Popov, A.M.; Zaytsev, S.M.; Labutin, T.A. Qualitative and quantitative analysis of environmental samples by laser-induced breakdown spectrometry. Russ. Chem. Rev. 2015, 84, 1021–1050. [Google Scholar] [CrossRef]
- Akpovo, C.A.; Martinez, J.A.; Lewis, D.E.; Branch, J.; Schroeder, A.; Edington, M.D.; Johnson, L. Regional discrimination of oysters using laser-induced breakdown spectroscopy. Anal. Methods 2013, 5, 3956–3964. [Google Scholar] [CrossRef]
- Yang, P.; Zhou, R.; Zhang, W.; Yi, R.; Tang, S.; Guo, L.; Hao, Z.; Li, X.; Lu, Y.; Zeng, X. High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy. Food Chem. 2019, 272, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Bilge, G.; Boyaci, I.H.; Eseller, K.E.; Tamer, U.; Cakir, S. Analysis of bakery products by laser-induced breakdown spectroscopy. Food Chem. 2015, 181, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.C.; Menezes, E.A.; Matos, W.O.; Milori, D.M.B.P.; Nogueira, A.R.A.; Martin-Neto, L. Determination of Ca in breakfast cereals by laser induced breakdown spectroscopy. Food Control 2010, 21, 1327–1330. [Google Scholar] [CrossRef] [Green Version]
- Lastra-Mejías, M.; Izquierdo, M.; González-Flores, E.; Cancilla, J.C.; Izquierdo, J.G.; Torrecilla, J.S. Honey exposed to laser-induced breakdown spectroscopy for chaos-based botanical classification and fraud assessment. Chemom. Intellig. Lab. Syst. 2020, 199. [Google Scholar] [CrossRef]
- Liu, F.; Ye, L.; Peng, J.; Song, K.; Shen, T.; Zhang, C.; He, Y. Fast detection of copper content in rice by laser-induced breakdown spectroscopy with uni- and multivariate analysis. Sensors 2018, 18, 705. [Google Scholar] [CrossRef] [Green Version]
- Haaland, D.M.; Thomas, E.V. Partial Least-Squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information. Anal. Chem. 1988, 60, 1193–1202. [Google Scholar] [CrossRef]
- Jong, S.D. SIMPLS: An alternative approach to partial least squares regression. Chemom. Intellig. Lab. Syst. 1993, 18, 251–263. [Google Scholar] [CrossRef]
- Forrest, S. Genetic algorithms: Principles of natural selection applied to computation. Science 1993, 261, 872–878. [Google Scholar] [CrossRef] [Green Version]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J. Atomic Spectra Database; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015. [Google Scholar]
- Fu, X.; Duan, F.; Huang, T.; Ma, L.; Jiang, J.; Li, Y. A fast variable selection method for quantitative analysis of soils using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2017, 32, 1166–1176. [Google Scholar] [CrossRef]
- Lu, S.; Shen, S.; Huang, J.; Dong, M.; Lu, J.; Li, W. Feature selection of laser-induced breakdown spectroscopy data for steel aging estimation. Spectrochim. Acta Part B 2018, 150, 49–58. [Google Scholar] [CrossRef]
No. | Observed Wavelength (nm) | Element | HFCS F55 | HFCS F90 | Rape Honey | |||
---|---|---|---|---|---|---|---|---|
r | RMSE | r | RMSE | r | RMSE | |||
1 | 247.88 | C I | 0.493 | 26.4% | 0.823 | 17.2% | 0.066 | 30.2% |
2 | 250.72 | Si I | 0.176 | 29.8% | 0.204 | 29.6% | 0.154 | 29.9% |
3 | 251.45 | Si I | 0.180 | 29.8% | 0.214 | 29.6% | 0.153 | 29.9% |
4 | 251.64 | Si I | 0.204 | 29.7% | 0.222 | 29.5% | 0.166 | 29.8% |
5 | 251.94 | Si I | 0.193 | 29.7% | 0.205 | 29.6% | 0.159 | 29.9% |
6 | 252.44 | Si I | 0.195 | 29.7% | 0.210 | 29.6% | 0.149 | 29.9% |
7 | 252.88 | Si I | 0.200 | 29.7% | 0.210 | 29.6% | 0.158 | 29.9% |
8 | 279.58 | Mg II | 0.932 | 10.9% | 0.936 | 10.6% | 0.516 | 25.9% |
9 | 280.30 | Mg II | 0.922 | 11.7% | 0.934 | 10.8% | 0.441 | 27.2% |
10 | 285.25 | Mg I | 0.959 | 8.6% | 0.959 | 8.6% | 0.517 | 25.9% |
11 | 288.20 | Si I | 0.194 | 29.7% | 0.227 | 29.5% | 0.161 | 29.9% |
12 | 385.07 | CN 4-4 | 0.550 | 25.3% | 0.828 | 17.0% | 0.487 | 26.4% |
13 | 385.49 | CN 3-3 | 0.576 | 24.8% | 0.820 | 17.3% | 0.454 | 27.0% |
14 | 386.17 | CN 2-2 | 0.596 | 24.3% | 0.821 | 17.3% | 0.442 | 27.2% |
15 | 387.13 | CN 1-1 | 0.473 | 26.7% | 0.828 | 17.0% | 0.460 | 26.9% |
16 | 388.33 | CN 0-0 | 0.514 | 26.0% | 0.824 | 17.2% | 0.466 | 26.8% |
17 | 393.37 | Ca II | 0.957 | 8.8% | 0.948 | 9.6% | 0.694 | 21.8% |
18 | 396.89 | Ca II | 0.959 | 8.6% | 0.951 | 9.3% | 0.652 | 22.9% |
19 | 422.70 | Ca I | 0.953 | 9.2% | 0.942 | 10.1% | 0.707 | 21.4% |
20 | 589.03 | Na I | 0.937 | 10.6% | 0.973 | 6.9% | 0.919 | 12.0% |
21 | 589.64 | Na I | 0.936 | 10.6% | 0.975 | 6.8% | 0.903 | 13.0% |
22 | 656.33 | H | 0.617 | 23.8% | 0.538 | 25.5% | 0.243 | 29.4% |
23 | 715.77 | O I | 0.316 | 28.7% | 0.766 | 19.5% | 0.227 | 29.5% |
24 | 742.45 | N I | 0.220 | 29.5% | 0.739 | 20.4% | 0.268 | 29.2% |
25 | 744.30 | N I | 0.197 | 29.7% | 0.738 | 20.4% | 0.278 | 29.1% |
26 | 746.92 | N I | 0.162 | 29.9% | 0.742 | 20.3% | 0.248 | 29.3% |
27 | 748.47 | Unknown | 0.507 | 26.1% | 0.632 | 23.4% | 0.220 | 29.5% |
28 | 766.57 | K I | 0.943 | 10.1% | 0.960 | 8.4% | 0.756 | 19.8% |
29 | 769.97 | K I | 0.931 | 11.1% | 0.959 | 8.6% | 0.750 | 20.0% |
30 | 777.47 | O I | 0.183 | 29.8% | 0.760 | 19.7% | 0.215 | 29.6% |
31 | 794.83 | Unknown | 0.316 | 28.7% | 0.758 | 19.7% | 0.215 | 29.6% |
32 | 795.17 | Unknown | 0.299 | 28.9% | 0.773 | 19.2% | 0.206 | 29.6% |
33 | 818.57 | N I | 0.170 | 29.9% | 0.740 | 20.4% | 0.256 | 29.3% |
34 | 818.86 | N I | 0.217 | 29.6% | 0.736 | 20.5% | 0.265 | 29.2% |
35 | 820.10 | N I | 0.232 | 29.5% | 0.746 | 20.2% | 0.237 | 29.4% |
36 | 821.14 | N I | 0.221 | 29.5% | 0.744 | 20.2% | 0.247 | 29.3% |
37 | 821.68 | N I | 0.244 | 29.4% | 0.725 | 20.8% | 0.250 | 29.3% |
38 | 822.28 | N I | 0.067 | 30.2% | 0.782 | 18.9% | 0.305 | 28.8% |
39 | 822.43 | Unknown | 0.290 | 29.0% | 0.706 | 21.4% | 0.303 | 28.8% |
40 | 824.32 | N I | 0.291 | 29.0% | 0.719 | 21.0% | 0.285 | 29.0% |
41 | 844.73 | O I | 0.252 | 29.3% | 0.743 | 20.3% | 0.260 | 29.2% |
42 | 856.86 | N I | 0.325 | 28.7% | 0.729 | 20.7% | 0.275 | 29.1% |
43 | 859.49 | N I | 0.357 | 28.3% | 0.706 | 21.5% | 0.316 | 28.7% |
Adulterant | Method | No. of LV | No. of Var. | Calibration | C.V. | Prediction | |||
---|---|---|---|---|---|---|---|---|---|
r | RMSE | r | RMSE | r | RMSE | ||||
HFCS F55 | PLSR | 4 | 43 | 0.977 | 6.5% | 0.965 | 8.0% | 0.962 | 15.6% |
GA-PLSR | 4 | 12 | 0.983 | 5.6% | 0.978 | 6.4% | 0.794 | 32.0% | |
VIP-PLSR | 5 | 16 | 0.982 | 5.7% | 0.966 | 8.1% | 0.938 | 18.6% | |
SR-PLSR | 1 | 11 | 0.965 | 7.9% | 0.960 | 8.5% | 0.966 | 8.9% | |
HFCS F90 | PLSR | 4 | 43 | 0.973 | 7.0% | 0.964 | 8.2% | 0.980 | 16.6% |
GA-PLSR | 5 | 19 | 0.979 | 6.1% | 0.972 | 7.3% | 0.985 | 11.3% | |
VIP-PLSR | 5 | 15 | 0.982 | 5.7% | 0.977 | 6.5% | 0.980 | 8.2% | |
SR-PLSR | 5 | 20 | 0.981 | 5.9% | 0.973 | 7.0% | 0.982 | 9.4% | |
Rape honey | PLSR | 5 | 43 | 0.993 | 3.6% | 0.990 | 4.3% | 0.988 | 4.7% |
GA-PLSR | 4 | 21 | 0.994 | 3.3% | 0.990 | 4.4% | 0.988 | 4.7% | |
VIP-PLSR | 3 | 10 | 0.991 | 4.1% | 0.989 | 4.6% | 0.988 | 4.8% | |
SR-PLSR | 1 | 2 | 0.912 | 12.4% | 0.874 | 15.0% | 0.943 | 11.3% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Xie, W.; Jiang, J.; Zhao, Z.; Zhou, F.; Liu, F. Fast Quantification of Honey Adulteration with Laser-Induced Breakdown Spectroscopy and Chemometric Methods. Foods 2020, 9, 341. https://doi.org/10.3390/foods9030341
Peng J, Xie W, Jiang J, Zhao Z, Zhou F, Liu F. Fast Quantification of Honey Adulteration with Laser-Induced Breakdown Spectroscopy and Chemometric Methods. Foods. 2020; 9(3):341. https://doi.org/10.3390/foods9030341
Chicago/Turabian StylePeng, Jiyu, Weiyue Xie, Jiandong Jiang, Zhangfeng Zhao, Fei Zhou, and Fei Liu. 2020. "Fast Quantification of Honey Adulteration with Laser-Induced Breakdown Spectroscopy and Chemometric Methods" Foods 9, no. 3: 341. https://doi.org/10.3390/foods9030341
APA StylePeng, J., Xie, W., Jiang, J., Zhao, Z., Zhou, F., & Liu, F. (2020). Fast Quantification of Honey Adulteration with Laser-Induced Breakdown Spectroscopy and Chemometric Methods. Foods, 9(3), 341. https://doi.org/10.3390/foods9030341