Characterization of Volatile Profiles and Marker Substances by HS-SPME/GC-MS during the Concentration of Coconut Jam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensory Analysis of Aroma
2.3. Headspace Solid Phase Microextraction of Volatiles
2.4. Gas Chromatography-Tandem Mass Spectrometer
2.5. Kinetics of Furfural Formation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Sensory Analysis
3.2. HS-SPME/GC-MS Analysis Results
3.2.1. Esters and Lactones
3.2.2. Alcohols
3.2.3. Ketones
3.2.4. Aldehydes
3.2.5. Acids and Alkenes
3.2.6. Furans and Pyrazines
3.3. Changes in the Aroma Components of Coconut Jams during Concentration
3.4. Principal Component Analysis (PCA) of the Characteristic Aroma of Coconut Jams
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No. | Category | RI f | Component Name g | Identification | Area (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 min | 4 min | 8 min | 12 min | 16 min | 20 min | After Sterilization | |||||
Aldehydes | |||||||||||
1 | 817 | Hexanal | MS, RI | 2.61 ± 0.49d | 7.63 ± 3.10c | 23.04 ± 2.55b | 27.39 ± 1.47a | 24.79 ± 2.67ab | 27.67 ± 1.68a | 23.48 ± 0.68b | |
2 | 1405 | Dodecanal | MS, RI | 0.52 ± 0.22b | 1.6 ± 2.55a | - | - | - | - | 0.23 ± 0.07b | |
3 | 914 | Furfural | MS, RI | - | 1.69 ± 1.98c | 5.24 ± 0.76b | 5.9 ± 0.34b | 6.03 ± 1.11b | 5.25 ± 1.61b | 11.58 ± 1.23a | |
4 | - | Pentanal,2methyl | MS | - | - | - | - | - | - | 0.32 ± 0.16 | |
5 | 1014 | Methional | MS, RI | - | - | - | - | - | - | 0.18 ± 0.01 | |
6 | 1190 | Benzenecarbonal | MS, RI | - | - | - | - | - | - | 0.93 ± 0.18 | |
Ketones | |||||||||||
1 | - | 3-hydroxy-2-butanone | MS | 2.9 ± 0.75b | 11.81 ± 2.18a | 2.87 ± 2.74b | 3.41 ± 0.94b | 3.31 ± 1.22b | - | - | |
2 | 998 | 2-Octanone | MS, RI | 6.08 ± 0.32b | 5.43 ± 0.54c | 9.62 ± 0.81a | 9.66 ± 0.13a | 5.42 ± 0.23c | 4.91 ± 0.34c | 3.1 ± 0.17d | |
3 | 1281 | 2-Nonanone | MS, RI | 2.12 ± 0.71ab | 2.00 ± 0.42ab | 2.28 ± 0.34ab | 2.25 ± 0.23ab | 2.04 ± 0.36ab | 2.59 ± 1.16a | 1.60 ± 0.26b | |
4 | 1480 | 5-Hexyl-4-methyldihydro-2(3H)-furanone | MS, RI | - | 8.57 ± 1.55c | 6.6 ± 0.57c | 11.35 ± 2.12b | 13.64 ± 2.47a | - | - | |
5 | - | Ethylidene acetone | MS | - | - | - | - | - | - | 0.62 ± 0.16 | |
6 | 844 | Dihydro-2-methyl-3(2H)-furanone | MS, RI | - | - | - | - | - | - | 1.82 ± 0.21 | |
7 | 1105 | 3,6-Dimethyl-tetrahydropyran-2-one | MS, RI | - | - | - | - | - | - | 0.28 ± 0.02 | |
Esters | |||||||||||
1 | 1396 | Ethyl decanoate | MS, RI | 9.15 ± 0.96c | 6.76 ± 0.44d | 14.39 ± 1.37a | 13.26 ± 0.32b | 7.45 ± 0.27d | 6.72 ± 0.42d | 2.99 ± 0.05e | |
2 | 1099 | Ethyl caproate | MS, RI | 0.75 ± 0.17a | 0.66 ± 0.13ab | 0.45 ± 0.05c | 0.46 ± 0.04c | 0.58 ± 0.11bc | 0.59 ± 0.07bc | 0.24 ± 0.03d | |
3 | 1594 | Ethyl dodecanoate | MS, RI | 3.05 ± 0.25a | 2.20 ± 0.2c | 2.90 ± 0.12a | 2.65 ± 0.11b | 2.47 ± 0.11b | 2.10 ± 0.08c | 0.97 ± 0.09d | |
4 | 1183 | Ethyl octanoate | MS, RI | 0.98 ± 0.11a | 0.7 ± 0.04b | 0.98 ± 0.42a | 0.62 ± 0.03b | - | - | - | |
5 | 969 | Hexyl formate | MS, RI | 9.01 ± 0.01a | 4.29 ± 1.79b | 3.47 ± 0.45b | 3.4 ± 0.39b | 1.54 ± 0.22c | 1.1 ± 0.31c | 0.76 ± 0.29c | |
6 | - | Propyl acetate | MS | - | - | 3.08 ± 1.82a | 0.78 ± 1.12b | - | - | - | |
7 | 1060 | Formic acid, heptyl ester | MS, RI | - | - | - | - | - | - | 0.27 ± 0.05 | |
Lactones | |||||||||||
1 | 1480 | delta-Nonalactone | MS, RI | 8.58 ± 0.81b | - | - | - | - | 16.84 ± 1.38a | 17.42 ± 0.80a | |
2 | 1692 | delta-Dodecalactone | MS, RI | 0.97 ± 0.18d | 1.41 ± 0.34c | - | 1.41 ± 0.2c | 2.54 ± 0.27b | 2.96 ± 0.23a | 2.94 ± 0.34a | |
Alcohols | |||||||||||
1 | - | Isopentyl alcohol | MS | 2.69 ± 0.6ab | 3.57 ± 1.80a | 2.28 ± 0.22b | 1.81 ± 0.24bc | 0.99 ± 0.07cd | 1.06 ± 0.22cd | 0.27 ± 0.02d | |
2 | - | 2-Methyl-1-butanol | MS | 0.88 ± 0.22a | 0.95 ± 0.45a | 1.02 ± 0.08a | 0.80 ± 0.11a | 0.36 ± 0.02b | 0.37 ± 0.04b | - | |
3 | - | Pentyl alcohol | MS | 2.09 ± 0.46a | 1.59 ± 0.39b | 1.27 ± 0.21bc | 1.11 ± 0.12c | 1.04 ± 0.12c | 1.24 ± 0.19bc | 0.86 ± 0.10c | |
4 | 1010 | 2-Octanol | MS, RI | 3.10 ± 0.26abc | 2.79 ± 0.16abc | 4.7 ± 2.21a | 3.28 ± 0.41ab | 2.47 ± 0.41bc | 3.47 ± 2.44ab | 1.17 ± 0.21c | |
5 | 947 | Furfuryl alcohol | MS, RI | - | - | - | - | - | - | 5.49 ± 0.59 | |
Acids | |||||||||||
1 | 1373 | Decanoic acid | MS, RI | 10.78 ± 4.3a | 9.67 ± 3.45a | - | - | 6.16 ± 0.82b | 3.43 ± 0.82b | 3.72 ± 0.5b | |
2 | 1081 | Hexanoic acid | MS, RI | - | - | - | - | - | - | 0.64 ± 0.43 | |
Alkenes | |||||||||||
1 | 1160 | (3E)-6-Methyl-3-undecene | MS, RI | 0.57 ± 0.36ab | 0.78 ± 0.26ab | 1.47 ± 1.37a | 1.51 ± 0.67a | - | - | 0.29 ± 0.09b | |
Furfurans | |||||||||||
1 | 1015 | 2-Butanoylfuran | MS, RI | - | - | - | - | - | - | 0.91 ± 0.18 | |
2 | 1090 | 2-Pentylfuran | MS, RI | - | - | - | - | - | - | 1.9 ± 0.11 | |
Pyrazines | |||||||||||
1 | 1020 | 2,5-Dimethylpyrazine | MS, RI | - | - | - | - | - | - | 0.92 ± 0.41 |
References
- Reynolds, S.; Fussell, R.; de Kok, A.; Anastassiades, M. Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed; European Commission: Brussels, Belgium, 2013; pp. 2–44. [Google Scholar]
- Chen, W.; Zhang, G.; Chen, W.; Zhong, Q.; Chen, H. Metabolomic profiling of matured coconut water during post-harvest storage revealed discrimination and distinct changes in metabolites. RSC Adv. 2018, 8, 31396–31405. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Chen, H.; Ke, D.; Chen, W.; Zhong, Q.; Chen, W.; Yun, Y.H. Effect of sterilization and storage on volatile compounds, sensory properties and physicochemical properties of coconut milk. Microchem. J. 2019, 153, 104532. [Google Scholar] [CrossRef]
- Chambal, B.; Bergenståhl, B.; Dejmek, P. Coconut press cake alkaline extract—Protein solubility and emulsification properties. Food Nutr. Sci. 2013, 4, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Shivhare, U.S. Rheological, textural, micro-structural and sensory properties of mango jam. J. Food Eng. 2010, 100, 357–365. [Google Scholar] [CrossRef]
- Moreno, J.A.; Zea, L.; Moyano, L.; Medina, M. Aroma compounds as markers of the changes in sherry wines subjected to biological ageing. Food Control 2005, 16, 333–338. [Google Scholar] [CrossRef]
- Borse, B.B.; Rao, L.J.M.; Ramalakshmi, K.; Raghavan, B. Chemical composition of volatiles from coconut sap (neera) and effect of processing. Food Chem. 2007, 101, 8778–8780. [Google Scholar] [CrossRef]
- Reinhard, H.; Sager, F.; Zoller, O. Citrus juice classification by SPME-GC-MS and electronic nose measurements. LWT Food Sci. Technol. 2008, 41, 1906–1912. [Google Scholar] [CrossRef]
- Mastello, R.B.; Janzantti, N.S.; Monteiro, M. Volatile and odoriferous compounds changes during frozen concentrated orange juice processing. Food Res. Int. 2015, 77, 591–598. [Google Scholar] [CrossRef]
- Bojke, A.; Tkaczuk, C.; Bauer, M.; Kamysz, W.; Gołębiowski, M. Application of HS-SPME-GC-MS for the analysis of aldehydes produced by different insect species and their antifungal activity. J. Microbiol. Methods 2020, 169, 4–10. [Google Scholar] [CrossRef]
- Wawrzyniak, R.; Jasiewicz, B. Straightforward and rapid determination of acrylamide in coffee beans by means of HS-SPME/GC-MS. Food Chem. 2019, 301, 125264. [Google Scholar] [CrossRef] [PubMed]
- Dou, T.X.; Shi, J.F.; Li, Y.; Bi, F.C.; Gao, H.J.; Hu, C.H.; Li, C.Y.; Yang, Q.S.; Deng, G.M.; Sheng, O.; et al. Influence of harvest season on volatile aroma constituents of two banana cultivars by electronic nose and HS-SPME coupled with GC-MS. Sci. Hortic. 2020, 265, 109214. [Google Scholar] [CrossRef]
- Schiano, A.N.; Harwood, W.S.; Drake, M.A. A 100-year review: Sensory analysis of milk. J. Dairy Sci. 2017, 100, 9966–9986. [Google Scholar] [CrossRef] [PubMed]
- Paravisini, L.; Septier, C.; Moretton, C.; Nigay, H.; Arvisenet, G.; Guichard, E.; Dacremont, C. Caramel odor: Contribution of volatile compounds according to their odor qualities to caramel typicality. Food Res. Int. 2014, 57, 79–88. [Google Scholar] [CrossRef]
- Du Preez, B.V.P.; de Beer, D.; Moelich, E.I.; Muller, M.; Joubert, E. Development of chemical-based reference standards for rooibos and honeybush aroma lexicons. Food Res. Int. 2020, 127, 108734. [Google Scholar] [CrossRef]
- Liu, Y.; He, C.; Song, H. Comparison of fresh watermelon juice aroma characteristics of five varieties based on gas chromatography-olfactometry-mass spectrometry. Food Res. Int. 2018, 107, 119–129. [Google Scholar] [CrossRef]
- Doleschall, F.; Recseg, K.; Kemény, Z.; Kovári, K. Comparison of differently coated SPME fibres applied for monitoring volatile substances in vegetable oils. Eur. J. Lipid Sci. Technol. 2003, 105, 333–338. [Google Scholar] [CrossRef]
- Lukić, I.; Radeka, S.; Grozaj, N.; Staver, M.; Peršurić, D. Changes in physico-chemical and volatile aroma compound composition of Gewürztraminer wine as a result of late and ice harvest. Food Chem. 2016, 196, 1048–1057. [Google Scholar] [CrossRef]
- Yang, W.; Yu, J.; Pei, F.; Mariga, A.M.; Ma, N.; Fang, Y.; Hu, Q. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose. Food Chem. 2016, 196, 860–866. [Google Scholar] [CrossRef]
- Choi, S.; Seo, H.S.; Lee, K.R.; Lee, S.; Lee, J.; Lee, J. Effect of milling and long-term storage on volatiles of black rice (Oryza sativa L.) determined by headspace solid-phase microextraction with gas chromatography–mass spectrometry. Food Chem. 2019, 276, 572–582. [Google Scholar] [CrossRef]
- Knol, J.J.; Viklund, G.Å.I.; Linssen, J.P.H.; Sjöholm, I.M.; Skog, K.I.; van Boekel, M.A.J.S. Kinetic modelling: A tool to predict the formation of acrylamide in potato crisps. Food Chem. 2009, 113, 103–109. [Google Scholar] [CrossRef]
- Gu, S.; Wang, J.; Wang, Y. Early discrimination and growth tracking of Aspergillus spp. contamination in rice kernels using electronic nose. Food Chem. 2019, 292, 325–335. [Google Scholar] [PubMed]
- Cappelletti, M.; Ferrentino, G.; Endrizzi, I.; Aprea, E.; Betta, E.; Corollaro, M.L.; Charles, M.; Gasperi, F.; Spilimbergo, S. High pressure carbon dioxide pasteurization of coconut water: A sport drink with high nutritional and sensory quality. J. Food Eng. 2015, 145, 73–81. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, P.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, R. Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC–MS, GC–O, odor threshold and sensory analysis: An insight at the molecular level. Food Chem. 2019, 275, 143–153. [Google Scholar] [CrossRef]
- Delgado, J.A.; Ferrer, M.A.; Viñas, M.A.G. The aroma of La Mancha Chelva wines: Chemical and sensory characterization. Food Res. Int. 2019, 119, 135–142. [Google Scholar]
- Nooshkam, M.; Varidi, M.; Verma, D.K. Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review. Food Res. Int. 2020, 131, 109003. [Google Scholar] [CrossRef]
- Paravisini, L.; Moretton, C.; Gouttefangeas, C.; Nigay, H.; Dacremont, C.; Guichard, E. Caramel fl avour perception: Impact of the non-volatile compounds on sensory properties and in-vitro aroma release. Food Res. Int. 2017, 100, 209–215. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.; Chrysanthou, A.; Koutidou, M. Characterisation of volatile compounds of lupin protein isolate-enriched wheat flour bread. Food Res. Int. 2012, 48, 568–577. [Google Scholar] [CrossRef]
- Paravisini, L.; Prot, A.; Gouttefangeas, C.; Moretton, C. Characterisation of the volatile fraction of aromatic caramel using heart-cutting multidimensional gas chromatography. Food Chem. 2015, 167, 281–289. [Google Scholar] [CrossRef]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma—A review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, W.; Chen, H.; Zhong, Q.; Yun, Y.; Chen, W. Metabolomics analysis of the deterioration mechanism and storage time limit of tender coconut water during storage. Foods 2020, 9, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prades, A.; Assa, R.R.A.; Dornier, M.; Pain, J.P.; Boulanger, R. Characterisation of the volatile profile of coconut water from five varieties using an optimised HS-SPME-GC analysis. J. Sci. Food Agric. 2012, 92, 2471–2478. [Google Scholar] [CrossRef] [PubMed]
- Fadel, H.H.M.; Mahmoud, M.G.; Asker, M.M.S.; Lotfy, S.N. Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse. Electron. J. Biotechnol. 2015, 18, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wang, T.; Xie, J.; Xiao, Q.; Cheng, J.; Chen, F.; Wang, S.; Sun, B. Formation mechanism of aroma compounds in a glutathione-glucose reaction with fat or oxidized fat. Food Chem. 2019, 270, 436–444. [Google Scholar] [CrossRef] [PubMed]
- De Melo Pereira, G.V.; de Carvalho Neto, D.P.; Magalhães Júnior, A.I.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans—A review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef]
- Tamanna, N.; Mahmood, N. Food processing and maillard reaction products: Effect on human health and nutrition. Int. J. Food Sci. 2015, 2015. [Google Scholar] [CrossRef]
- Hadiyanto; Asselman, A.; van Straten, G.; Boom, R.M.; Esveld, D.C.; van Boxtel, A.J.B. Quality prediction of bakery products in the initial phase of process design. Innov. Food Sci. Emerg. Technol. 2007, 8, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Poinot, P.; Grua-Priol, J.; Arvisenet, G.; Rannou, C.; Semenou, M.; Bail, A.L.; Prost, C. Optimisation of HS-SPME to study representativeness of partially baked bread odorant extracts. Food Res. Int. 2007, 40, 1170–1184. [Google Scholar] [CrossRef]
- Göncüoğlu Taş, N.; Gökmen, V. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Food Chem. 2017, 221, 1911–1922. [Google Scholar] [CrossRef]
- Lin, J.; Rouseff, R.L.; Barros, S.; Naim, M. Aroma composition changes in early season grapefruit juice produced from thermal concentration. J. Agric. Food Chem. 2002, 50, 813–819. [Google Scholar] [CrossRef]
- Rufián-Henares, J.A.; Pastoriza, S. Maillard reaction. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 364–369. [Google Scholar]
- Hatakeyama, J.; Davidson, J.M.; Kant, A.; Koizumi, T.; Hayakawa, F.; Taylor, A.J. Optimising aroma quality in curry sauce products using in vivo aroma release measurements. Food Chem. 2014, 157, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Groth, D.; Hartmann, S.; Klie, S.; Selbig, J. Principal components analysis. Methods Mol. Biol. 2013, 930, 527–547. [Google Scholar] [PubMed]
No. | Ingredient | Proportion (%) |
---|---|---|
1 | Coconut pulp | 40 |
2 | Fructose syrup | 18 |
3 | Sugar | 18 |
4 | Maltodextrin | 18 |
5 | Modified starch | 3.6 |
6 | Soy protein isolate | 1.8 |
7 | Carboxymethyl cellulose | 0.3 |
8 | Sucrose esters | 0.3 |
9 | Monoglyceride | 0.3 |
10 | Pectin | 0.2 |
Categories | Descriptors | Definitions |
---|---|---|
Odor/Flavor | Fruity | May resemble the odor of coconut, pineapple, apple, or other fruits |
Caramel | Cooked sugar, all which reminds sugar cooking, caramel | |
Acid | Sour off-flavor due to acid-producing organisms such as Lactococcus lactis ssp. cremoris | |
Fatty | Aromatics associated with stale fats | |
Honey | Aromatics associated with the sweet fragrance of honey |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Chen, H.; Wang, W.; Jiao, W.; Chen, W.; Zhong, Q.; Yun, Y.-H.; Chen, W. Characterization of Volatile Profiles and Marker Substances by HS-SPME/GC-MS during the Concentration of Coconut Jam. Foods 2020, 9, 347. https://doi.org/10.3390/foods9030347
Zhang H, Chen H, Wang W, Jiao W, Chen W, Zhong Q, Yun Y-H, Chen W. Characterization of Volatile Profiles and Marker Substances by HS-SPME/GC-MS during the Concentration of Coconut Jam. Foods. 2020; 9(3):347. https://doi.org/10.3390/foods9030347
Chicago/Turabian StyleZhang, Hao, Haiming Chen, Wenzhu Wang, Wenxiao Jiao, Wenxue Chen, Qiuping Zhong, Yong-Huan Yun, and Weijun Chen. 2020. "Characterization of Volatile Profiles and Marker Substances by HS-SPME/GC-MS during the Concentration of Coconut Jam" Foods 9, no. 3: 347. https://doi.org/10.3390/foods9030347
APA StyleZhang, H., Chen, H., Wang, W., Jiao, W., Chen, W., Zhong, Q., Yun, Y. -H., & Chen, W. (2020). Characterization of Volatile Profiles and Marker Substances by HS-SPME/GC-MS during the Concentration of Coconut Jam. Foods, 9(3), 347. https://doi.org/10.3390/foods9030347