Vitamin D3 in High-Quality Cow Milk: An Italian Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sampling
2.3. Analytical Methods
2.3.1. Direct Cold Saponification
2.3.2. Solid Phase Extraction (SPE) of Unsaponifiable Fraction
2.3.3. Chromatographic Determination of Vitamin D3
2.4. Fat Extraction
2.5. Statistical Analysis
3. Results
3.1. Vitamin D3 Content
3.2. Fat Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chakhtoura, M.; Azar, S.T. The role of vitamin d deficiency in the incidence, progression, and complications of type 1 diabetes mellitus. Int. J. Endocrinol. 2013, 2013, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halfon, M.; Phan, O.; Teta, D. Vitamin D: A review on its effects on muscle strength, the risk of fall, and frailty. BioMed. Res. Int. 2015, 2015, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.S.; Wang, Y.R.; Ye, D.W.; Liu, Q.Q. A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence. Int. J. Antimicrob. Agents 2020, 31. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin d supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [Green Version]
- Misra, D.P.; Agarwal, V.; Gasparyan, A.Y.; Zimba, O. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin. Rheumatol. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perales, S.; Alegría, A.; Barberá, R.; Farré, R. Determination of vitamin D in dairy products by high-performance liquid chromatography. Food Sci. Tech. Int. 2005, 11, 451–462. [Google Scholar] [CrossRef]
- Reeve, L.E.; Jorgensen, N.A.; De Luca, H.F. Vitamin D compounds in cows’ milk. J. Nutr. 1982, 112, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, J.; Saxholt, E. Vitamin D metabolites in bovine milk and butter. J. Food Comp. Anal. 2009, 22, 472–478. [Google Scholar] [CrossRef]
- Alais, C. Scienza del Latte: Principi di Tecnologia del Latte e dei Derivati, 4th ed.; Tecniche Nuove: Milan, Italy, 1984; EAN: 9788848110419. [Google Scholar]
- Ferrari, S. Ruolo dell’industria mangimistica nella filiera food per la tutela della salute umana. In Proceedings of the “L’Alimentazione Animale nell’Unione Europea”. Salute e Sicurezza Alimentare, Cremona, Italy, 6 November 2012; Available online: https://docplayer.it/16058184-L-alimentazione-animale-nell-unione-europea-salute-e-sicurezza-alimentare.html (accessed on 18 March 2020).
- Italian Ministerial Decree no. 185/1991. Regulation concerning the conditions of zootechnical production, the composition and hygienic-sanitary requirements of raw milk intended for use in the production of “high quality fresh pasteurized milk”. Official Gazette of the Republic of Italy, 19 June 1991. Available online: https://www.gazzettaufficiale.it/eli/id/1991/06/19/091G0227/sg(accessed on 18 March 2020).
- Mandrioli, M.; Semeniuc, C.A.; Boselli, E.; Rodriguez-Estrada, M.T. Ubiquinone in Italian high-quality raw cow milk. Ital. J. Food Sci. 2018, 30, 144–155. [Google Scholar] [CrossRef]
- Kasalová, E.; Aufartová, J.; Kujovská Krčmová, L.; Solichová, D.; Solich, P. Recent trends in the analysis of vitamin D and its metabolites in milk—A review. Food Chem. 2015, 171, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Renken, S.A.; Wharthesen, J.J. Vitamin D stability in milk. J. Food Sci. 1993, 58, 552–555. [Google Scholar] [CrossRef]
- Faulkner, H.; Hussein, A.; Foran, M.; Szijarto, L. A survey of vitamin A and D contents of fortified fluid milk in Ontario. J. Dairy Sci. 2000, 83, 1210–1216. [Google Scholar] [CrossRef] [Green Version]
- Sliva, M.G.; Green, A.E.; Sanders, J.K.; Euber, J.R.; Saucerman, J.R. Reverse-phase liquid chromatographic determination of vitamin D in infant formulas and enteral nutritionals. J. AOAC Int. 1992, 75, 566–571. [Google Scholar] [CrossRef]
- Hymøller, L.; Jensen, S.K. Vitamin D analysis in plasma by high-performance liquid chromatography (HPLC) with C30 reversed phase column and UV detection–Easy and acetonitrile-free. J. Chromatogr. A 2011, 1218, 1835–1841. [Google Scholar] [CrossRef]
- ISO 14156:2001 (IDF 172:2001). Milk and Milk Products—Extraction Methods for Lipids and Liposoluble Compounds; International Standard Organization: Geneva, Switzerland, 2001; Available online: https://www.iso.org/standard/23746.html (accessed on 18 March 2020).
- Staffas, A.; Nyman, A. Determination of cholecalciferol (vitamin D3) in selected foods by liquid chromatography: NMKL collaborative study. J. AOAC Int. 2003, 86, 400–406. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Appendix K: Guidelines for Dietary Supplements and Botanicals; Part I, AOAC Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals; AOAC International: Rockville, MD, USA, 2013; pp. 7–8. Available online: http://www.eoma.aoac.org/app_k.pdf (accessed on 18 April 2020).
- Procedural Manual of the Codex Alimentarius Commission, 27th ed.; Joint FAO/WHO Food Standards Program: Rome, Italy, 2019; Available online: http://www.fao.org/3/ca2329en/CA2329EN.pdf (accessed on 17 April 2020).
- Sereshtia, H.; Toloutehrania, A.; Nodehb, H.R. Determination of cholecalciferol (vitamin D3) in bovine milk by dispersive micro-solid phase extraction based on the magnetic three-dimensional graphene-sporopollenin sorbent. J. Chromatogr. B 2020, 1136, 121907. [Google Scholar] [CrossRef]
- Castro-Gómez, M.P.; Rodriguez-Alcalá, L.M.; Calvo, M.V.; Romero, J.; Mendiola, J.A.; Ibañez, E.; Fontecha, J. Total milk fat extraction and quantification of polar and neutral lipids of cow, goat, and ewe milk by using a pressurized liquid system and chromatographic techniques. J. Dairy Sci. 2014, 97, 6719–6728. [Google Scholar] [CrossRef] [Green Version]
- Trenerry, V.C.; Plozza, T.; Caridi, D.; Murphy, S. The determination of vitamin D3 in bovine milk by liquid chromatography mass spectrometry. Food Chem. 2011, 125, 1314–1319. [Google Scholar] [CrossRef]
- Mahmoodani, F.; Perera, C.O.; Fedrizzi, B.; Abernethy, G.; Chen, H. Degradation studies of cholecalciferol (vitamin D3) using HPLC-DAD, UHPLC-MS/MS and chemical derivatization. Food Chem. 2017, 219, 373–381. [Google Scholar] [CrossRef]
- Schmid, A.; Walther, B. Natural vitamin D content in animal products. Adv. Nutr. 2013, 4, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.; Rousseau, E.; Sidhom, G.; Pouliliot, M.; Audet, P.; Vieth, R. Vitamin D3 fortification, quantification, and long-term stability in Cheddar and low-fat cheeses. J. Agric. Food Chem. 2008, 56, 7964–7969. [Google Scholar] [CrossRef] [PubMed]
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione (INRAN). Linee Guida per una Sana Alimentazione Italiana, rev. 2003. Available online: http://www.salute.gov.it/portale/documentazione/p6_2_2_1.jsp?id=652 (accessed on 18 March 2020).
- Institute of Medicine. Dietary reference intakes for calcium and vitamin D; The National Academies Press: Washington, DC, USA, 2011; Available online: https://doi.org/10.17226/13050 (accessed on 18 March 2020).
Sampling | Vitamin D3 (µg L−1 Milk) | Fat Content (g 100 mL−1 Milk) |
---|---|---|
Raw HQ cow milk | ||
FARM 1 | <3 | 3.53 ± 0.03 |
FARM 2 | nd | 3.26 ± 0.02 |
FARM 3 | <3 | 4.23 ± 0.34 |
FARM 4 | <3 | 3.07 ± 0.02 |
FARM 5 | <3 | 2.61 ± 0.06 |
FARM 6 | <3 | 3.24 ± 0.00 |
FARM 7 | <3 | 2.92 ± 0.05 |
FARM 8 | 7.9 ± 0.9 | 2.74 ± 0.00 |
FARM 9 | 12.5 ± 2.1 | 3.19 ± 0.02 |
FARM 10 | 5.4 ± 0.6 | 3.84 ± 0.06 |
FARM 11 | <3 | 2.93 ± 0.01 |
FARM 12 | <3 | 2.99 ± 0.00 |
FARM 13 | nd | 3.49 ± 0.05 |
FARM 14 | nd | 3.35 ± 0.23 |
FARM 15 | nd | 3.38 ± 0.08 |
FARM 16 | nd | 3.40 ± 0.25 |
FARM 17 | nd | 3.78 ± 0.22 |
FARM 18 | nd | 3.67 ± 0.18 |
FARM 19 | <3 | 3.47 ± 0.06 |
FARM 20 | nd | 2.55 ± 0.35 |
FARM 21 | nd | 3.89 ± 0.12 |
FARM 22 | nd | 4.06 ± 0.11 |
Pasteurized HQ cow milk | ||
PHQ 1 | 15.0 ± 1.3 | 3.15 ± 0.01 |
PHQ 2 | 11.0 ± 1.2 | 2.84 ± 0.02 |
PHQ 3 | 17.0 ± 2.0 | 3.07 ± 0.03 |
PHQ 4 | <3 | 3.02 ± 0.02 |
PHQ 5 | nd | 3.06 ± 0.03 |
PHQ 6 | <3 | 2.93 ± 0.02 |
PHQ 7 | 9.3 ± 1.0 | 3.16 ± 0.02 |
PHQ 8 | <3 | 3.21 ± 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandrioli, M.; Boselli, E.; Fiori, F.; Rodriguez-Estrada, M.T. Vitamin D3 in High-Quality Cow Milk: An Italian Case Study. Foods 2020, 9, 548. https://doi.org/10.3390/foods9050548
Mandrioli M, Boselli E, Fiori F, Rodriguez-Estrada MT. Vitamin D3 in High-Quality Cow Milk: An Italian Case Study. Foods. 2020; 9(5):548. https://doi.org/10.3390/foods9050548
Chicago/Turabian StyleMandrioli, Mara, Emanuele Boselli, Federica Fiori, and Maria Teresa Rodriguez-Estrada. 2020. "Vitamin D3 in High-Quality Cow Milk: An Italian Case Study" Foods 9, no. 5: 548. https://doi.org/10.3390/foods9050548
APA StyleMandrioli, M., Boselli, E., Fiori, F., & Rodriguez-Estrada, M. T. (2020). Vitamin D3 in High-Quality Cow Milk: An Italian Case Study. Foods, 9(5), 548. https://doi.org/10.3390/foods9050548