Impact of a 25% Salt Reduction on the Microbial Load, Texture, and Sensory Attributes of a Traditional Dry-Cured Sausage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Processing and Sampling of a Cured Meat Sausage
2.2. Microbiological Analyses
2.3. Physicochemical Analyses
2.3.1. Determination of pH and aW
2.3.2. Determination of Total Chloride Content
2.3.3. Analysis of Fatty Acids Profile
2.3.4. Texture Profile Analysis
2.4. Sensory Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Effect of Pig Genotype and Salt Reduction on Physicochemical and Microbial Parameters of Catalão
3.2. Effect of Pig Genotype and Salt Reduction on the Fatty Acids Profile of Catalão
3.3. Effect of Pig Genotype and Salt Reduction on Texture and Sensory Evaluation of Catalão
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fraqueza, M.J.; Patarata, L. Fermented meat products-from the technology to the quality control. In Fermented Food Products; Sankaranarayanan, A., Amaresan, N., Dhanasekaran, D., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 197–237. [Google Scholar]
- Martins, J.M.; Fialho, R.; Albuquerque, A.; Neves, J.; Freitas, A.; Nunes, J.T.; Charneca, R. Growth, blood, carcass and meat quality traits from local pig breeds and their crosses. Animal 2020, 14, 636–647. [Google Scholar] [CrossRef]
- Martins, J.M.; Neves, J.A.; Freitas, A.; Tirapicos, J.L. Rearing system and oleic acid supplementation effect on carcass and lipid characteristics of two muscles from an obese pig breed. Animal 2015, 9, 1721–1730. [Google Scholar] [CrossRef] [Green Version]
- Klurfeld, D.M. Research gaps in evaluating the relationship of meat and health. Meat Sci. 2015, 109, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Petit, G.; Jury, V.; de Lamballerie, M.; Duranton, F.; Pottier, L.; Martin, J.-L. Salt Intake from Processed Meat Products: Benefits, Risks and Evolving Practices. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1453–1473. [Google Scholar] [CrossRef] [Green Version]
- Muguerza, E.; Gimeno, O.; Ansorena, D.; Astiasarán, I. New formulations for healthier dry fermented sausages: A review. Trends Food Sci. Technol. 2004, 15, 452–457. [Google Scholar] [CrossRef]
- Aburto, N.J.; Ziolkovska, A.; Hooper, L.; Elliott, P.; Cappuccio, F.P.; Meerpohl, J.J. Effect of lower sodium intake on health: Systematic review and meta-analyses. Br. Med J. 2013, 346, f1326. [Google Scholar] [CrossRef] [Green Version]
- Elias, M.; Laranjo, M.; Agulheiro-Santos, A.C.; Potes, M.E. The Role of Salt on Food and Human Health. In Salt in the Earth; Çinku, M.C., Karabulut, S., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Trieu, K.; Neal, B.; Hawkes, C.; Dunford, E.; Campbell, N.; Rodriguez-Fernandez, R.; Legetic, B.; McLaren, L.; Barberio, A.; Webster, J. Salt Reduction Initiatives around the World—A Systematic Review of Progress towards the Global Target. PLoS ONE 2015, 10, e0130247. [Google Scholar] [CrossRef] [Green Version]
- Laranjo, M.; Gomes, A.; Agulheiro-Santos, A.C.; Potes, M.E.; Cabrita, M.J.; Garcia, R.; Rocha, J.M.; Roseiro, L.C.; Fernandes, M.J.; Fernandes, M.H.; et al. Characterisation of “Catalão” and “Salsichão” Portuguese traditional sausages with salt reduction. Meat Sci. 2016, 116, 34–42. [Google Scholar] [CrossRef]
- ISO. Microbiology of Food and Animal Feeding Stuffs—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 2: Specific Rules for the Preparation of Meat and Meat Products; ISO: Geneva, Switzerland, 2003; Volume 6887–6882. [Google Scholar]
- ISO. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Salmonella spp.; ISO: Geneva, Switzerland, 2002; Volume ISO 6579. [Google Scholar]
- ISO. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 2: Enumeration method; ISO: Geneva, Switzerland, 2014; Volume ISO 11290–11292. [Google Scholar]
- ISO. Microbiology of the food chain—Horizontal method for the enumeration of microorganisms—Part 1: Colony count at 30 degrees C by the pour plate technique; ISO: Geneva, Switzerland, 2013; Volume ISO 4833–4831. [Google Scholar]
- ISO. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria-Colony-Count Technique at 30 °C; ISO: Geneva, Switzerland, 2015; Volume ISO 15214. [Google Scholar]
- Laranjo, M.; Gomes, A.; Agulheiro-Santos, A.C.; Potes, M.E.; Cabrita, M.J.; Garcia, R.; Rocha, J.M.; Roseiro, L.C.; Fernandes, M.J.; Fraqueza, M.J.; et al. Impact of salt reduction on biogenic amines, fatty acids, microbiota, texture and sensory profile in traditional blood dry-cured sausages. Food Chem. 2017, 218, 129–136. [Google Scholar] [CrossRef]
- Talon, R.; Lebert, I.; Lebert, A.; Leroy, S.; Garriga, M.; Aymerich, T.; Drosinos, E.H.; Zanardi, E.; Ianieri, A.; Fraqueza, M.J.; et al. Traditional dry fermented sausages produced in small-scale processing units in Mediterranean countries and Slovakia. 1: Microbial ecosystems of processing environments. Meat Sci. 2007, 77, 570–579. [Google Scholar] [CrossRef]
- ISO. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 °C Using 5-Bromo-4-Chloro-3-Indolyl Beta-D-Glucuronide; ISO: Geneva, Switzerland, 2012; Volume ISO 16649-2. [Google Scholar]
- ISO. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95; ISO: Geneva, Switzerland, 2008; Volume ISO 21527-2. [Google Scholar]
- ISO. Meat and Meat Products—Measurement of pH—Reference Method; ISO: Geneva, Switzerland, 1999; Volume 2917. [Google Scholar]
- ISO. Meat and Meat Products—Determination of Chloride Content—Part 1: Volhard Method; ISO: Geneva, Switzerland, 1996; Volume ISO 1841-1. [Google Scholar]
- Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [PubMed]
- Laranjo, M.; Agulheiro-Santos, A.C.; Potes, M.E.; Cabrita, M.J.; Garcia, R.; Fraqueza, M.J.; Elias, M. Effects of genotype, salt content and calibre on quality of traditional dry-fermented sausages. Food Control 2015, 56, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Caine, W.R.; Aalhus, J.L.; Best, D.R.; Dugan, M.E.R.; Jeremiah, L.E. Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Sci. 2003, 64, 333–339. [Google Scholar] [CrossRef]
- Honikel, K.-O. Reference methods supported by OECD and their use in Mediterranean meat products. Food Chem. 1997, 59, 573–582. [Google Scholar] [CrossRef]
- Agulheiro-Santos, A.C.; Roseiro, C. Physical Properties of Foods: Novel Measurement Techniques and Applications. In Rheological Properties of Foods; Taylor & Francis Group: London, UK, 2012; pp. 23–52. [Google Scholar]
- ISO. Sensory Analysis-General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; ISO 8586; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- Fraqueza, M.J.; Laranjo, M.; Alves, S.; Fernandes, M.H.; Agulheiro-Santos, A.C.; Fernandes, M.J.; Potes, M.E.; Elias, M. Dry-Cured Meat Products According to the Smoking Regime: Process Optimization to Control Polycyclic Aromatic Hydrocarbons. Foods 2020, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- ISO. Sensory Analysis-Methodology-General Guidance for Establishing a Sensory Profile; ISO 13299; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Fraqueza, M.J. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int. J. Food Microbiol. 2015, 212, 76–88. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Gouveia, I.M.; Fernandes, M.H.; Fernandes, M.J.; Semedo-Lemsaddek, T.; Barreto, A.S.; Fraqueza, M.J. Assessment of Coagulase-Negative Staphylococci and Lactic Acid Bacteria Isolated from Portuguese Dry Fermented Sausages as Potential Starters Based on Their Biogenic Amine Profile. J. Food Sci. 2018, 83, 2544–2549. [Google Scholar] [CrossRef]
- Fraqueza, M.J.; Rocha, J.M.; Laranjo, M.; Potes, M.E.; Fialho, A.R.; Fernandes, M.J.; Fernandes, M.H.; Barreto, A.; Semedo-Lemsaddek, T.; Elias, M. What is the Main Processing Factor Influencing Staphylococcus Species Diversity in Different Manufacturing Units? J. Food Sci. 2019, 84, 2932–2943. [Google Scholar] [CrossRef]
- Laranjo, M.; Elias, M.; Fraqueza, M.J. The Use of Starter Cultures in Traditional Meat Products. J. Food Qual. 2017, 2017, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Cava, R.; Ruiz, J.; López-Bote, C.; Martin, L.; Garcia, C.; Ventanas, J.; Antequera, T. Influence of finishing diet on fatty acid profiles of intramuscular lipids, triglycerides and phospholipids in muscles of the Iberian pig. Meat Sci. 1997, 45, 263–270. [Google Scholar] [CrossRef]
- Lopez-Bote, C.J. Sustained utilization of the Iberian pig breed. Meat Sci. 1998, 49 (Suppl. S1), S17–S27. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods—A review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larqué, E.; Garaulet, M.; Pérez-Llamas, F.; Zamora, S.; Tebar, F.J. Fatty acid composition and nutritional relevance of most widely consumed margarines in Spain. Grasas y Aceites 2003, 54. [Google Scholar] [CrossRef]
- Romero, M.C.; Romero, A.M.; Doval, M.M.; Judis, M.A. Nutritional value and fatty acid composition of some traditional Argentinean meat sausages. Food Sci. Technol. 2013, 33, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Stajić, S.; Živković, D.; Perunović, M.; Šobajić, S.; Vranić, D. Cholesterol content and atherogenicity of fermented sausages made of pork meat from various breeds. Procedia Food Sci. 2011, 1, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Senso, L.; Suárez, M.D.; Ruiz-Cara, T.; García-Gallego, M. On the possible effects of harvesting season and chilled storage on the fatty acid profile of the fillet of farmed gilthead sea bream (Sparus aurata). Food Chem. 2007, 101, 298–307. [Google Scholar] [CrossRef]
- Garaffo, M.A.; Vassallo-Agius, R.; Nengas, Y.; Lembo, E.; Rando, R.; Maisano, R.; Dugo, G.; Giuffrida, D. Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices, of Raw Roe of Blue Fin Tuna (Thunnus thynnus L.) and Their Salted Product “Bottarga”. Food Nutr. Sci. 2011, 2, 736–743. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, M.R.; Cava, R. Effect of Iberian X Duroc genotype on dry-cured loin quality. Meat Sci. 2007, 76, 333–341. [Google Scholar] [CrossRef]
- Corral, S.; Salvador, A.; Belloch, C.; Flores, M. Effect of fat and salt reduction on the sensory quality of slow fermented sausages inoculated with Debaryomyces hansenii yeast. Food Control 2014, 45, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Corral, S.; Salvador, A.; Belloch, C.; Flores, M. Improvement the aroma of reduced fat and salt fermented sausages by Debaromyces hansenii inoculation. Food Control 2015, 47, 526–535. [Google Scholar] [CrossRef] [Green Version]
- Corral, S.; Salvador, A.; Flores, M. Salt reduction in slow fermented sausages affects the generation of aroma active compounds. Meat Sci. 2013, 93, 776–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Al | IDr | p Value | |||
---|---|---|---|---|---|---|
3% NaCl | 4% NaCl | 3% NaCl | 4% NaCl | G | S | |
pH | 5.46 ± 0.06 | 5.46 ± 0.06 | 5.54 ± 0.04 | 5.60 ± 0.06 | 0.067 | 0.586 |
aW | 0.854 ± 0.010 | 0.862 ± 0.009 | 0.877 ± 0.012 | 0.848 ± 0.012 | 0.669 | 0.330 |
Chlorides | 3.37 B ± 0.17 | 3.99 A ± 0.17 | 3.26 B ± 0.06 | 4.11 A ± 0.25 | 0.985 | 0.000 *** |
Mesophiles | 8.4 ± 0.1 | 8.5 ± 0.1 | 8.4 ± 0.0 | 8.4 ± 0.1 | 0.562 | 0.590 |
Staphylococci | 6.0 ± 0.1 | 6.1 ± 0.4 | 5.9 ± 0.1 | 7.0 ± 0.7 | 0.432 | 0.177 |
LAB | 8.5 ± 0.1 | 8.6 ± 0.1 | 8.5 ± 0.0 | 8.4 ± 0.0 | 0.185 | 0.809 |
Enterococci | 8.3 ± 0.1 | 8.1 ± 0.3 | 8.3 ± 0.0 | 8.3 ± 0.0 | 0.430 | 0.497 |
Yeasts | 6.5 b ± 0.3 | 6.8 b ± 0.2 | 7.7 a ± 0.1 | 7.4 a ± 0.1 | 0.003 ** | 0.967 |
Fatty Acids | Al | IDr | p Value | ||
---|---|---|---|---|---|
3% NaCl | 4% NaCl | 3% NaCl | 4% NaCl | ||
Lauric-C12:0 | 0.23 ± 0.12 | 0.13 ± 0.04 | 0.16 ± 0.04 | 0.35 ± 0.13 | 0.431 |
Myristic-C14:0 | 2.92 a ± 0.44 | 3.00 a ± 0.07 | 1.77 b ± 0.45 | 0.53 b ± 0.01 | 0.000 *** |
Palmitic-C16:0 | 20.59 ± 1.12 | 19.11 ± 1.36 | 22.78 ± 1.70 | 22.63 ± 1.48 | 0.081 |
Palmitoleic-C16:1 | 2.76 ± 0.27 | 2.63 ± 0.16 | 2.57 ± 0.18 | 2.73 ± 0.22 | 0.845 |
Margaric-C17:0 | 0.30 ± 0.02 | 0.22 ± 0.05 | 0.36 ± 0.10 | 0.34 ± 0.05 | 0.182 |
Margaroleic-C17:1 | 0.27 ± 0.02 | 0.27 ± 0.01 | 0.42 ± 0.14 | 0.51 ± 0.11 | 0.063 |
Stearic-C18:0 | 9.25 b ± 0.17 | 8.51 b ± 0.83 | 11.52 a ± 0.84 | 11.60 a ± 0.93 | 0.007 ** |
Oleic-C18:1 | 40.61 ± 3.79 | 43.38 ± 2.27 | 41.91 ± 3.03 | 42.51 ± 3.27 | 0.948 |
Linoleic-C18:2 | 8.42 a ± 0.29 | 8.17 a ± 0.62 | 5.34 b ± 0.55 | 4.63 b ± 0.45 | 0.000 *** |
Linolenic-C18:3 | 0.56 a ± 0.09 | 0.49 a ± 0.04 | 0.27 b ± 0.04 | 0.31 b ± 0.05 | 0.004 ** |
Gadoleic-C20:1 | 0.87 ± 0.39 | 1.34 ± 0.07 | 0.85 ± 0.09 | 0.67 ± 0.34 | 0.226 |
Heneicosanoic-C21:1 | 0.60 ± 0.50 | 0.14 ± 0.04 | 0.06 ± 0.03 | 0.39 ± 0.39 | 0.656 |
Indices | Al | IDr | p Value | |||
---|---|---|---|---|---|---|
3% NaCl | 4% NaCl | 3% NaCl | 4% NaCl | G | S | |
n6/n3 PUFA ratio | 15.86 ± 2.19 | 16.85 ± 0.40 | 20.25 ± 2.48 | 16.21 ± 4.51 | 0.522 | 0.601 |
AI | 0.77 AB ± 0.01 | 0.70 B ± 0.01 | 0.81 A ± 0.03 | 0.70 B ± 0.01 | 0.339 | 0.002 ** |
TI | 0.71 bA ± 0.02 | 0.62 bB ± 0.02 | 0.79 aA ± 0.01 | 0.76 aB ± 0.01 | 0.000 *** | 0.007 ** |
Texture Parameters | Al | IDr | p Value | |||
---|---|---|---|---|---|---|
3% NaCl | 4% NaCl | 3% NaCl | 4% NaCl | G | S | |
Hardness (N) | 53.995 A ± 2.743 | 35.664 B ± 2.777 | 52.671 A ± 2.739 | 38.501 B ± 2.683 | 0.783 | 0.000 *** |
Adhesiveness (N*s) | −2.513 bA ± 0.399 | −1.557 bB ± 0.433 | −4.642 aA ± 0.490 | −3.306 aB ± 0.337 | 0.000 *** | 0.008 ** |
Cohesiveness | 0.537 bB ± 0.012 | 0.601 bA ± 0.018 | 0.578 aB ± 0.013 | 0.651 aA ± 0.008 | 0.001 ** | 0.000 *** |
Springiness (mm) | 0.808 b ± 0.020 | 0.862 b ± 0.026 | 0.885 a ± 0.021 | 0.876 a ± 0.013 | 0.032 * | 0.292 |
Resilience | 0.141 B ± 0.006 | 0.181 A ± 0.017 | 0.138 B ± 0.005 | 0.172 A ± 0.004 | 0.533 | 0.000 *** |
Chewiness (N*mm) | 23.553 bA ± 1.542 | 18.261 bB ± 1.491 | 26.817 aA ± 1.407 | 22.080 aB ± 1.782 | 0.027 * | 0.002 ** |
Sensory Attributes | Al | IDr | p Value | |||
---|---|---|---|---|---|---|
3% NaCl | 4% NaCl | 3% NaCl | 4% NaCl | G | S | |
Color intensity | 70 ± 4 | 71 ± 3 | 65 ± 2 | 71 ± 2 | 0.395 | 0.237 |
Off colors | 1 ± 0 | 0 ± 0 | 1 ± 0 | 0 ± 0 | 0.682 | 0.066 |
Marbled | 52 b ± 4 | 56 b ± 4 | 64 a ± 4 | 65 a ± 3 | 0.009 ** | 0.623 |
Aroma intensity | 68 B ± 3 | 73 A ± 3 | 67 B ± 3 | 73 A ± 2 | 0.772 | 0.037 * |
Off aromas | 1 ± 0 | 2 ± 1 | 1 ± 0 | 0 ± 0 | 0.199 | 0.305 |
Hardness | 52 ± 3 | 54 ± 3 | 52 ± 2 | 46 ± 2 | 0.126 | 0.350 |
Fibrousness | 40 a ± 5 | 41 a ± 6 | 30 b ± 4 | 23 b ± 3 | 0.003 ** | 0.561 |
Succulence | 66 ± 3 | 68 ± 3 | 69 ± 3 | 72 ± 2 | 0.176 | 0.424 |
Flavor intensity | 68 ± 4 | 71 ± 3 | 72 ± 2 | 71 ± 3 | 0.475 | 0.722 |
Off flavors | 3 ± 1 | 1 ± 1 | 2 ± 2 | 1 ± 1 | 0.861 | 0.259 |
Salt perception | 50 ± 2 | 55 ± 2 | 52 ± 1 | 54 ± 3 | 0.875 | 0.167 |
Overall appreciation | 66 ± 3 | 66 ± 4 | 72 ± 3 | 67 ± 4 | 0.332 | 0.467 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elias, M.; Laranjo, M.; Potes, M.E.; Agulheiro-Santos, A.C.; Fernandes, M.J.; Garcia, R.; Fraqueza, M.J. Impact of a 25% Salt Reduction on the Microbial Load, Texture, and Sensory Attributes of a Traditional Dry-Cured Sausage. Foods 2020, 9, 554. https://doi.org/10.3390/foods9050554
Elias M, Laranjo M, Potes ME, Agulheiro-Santos AC, Fernandes MJ, Garcia R, Fraqueza MJ. Impact of a 25% Salt Reduction on the Microbial Load, Texture, and Sensory Attributes of a Traditional Dry-Cured Sausage. Foods. 2020; 9(5):554. https://doi.org/10.3390/foods9050554
Chicago/Turabian StyleElias, Miguel, Marta Laranjo, Maria Eduarda Potes, Ana Cristina Agulheiro-Santos, Maria José Fernandes, Raquel Garcia, and Maria João Fraqueza. 2020. "Impact of a 25% Salt Reduction on the Microbial Load, Texture, and Sensory Attributes of a Traditional Dry-Cured Sausage" Foods 9, no. 5: 554. https://doi.org/10.3390/foods9050554
APA StyleElias, M., Laranjo, M., Potes, M. E., Agulheiro-Santos, A. C., Fernandes, M. J., Garcia, R., & Fraqueza, M. J. (2020). Impact of a 25% Salt Reduction on the Microbial Load, Texture, and Sensory Attributes of a Traditional Dry-Cured Sausage. Foods, 9(5), 554. https://doi.org/10.3390/foods9050554