Development and Application of a Novel Pluri-Residue Method to Determine Polar Pesticides in Fruits and Vegetables through Liquid Chromatography High Resolution Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and chemicals
2.2. Apparatus and Instrument
2.3. Samples Collection
2.4. Sample Preparation
2.5. UHPLC-Orbitrap-MS Analyses
2.6. Validation
3. Results and Discussion
3.1. Optimization of High Resolution Mass Spectrometry
3.2. Optimization of Chromatographic Separation
3.3. Optimization of Extraction Method
3.4. Method Validation
3.5. Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ding, J.; Jin, G.; Jin, G.; Shen, A.; Guo, Z.; Yu, B.; Jiao, Y.; Yan, J.; Liang, X. Determination of underivatized glyphosate Residues in Plant-Derived Food with Low Matrix Effect by Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2016, 9, 2856–2863. [Google Scholar] [CrossRef]
- Hernández, F.; Sancho, J.V.; Pozo, O.J.; Villaplana, C.; Ibáñez, M.; Grimalt, S. Rapid determination of fosetyl-aluminum residues in lettuce by liquid chromatography/electrospray tandem mass spectrometry. J. AOAC Int. 2003, 86, 832–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín, J.M.; Pozo, O.J.; Beltrán, J.; Hernández, F. An ion-pairing liquid chromatography/tandem mass spectrometric method for the determination of ethephon residues in vegetables. Rapid Commun. Mass Spectrom. 2006, 20, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Song, L.; Zhao, P.; Li, Y.; Zou, N.; Qin, Y.; Li, X.; Pan, C. Residue determination of glufosinate in plant origin foods using modified Quick Polar Pesticides (QuPPe) method and liquid chromatography coupled with tandem mass spectrometry. Food Chem. 2016, 197, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Oulkar, D.P.; Hingmire, S.; Goon, A.; Jadhaw, M.; Ugare, B.; Thekkumpurath, A.; Banerjee, K. Optimization and validation of a residue analysis method for glyphosate, glufosinate, and their metabolites in plant matrixes by liquid chromatography with tandem mass spectrometry. J. AOAC Int. 2017, 100, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Berthion, J.M.; Colet, I.; Merlo, M.; Nougadère, A.; Hu, R. Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2018, 1549, 31–38. [Google Scholar] [CrossRef]
- Anastassiades, M.; Kolberg, D.I.; Eichhorn, E.; Wachtler, A.-K.; Benkenstein, A.; Zechmann, S.; Mack, D.; Wildgrube, C.; Barth, A.; Sigalov, I.; et al. Quick Method for the Analysis of Numerous Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC-MS/MS Measurement. I Food of Plant Origin (QuPPe-PO-Method). Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/meth_QuPPe_PO_V11(1).pdf (accessed on 20 March 2020).
- Adams, S.; Guest, J.; Dickinson, M.; Fussell, R.J.; Beck, J.; Schoutsen, F. Development and validation of ion chromatography-tandem mass spectrometry-based method for the multiresidue determination of polar ionic pesticides in food. J. Agric. Food Chem. 2017, 65, 7294–7304. [Google Scholar] [CrossRef]
- Guo, H.; Wang, H.; Zheng, J.; Liu, W.; Zhong, J.; Zhao, Q. Sensitive and rapid determination of glyphosate, glufosinate, bialaphos and metabolites by UPLC-MS/MS using a modified Quick Polar Pesticides Extraction method. Forensic Sci. Int. 2018, 283, 111–117. [Google Scholar] [CrossRef]
- Chamkasem, N.; Harmon, T. Direct determination of glyphosate, glufosinate, and AMPA in soybean and corn by liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 4995–5004. [Google Scholar] [CrossRef]
- Chamkasem, N. Determination of glyphosate, maleic hydrazide, fosetyl aluminum, and ethephon in grapes by liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem. 2017, 65, 7535–7541. [Google Scholar] [CrossRef]
- Zhang, Y.; Dang, Y.; Lin, X.; An, K.; Li, J.; Zhang, M. Determination of glyphosate and glufosinate in corn using multi-walled carbon nanotubes followed by ultra high performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2020, 460939. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-K.; Cho, J.-M.; El-Aty, A.M.A.; Rahman, M.M.; Choi, J.-H.; Seo, Y.-J.; Shin, H.-C.; Shim, J.-H. Simple extraction method using syringe filter for detection of ethephon in tomatoes by negative-ion mode liquid chromatography with tandem mass spectrometry. Biomed. Chrom. 2015, 29, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Domingos Alves, R.; Romero-González, R.; López-Ruiz, R.; Jiménez-Medina, M.L.; Garrido Frenich, A. Fast determination of four polar contaminants in soy nutraceutical products by liquid chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 8089–8098. [Google Scholar] [CrossRef] [PubMed]
- Savini, S.; Bandani, M.; Sannino, A. An improved, rapid and sensitive ultra-high-performance liquid chromatography-high-resolution Orbitrap mass spectrometry analysis for the determination of highly polar pesticides and contaminants in processed fruits and vegetables. J. Agric. Food Chem. 2019, 67, 2716–2722. [Google Scholar] [CrossRef]
- Vass, A.; Robles-Molina, J.; Pérez-Ortega, P.; Gilbert-López, B.; Dernovics, M.; Molina-Díaz, A. Study of different HILIC, mixed-mode, and other aqueous normal-phase approaches for the liquid chromatography/mass spectrometry-based determination of challenging polar pesticides. Anal. Bioanal. Chem. 2016, 408, 4857–4869. [Google Scholar] [CrossRef]
- Koskinen, W.C.; Marek, L.J.; Hall, K.E. Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil. Pest. Manag. Sci. 2016, 72, 423–432. [Google Scholar] [CrossRef]
- Botero-Coy, A.M.; Ibáñez, M.; Sancho, J.V.; Hernández, F. Direct liquid chromatography-tandem mass spectrometry determination of underivatized glyphosate in rice, maize and soybean. J. Chromatogr. A 2013, 1313, 157–165. [Google Scholar] [CrossRef]
- Mol, H.G.J.; Van Dam, R.C.J. Rapid detection of pesticides not amenable to multi-residue methods by flow injection–tandem mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 6817–6825. [Google Scholar] [CrossRef]
- Ishibashi, M.; Ando, T.; Sakai, M.; Matsubara, A.; Uchikata, T.; Fukusaki, E.; Bamba, T. High-throughput simultaneous analysis of pesticides by supercritical fluid chromatography/tandem mass spectrometry. J. Chromatogr. A 2012, 1266, 143–148. [Google Scholar] [CrossRef]
- Robles-Molina, J.; Gilbert-López, B.; García-Reyes, J.F.; Molina-Díaz, A. Simultaneous liquid chromatography/mass spectrometry determination of both polar and “multiresidue” pesticides in food using parallel hydrophilic interaction/reversed-phase liquid chromatography and a hybrid sample preparation approach. J. Chromatogr. A 2017, 1517, 108–116. [Google Scholar] [CrossRef]
- Bauer, A.; Luetjohann, J.; Rohn, S.; Kuballa, J.; Jantzen, E. Ion chromatography tandem mass spectrometry (IC-MS/MS ) multimethod for the determination of highly polar pesticides in plant- derived commodities. Food Control 2018, 86, 71–76. [Google Scholar] [CrossRef]
- Melton, L.M.; Taylor, M.J.; Flynn, E.E. The utilization of ion chromatography and tandem mass spectrometry (IC-MS/MS for the multi-residue simultaneous determination of highly polar anionic pesticides in fruit and vegetables. Food Chem. 2019, 298, 125028. [Google Scholar] [CrossRef] [PubMed]
- Herrera López, S.; Scholten, J.; Kiedrowska, B.; de Kok, A. Method validation and application of a selective multiresidue analysis of highly polar pesticides in food matrices using hydrophilic interaction liquid chromatography and mass spectrometry. J. Chromatogr. A 2019, 1594, 93–104. [Google Scholar] [CrossRef] [PubMed]
- López-Ruiz, R.; Romero-González, R.; Ortega-Carrasco, E.; Garrido Frenich, A. Dissipation studies of famoxadone in vegetables under greenhouse conditions using liquid chromatography coupled to high-resolution mass spectrometry: Putative elucidation of a new metabolite. J. Sci. Food Agric. 2019, 99, 5368–5376. [Google Scholar] [CrossRef] [PubMed]
- Pihlström, T.; Fernandez-Alba, A.R.; Gamón, M.; Ferrer, C.; Poulsen, M.E.; Lippold, R.; Anastassiades, M. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 20 March 2020).
- McCalley, D.V. A study of column equilibration time in hydrophilic interaction chromatography. J. Cromatogr. A 2020, 1612, 460655. [Google Scholar] [CrossRef] [PubMed]
- McCalley, D.V. Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J. Cromatogr. A 2018, 1523, 49–71. [Google Scholar] [CrossRef]
- Ross, E.; Wuyts, B.; Shah, D.; Hird, S. Improved chromatographi retention and resolution for the analysis of anionic polar pesticides and plant growth regulators in food commodities using the Torus DEA column. Waters 2018. Technical Note 720006505EN. Available online: https://www.waters.com/waters/library.htm?locale=en_US&lid=135014797 (accessed on 26 March 2020).
- European Commission. EU Pesticide Database. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN (accessed on 20 March 2020).
Analyte | Characteristic Ion | Fragment Ion | |||
---|---|---|---|---|---|
Exact Mass | Mass Error (ppm) | Exact Mass | Molecular Formule | Mass Error (ppm) | |
Ethephon | 142.96616 | 1.576 | 78.95795 | [O3P]− | −0.087 |
106.98926 | [C2H6O4P]− | −0.533 | |||
HEPA | 124.99982 | 1.827 | 59.01276 | [C2H3O2]− | 2.611 |
78.95795 | [O3P]− | 0.293 | |||
94.98926 | [CH4O3P]− | −1.232 | |||
Fosetyl-Al | 109.00491 | 0.027 | 62.96304 | [O2P]− | 0.281 |
78.95795 | [O3P]− | −0.087 | |||
80.97361 | [H2PO3]− | 0.161 | |||
Glyphosate | 168.00673 | 3.243 | 62.96304 | [O2P]− | −1.307 |
78.95795 | [O3P]− | −2.367 | |||
80.97361 | [H2PO3]− | 3.360 | |||
124.01581 | [C2H7O3NP]− | −2.065 | |||
AMPA | 110.00125 | −0.419 | 62.96304 | [O2P]− | 0.281 |
78.95795 | [O3P]− | −0.721 | |||
N-acetyl-AMPA | 152.01182 | 2.364 | 62.96304 | [O2P]− | 1.393 |
78.95795 | [O3P]− | 0.926 | |||
N-acetyl-glyphosate | 210.01730 | 2.000 | 62.96304 | [O2P]− | 1.711 |
124.01581 | [C2H7O3NP]− | −0.936 | |||
148.01581 | [C4H7O3NP]− | 3.329 | |||
N-acetyl-d3-glufosinate (ILIS) | 225.07196 | 1.832 |
Compound | Matrix | QuPPe | Water Addition a | Polytron | Internal Standard b |
---|---|---|---|---|---|
Ethephon | Tomato | 119 (6)c | 111 (2) | ||
Grape | 83 (12) | 85 (7) | |||
Orange | 43 (13) | 82 (6) | 100 (4) | ||
Aubergine | <30 | <30 | 42 (14) | 78 (10) | |
HEPA | Tomato | 88 (8) | 113 (2) | ||
Grape | 58 (20) | 72 (14) | |||
Orange | 68 (14) | 82 (5) | 105 (5) | ||
Aubergine | <30 | <30 | 56 (23) | 82 (12) | |
Fosetyl-Al | Tomato | 92 (7) | 90 (1) | ||
Grape | 70 (18) | 79 (10) | |||
Orange | 58 (18) | 79 (5) | 95 (4) | ||
Aubergine | <30 | <30 | 56 (20) | 78 (13) | |
Glyphosate | Tomato | 90 (12) | 92 (8) | ||
Grape | 80 (13) | 84 (5) | |||
Orange | 65 (13) | 75 (12) | 73 (8) | ||
Aubergine | <30 | <30 | 39 (15) | 85 (12) | |
AMPA | Tomato | 73 (15) | 76 (10) | ||
Grape | 71 (9) | 73 (4) | |||
Orange | 45 (20) | 84 (18) | 89 (5) | ||
Aubergine | <30 | <30 | 41 (20) | 79 (9) | |
N-acetyl-AMPA | Tomato | 92 (17) | 96 (11) | ||
Grape | 89 (6) | 91 (4) | |||
Orange | 65 (12) | 81 (23) | 79 (11) | ||
Aubergine | <30 | <30 | 51 (23) | 94 (8) | |
N-acetyl-glyphosate | Tomato | 82 (14) | 84 (11) | ||
Grape | 72 (9) | 75 (6) | |||
Orange | 45 (29) | 65 (25) | 72 (13) | ||
Aubergine | <30 | <30 | 52 (19) | 80 (10) |
Matrix | Compound | Matrix Effect | LOQ (µg kg−1) | Recovery (%) a | Precision b |
---|---|---|---|---|---|
Tomato | Ethephon | 46 | 25 | 100–70 | 6.7 (9.5) |
HEPA | 51 | 25 | 94–97 | 5.2 (10.9) | |
Fosetyl-Al | 37 | 25 | 78–70 | 8.9 (9.9) | |
Glyphosate | 38 | 25 | 73–85 | 7.4 (15.6) | |
AMPA | 36 | 50 | 82–98 | 8.6 (11.3) | |
N-acetyl-AMPA | 20 | 50 | 103–75 | 9.4 (10.8) | |
N-acetyl-glyphosate | 34 | 50 | 98–91 | 5.8 (13.5) | |
Grape | Ethephon | 36 | 25 | 97–79 | 7.0 (13.9) |
HEPA | 44 | 25 | 82–90 | 8.9 (15.3) | |
Fosetyl-Al | 31 | 25 | 76–87 | 7.8 (9.7) | |
Glyphosate | 75 | 25 | 74–83 | 12.8 (15.2) | |
AMPA | 69 | 50 | 86–81 | 4.6 (8.4) | |
N-acetyl-AMPA | 48 | 50 | 94–89 | 8.2 (11.3) | |
N-acetyl-glyphosate | −86 | 50 | 81–83 | 12.4 (15.4) | |
Orange | Ethephon | −33 | 50 | 77–102 | 11.6 (15.8) |
HEPA | −21 | 25 | 86–105 | 15.4 (18.3) | |
Fosetyl-Al | −27 | 25 | 91–88 | 9.9 (11.3) | |
Glyphosate | −26 | 50 | 102–79 | 9.9 (14.4) | |
AMPA | −40 | 100 | 90–74 | 6.7 (10.8) | |
N-acetyl-AMPA | −31 | 100 | 77–80 | 7.2 (10.3) | |
N-acetyl-glyphosate | −43 | 100 | 86–88 | 7.8 (10.9) | |
Aubergine | Ethephon | 18 | 50 | 92–108 | 9.7 (13.5) |
HEPA | 14 | 25 | 97–86 | 9.6 (15.3) | |
Fosetyl-Al | 21 | 25 | 90–105 | 8.4 (13.5) | |
Glyphosate | 25 | 50 | 95–85 | 12.4 (15.2) | |
AMPA | 14 | 100 | 102–91 | 5.6 (12.0) | |
N-acetyl-AMPA | 18 | 100 | 110–104 | 9.1 (16.3) | |
N-acetyl-glyphosate | 17 | 100 | 93–100 | 4.6 (8.4) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzano-Sánchez, L.; Martínez-Martínez, J.A.; Domínguez, I.; Martínez Vidal, J.L.; Frenich, A.G.; Romero-González, R. Development and Application of a Novel Pluri-Residue Method to Determine Polar Pesticides in Fruits and Vegetables through Liquid Chromatography High Resolution Mass Spectrometry. Foods 2020, 9, 553. https://doi.org/10.3390/foods9050553
Manzano-Sánchez L, Martínez-Martínez JA, Domínguez I, Martínez Vidal JL, Frenich AG, Romero-González R. Development and Application of a Novel Pluri-Residue Method to Determine Polar Pesticides in Fruits and Vegetables through Liquid Chromatography High Resolution Mass Spectrometry. Foods. 2020; 9(5):553. https://doi.org/10.3390/foods9050553
Chicago/Turabian StyleManzano-Sánchez, Lorena, José Antonio Martínez-Martínez, Irene Domínguez, José Luis Martínez Vidal, Antonia Garrido Frenich, and Roberto Romero-González. 2020. "Development and Application of a Novel Pluri-Residue Method to Determine Polar Pesticides in Fruits and Vegetables through Liquid Chromatography High Resolution Mass Spectrometry" Foods 9, no. 5: 553. https://doi.org/10.3390/foods9050553
APA StyleManzano-Sánchez, L., Martínez-Martínez, J. A., Domínguez, I., Martínez Vidal, J. L., Frenich, A. G., & Romero-González, R. (2020). Development and Application of a Novel Pluri-Residue Method to Determine Polar Pesticides in Fruits and Vegetables through Liquid Chromatography High Resolution Mass Spectrometry. Foods, 9(5), 553. https://doi.org/10.3390/foods9050553