An HS-GC-IMS Method for the Quality Classification of Virgin Olive Oils as Screening Support for the Panel Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virgin Olive Oil (VOO) Samples and Sensory Evaluation
2.2. Headspace Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS): Instrumental Equipment
2.3. Selected Volatile Compounds
2.4. HS-GC-IMS Analysis of Volatile Compounds Mixtures
2.5. HS-GC-IMS Analysis of Virgin Olive Oil Samples
2.6. Performance of the Method
2.6.1. Linearity
2.6.2. Intra-Day and Inter-Day Repeatability
2.7. Data Analysis
2.8. Set-Up of Analytical Conditions
3. Results and Discussion
3.1. Selected Volatile Compounds
3.2. Performance of the Method
3.2.1. Linearity
3.2.2. Intra-Day and Inter-Day Repeatability
3.3. Results of the Semi-Targeted Chemometric Models for the Quality Grade Classification and on the Presence of the Defects
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Contreras, M.D.M.; Arroyo-Manzanares, N.; Arce, C.; Arce, L. HS-GC-IMS and chemometric data treatment for food authenticity assessment: Olive oil mapping and classification through two different devices as an example. Food Control 2019, 98, 82–93. [Google Scholar] [CrossRef]
- International Olive Council (IOC). Sensory Analysis of Olive Oil—Method for the Organoleptic Assessment of Virgin Olive Oil; International Olive Council (IOC): Madrid, Spain, 2018. [Google Scholar]
- Official Journal of the European Union. European Union, Commission Regulation 1348/2013. Amending Regulation (EEC) No 2568/91; Official Journal of the European Union: Brussels, Belgium, 2013; Volume L338, pp. 31–67. [Google Scholar]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G.F. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Aparicio, R.; Morales, M.T.; García-gonzález, D.L. Highlight Article Towards new analyses of aroma and volatiles to understand sensory perception of olive oil. Eur. J. Lipid Sci. Technol. 2012, 114, 1114–1125. [Google Scholar] [CrossRef]
- Cavalli, J.F.; Fernàndez, X.; Lizzani-Cuvelier, L.; Loiseau, A.M. Characterization of volatile compounds of french and spanish virgin olive oil by HS-SPME: Identification of quality-freshness markers. Food Chem. 2004, 88, 151–158. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- Procida, G.; Giomo, A.; Cichelli, A.; Conte, L.S. Study of volatile compounds of defective virgin olive oils and sensory evaluation: A chemometric approach. J. Sci. Food Agric. 2005, 2183, 2175–2183. [Google Scholar] [CrossRef]
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Gallina Toschi, T. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Quintanilla-Casas, B.; Bustamante, J.; Guardiola, F.; García-González, D.L.; Barbieri, S.; Bendini, A.; Gallina Toschi, T.; Vichi, S.; Tres, A. Virgin olive oil volatile fingerprint and chemometrics: Towards an instrumental screening tool to grade the sensory quality. LWT-Food Sci. Technol. 2020, 121, 108936. [Google Scholar] [CrossRef]
- Piñero, M.Y.; Amo-Gonzalez, M.; Ballesteros, R.D.; Ruiz Pérez, L.; Fernandez De la Mora, G.; Arce, L. Chemical Fingerprinting of Olive Oils by Electrospray ionization-differential mobility analysis-mass spectrometry: A new alternative to food authenticity testing. J. Am. Soc. Mass Spectrom. 2020, 31, 527–537. [Google Scholar] [CrossRef]
- Buratti, S.; Malegori, C.; Benedetti, S.; Oliveri, P.; Giovanelli, G. E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: A powerful data fusion approach. Talanta 2018, 182, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Delgado, R.; Dobao-Prieto, M.; Arce, L.; Valcárcel, M. Determination of volatile compounds by GC–IMS to assign the quality of virgin olive oil. Food Chem. 2015, 187, 72–579. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, N.; Birkenmeier, M.; Sanders, D.; Rohn, S. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling. Anal. Bioanal. Chem. 2017, 409, 3933–3942. [Google Scholar] [CrossRef] [PubMed]
- Schwolow, S.; Gerhardt, N.; Rohn, S.; Weller, P. Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys—Is it worth to go the extra mile? Anal. Bioanal. Chem. 2019, 411, 6005–6019. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Delgado, R.; Mercader-Trejo, F.; Sielemann, S.; Bruyn, W.; De Arce, L.; Valcárcel, M. Direct classification of olive oils by using two types of ion mobility spectrometers. Anal. Chim. Acta 2011, 696, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Delgado, R.; Arce, L.; Valcárcel, M. Multi-capillary column-ion mobility spectrometry: A potential screening system to differentiate virgin olive oils. Anal. Bioanal. Chem. 2012, 402, 489–498. [Google Scholar] [CrossRef]
- Contreras, M.D.M.; Jurado-Campos, N.; Arce, L. A robustness study of calibration models for olive oil classification: Targeted and non-targeted fingerprint approaches based on GC-IMS. Food Chem. 2019, 288, 315–324. [Google Scholar] [CrossRef]
- Morales, M.T.; Aparicio-Ruiz, R.; Aparicio, R. Chromatographic methodologies: Compounds for olive oil odor issues. In Handbook of Olive Oil: Analysis and Properties; Aparicio-Ruiz, R., Harwood, J., Eds.; Springer: Berlin, Germany, 2015; pp. 261–309. [Google Scholar]
- Barbieri, S.; Brkić Bubola, K.; Bendini, A.; Bučar-Miklavčič, M.; Lacoste, F.; Tibet, U.; Winkelmann, O.; García-González, D.L.; Gallina Toschi, T. Alignment and proficiency of virgin olive oil sensory panels: The OLEUM Approach. Foods 2020, 9, 355. [Google Scholar] [CrossRef] [Green Version]
- Valli, E.; Panni, F.; Casadei, E.; Barbieri, S.; Cevoli, C.; Bendini, A.; García-González, D.L.; Gallina Toschi, T.; OLEUM Project. Classification of Virgin Olive Oils Based on Quality Grades and Presence of Defects Using HS-GC-IMS as a Rapid Screening Tool; University of Bologna: Bologna, Italy, 2019. [Google Scholar] [CrossRef]
- Daszykowski, M.; Walczak, B.; Massart, D.L. Representative subset selection. Anal. Chim. Acta 2002, 468, 91–103. [Google Scholar] [CrossRef]
- Melucci, D.; Bendini, A.; Tesini, F.; Barbieri, S.; Zappi, A.; Vichi, S.; Conte, L.; Gallina Toschi, T. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem. 2016, 204, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Eiceman, G.A.; Karpas, Z.; Hill, H.H., Jr. Introduction to ion mobility spectrometry. In Ion Mobility Spectrometry, 3rd ed.; Eiceman, G.A., Karpas, Z., Eds.; CRC Press: Oxford, UK, 2014; pp. 1–16. [Google Scholar]
- Gerhardt, N.; Schwolow, S.; Rohn, S.; Pérez-Cacho, P.R. Quality assessment of olive oils based on temperature ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM. Food Chem. 2019, 278, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, N.; Schwolow, S.; Rohn, S.; Pérez-Cacho, P.R. Corrigendum to “Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM.”. Food Chem. 2019, 286, 307–308. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.D.M.; Aparicio, L.; Arce, L. Usefulness of GC-IMS for rapid quantitative analysis without sample treatment: Focus on ethanol, one of the potential classification markers of olive oils. LWT-Food Sci. Technol. 2020, 120, 108897. [Google Scholar] [CrossRef]
Volatile Compounds | Rt a (s) | Dt b (ms) | Calibration Curve Equation | Linearity Range (mg kg−1) | (R2) c |
---|---|---|---|---|---|
1. Ethyl acetate | 170 | 10.908 | y = 672.5x + 70.5 | 0.05–0.5 | 0.980 |
2. Ethyl propanoate | 230 | 11.844 | y = 549.7x + 9.6 | 0.05–0.5 | 0.978 |
3. Propanoic acid | 218 | 9.102 | y = 15.3x + 68.4 | 0.05–10 | 0.932 |
4. 3-methyl-1-butanol | 259 | 12.203 | y = 279.9x + 43.6 | 0.05–1.5 | 0.986 |
5. (E,E)-2,4-hexadienal | 522 | 11.827 | y = 87.3x + 27.8 | 1.5–10 | 0.982 |
6. (E)-2-heptenal | 639 | 13.71 | y = 18.4x + 175.6 | 1.5–10 | 0.969 |
7. 6-methyl-5-hepten-2-one | 749 | 9.588 | y = 72.2x + 162.5 | 0.05–10 | 0.994 |
8. Ethanol | 121 | 9.255 | y = 345.4x + 150.4 | 0.05–0.5 | 0.980 |
9. Acetic acid | 149 | 9.434 | y = 14.5x + 42.7 | 0.10–25 | 0.982 |
10. Hexanal | 317 | 12.723 | y = 198.3x + 23.3 | 0.05–1.5 | 0.991 |
11. (E)-2-hexenal | 404 | 12.358 | y = 47.3x + 7.3 | 0.10–10 | 0.989 |
12. 1-hexanol | 450 | 13.415 | y = 32.9x + 83.8 | 0.05–25 | 0.988 |
13. 1-octen-3-ol | 733 | 9.451 | y = 33.0x + 176.2 | 0.05–20 | 0.996 |
14. (Z)-3-hexenyl acetate | 846 | 14.908 | y = 6.9x + 281.7 | 5.0–25 | 0.989 |
15. Nonanal | 1554 | 12.128 | y = 5.1x + 138.0 | 0.05–15 | 0.990 |
Category | Calibration | Cross Validation | External Validation |
---|---|---|---|
EVOO | 91% | 89% | 74% |
no-EVOO | 84% | 75% | 77% |
LOO | 89% | 86% | 73% |
no-LOO | 94% | 94% | 95% |
VOO | 92% | 91% | 87% |
LOO | 83% | 76% | 77% |
EVOO | 74% | 73% | 70% |
VOO | 80% | 80% | 67% |
Defects | Calibration | Cross Validation | External Validation |
---|---|---|---|
Musty | 71% | 63% | 60% |
No-musty | 81% | 80% | 80% |
Rancid | 81% | 78% | 62% |
No-rancid | 69% | 64% | 64% |
Fusty/muddy sediment | 82% | 79% | 67% |
No-fusty/muddy sediment | 67% | 58% | 48% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valli, E.; Panni, F.; Casadei, E.; Barbieri, S.; Cevoli, C.; Bendini, A.; García-González, D.L.; Gallina Toschi, T. An HS-GC-IMS Method for the Quality Classification of Virgin Olive Oils as Screening Support for the Panel Test. Foods 2020, 9, 657. https://doi.org/10.3390/foods9050657
Valli E, Panni F, Casadei E, Barbieri S, Cevoli C, Bendini A, García-González DL, Gallina Toschi T. An HS-GC-IMS Method for the Quality Classification of Virgin Olive Oils as Screening Support for the Panel Test. Foods. 2020; 9(5):657. https://doi.org/10.3390/foods9050657
Chicago/Turabian StyleValli, Enrico, Filippo Panni, Enrico Casadei, Sara Barbieri, Chiara Cevoli, Alessandra Bendini, Diego L. García-González, and Tullia Gallina Toschi. 2020. "An HS-GC-IMS Method for the Quality Classification of Virgin Olive Oils as Screening Support for the Panel Test" Foods 9, no. 5: 657. https://doi.org/10.3390/foods9050657
APA StyleValli, E., Panni, F., Casadei, E., Barbieri, S., Cevoli, C., Bendini, A., García-González, D. L., & Gallina Toschi, T. (2020). An HS-GC-IMS Method for the Quality Classification of Virgin Olive Oils as Screening Support for the Panel Test. Foods, 9(5), 657. https://doi.org/10.3390/foods9050657