Heterogeneous Fenton Degradation of Patulin in Apple Juice Using Carbon-Encapsulated Nano Zero-Valent Iron (CE-nZVI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents for Analytical Methods and Procedures
2.2. Standards and Solution Preparation Procedures
2.3. Solid-Phase Extraction (SEP)
2.4. Reagents for the Hydrothermal Carbonization (HTC) of CE-nZVI
2.5. Hydrothermal Carbonization (HTC) Synthesis of CE-nZVI
2.6. Experimental Set-Up for Heterogenous Fenton Oxidation Reactions
2.7. Instrumentation and Working Parameters
2.8. Inductively-Coupled Plasma-Mass Spectroscopy (ICP-MS)
2.9. Nanoparticle Characterization
3. Results and Discussion
3.1. HPLC Detection of PAT
3.2. Carbothermal-Synthesized CE-nZVI
3.3. Remediation of PAT Using CE-nZVI Coupled with a Fenton Reagent in Water Placebo Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tangni, E.K.; Theys, R.; Mignolet, E.; Maudoux, M.; Michelet, J.Y.; Larondelle, Y. Patulin in Domestic and Imported Apple-Based Drinks in Belgium: Occurrence and Exposure Assessment. Food Addit. Contam. 2003, 20, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Sydenham, E.W.; Vismer, H.F.; Marasas, W.F.; Brown, N.L.; Schlechter, M.; Rheeder, J.P. The Influence of Deck Storage and Initial Processing on Patulin Levels in Apple Juice. Food Additves Contam. 1997, 14, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Paster, N.; Huppert, D.; Barkai Golan, R. Production of Patulin by Different Strains of Penicillium Expansum in Pear and Apple Cultivars Stored at Different Temperatures and Modified Atmospheres. Food Addit. Contam. 1995, 12, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Hasan, H.A.H. Patulin and Aflatoxin in Brown Rot Lesion of Apple Fruits and Their Regulation. World J. Microbiol. Biotechnol. 2000, 16, 607–612. [Google Scholar] [CrossRef]
- Venturini, M.E.; Blanco, D.; Oria, R. In Vitro Antifungal Activity of Several Antimicrobial Compounds against Penicillium Expansum. J. Food Prot. 2002, 65, 834–839. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, Y.; Wei, J.; Gu, Y.; Yue, T.; Yuan, Y. Thiol-Functionalized Inactivated Yeast Embedded in Agar Aerogel for Highly Efficient Adsorption of Patulin in Apple Juice. J. Hazard. Mater. 2020, 388, 121802. [Google Scholar] [CrossRef]
- HARRISON, M.A. Presence and Stability of Patulin in Apple Products: A Review. J. Food Saf. 1988, 9, 147–153. [Google Scholar] [CrossRef]
- Biango-Daniels, M.N.; Snyder, A.B.; Worobo, R.W.; Hodge, K.T. Fruit Infected with Paecilomyces Niveus: A Source of Spoilage Inoculum and Patulin in Apple Juice Concentrate? Food Control 2019, 97, 81–86. [Google Scholar] [CrossRef]
- Leibinger, W.; Breuker, B.; Hahn, M.; Mendgen, K. Control of Postharvest Pathogens and Colonization of the Apple Surface by Antagonistic Microorganisms in the Field. Phytopathology 1997, 87, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Singh, N.; Ansari, K.M. Toxicological Effects of Patulin Mycotoxin on the Mammalian System: An Overview. Toxicol. Res. (Camb). 2017, 6, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Mu, P.; Deng, Y. Mycotoxins: Cytotoxicity and Biotransformation in Animal Cells. Toxicol. Res. 2016, 5, 377–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, J.L. Some Major Mycotoxins and Their Mycotoxicoses—An Overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Yiannikouris, A.; Jouany, J.-P. Mycotoxins in Feeds and Their Fate in Animals: A Review. Anim. Res. 2002, 51, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Puel, O.; Galtier, P.; Oswald, I.P. Biosynthesis and Toxicological Effects of Patulin. Toxins (Basel). 2010, 2, 613–631. [Google Scholar] [CrossRef] [Green Version]
- Ziarati, P.; Shirkhan, F.; Mostafidi, M.; Zahedi, M.T.; Sawicka, B. Introduction of Methods to Reduce and Remove Patulin from Food Products. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2019, 76, 83–91. [Google Scholar] [CrossRef]
- Moake, M.M.; Padilla-Zakour, O.I.; Worobo, R.W. Comprehensive Review of Patulin Control Methods in Foods. Compr. Rev. Food Sci. Food Saf. 2005, 4, 8–21. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal Activity of Zinc Oxide Nanoparticles against Botrytis Cinerea and Penicillium Expansum. Microbiol. Res. 2011, 166, 207–215. [Google Scholar] [CrossRef]
- Sun, J.; Guo, W.; Ji, J.; Li, Z.; Yuan, X.; Pi, F.; Zhang, Y.; Sun, X. Removal of Patulin in Apple Juice Based on Novel Magnetic Molecularly Imprinted Adsorbent Fe3O4@SiO2@CS-GO@MIP. LWT-Food Sci. Technol. 2019, 118, 108854. [Google Scholar] [CrossRef]
- Shu, H.-Y.; Chang, M.-C.; Chen, C.-C.; Chen, P.-E. Using Resin Supported Nano Zero-Valent Iron Particles for Decoloration of Acid Blue 113 Azo Dye Solution. J. Hazard. Mater. 2010, 184, 499–505. [Google Scholar] [CrossRef]
- Singh, S.P.; Bose, P. Use of NZVI for Highly Persistence Chlorinated Pesticide DDT and Their Metabolites. In Proceedings of the IWA World Congress on Water, Climate and Energy 2012, Dublin, Ireland, 13–18 May 2012. [Google Scholar]
- Mukherjee, R.; Kumar, R.; Sinha, A.; Lama, Y.; Saha, A.K. A Review on Synthesis, Characterization, and Applications of Nano Zero Valent Iron (NZVI) for Environmental Remediation. Crit. Rev. Environ. Sci. Technol. 2016, 46, 443–466. [Google Scholar] [CrossRef]
- Li, L.; Hu, J.; Shi, X.; Fan, M.; Luo, J.; Wei, X. Nanoscale Zero-Valent Metals: A Review of Synthesis, Characterization, and Applications to Environmental Remediation. Environ. Sci. Pollut. Res. 2016, 23, 17880–17900. [Google Scholar] [CrossRef] [PubMed]
- Calderon, B.; Smith, F.; Aracil, I.; Fullana, A. Green Synthesis of Thin Shell Carbon-Encapsulated Iron Nanoparticles via Hydrothermal Carbonization. ACS Sustain. Chem. Eng. 2018, 6, 7995–8002. [Google Scholar]
- Litter, M.I.; Slodowicz, M. An Overview on Heterogeneous Fenton and PhotoFenton Reactions Using Zerovalent Iron Materials. J. Adv. Oxid. Technol. 2017, 20. [Google Scholar] [CrossRef]
- Li, J.; Wu, R.; Hu, Q.; Wang, J. Solid-Phase Extraction and HPLC Determination of Patulin in Apple Juice Concentrate. Food Control 2007, 18, 530–534. [Google Scholar] [CrossRef]
- Huang, C.-C.; Chen, C.-H.; Chu, S.-M. Effect of Moisture on H2S Adsorption by Copper Impregnated Activated Carbon. J. Hazard. Mater. 2006, 136, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, H.; Duan, X.; Ang, H.M.; Tadé, M.O.; Wang, S. A New Magnetic Nano Zero-Valent Iron Encapsulated in Carbon Spheres for Oxidative Degradation of Phenol. Appl. Catal. B Environ. 2015, 172–173, 73–81. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- WHO-EU. Drinking Water Parameter Cooperation Project; WHO-EU: Bonn, Germany, 2017; No. 1–228. [Google Scholar]
- US FDA/CFSAN-Approximate pH of Foods and Food Products. Available online: https://webpal.org/SAFE/aaarecovery/2_food_storage/Processing/lacf-phs.htm (accessed on 6 May 2020).
- Feitz, A.J.; Joo, S.H.; Guan, J.; Sun, Q.; Sedlak, D.L.; David Waite, T. Oxidative Transformation of Contaminants Using Colloidal Zero-Valent Iron. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 265, 88–94. [Google Scholar] [CrossRef]
- Joo, S.H.; Feitz, A.J.; Waite, T.D. Oxidative Degradation of the Carbothioate Herbicide, Molinate, Using Nanoscale Zero-Valent Iron. Environ. Sci. Technol. 2004, 38, 2242–2247. [Google Scholar] [CrossRef]
- Lee, C.; Sedlak, D.L. Enhanced Formation of Oxidants from Bimetallic Nickel-Iron Nanoparticles in the Presence of Oxygen. Environ. Sci. Technol. 2008, 42, 8528. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Neumann, A.; Yuan, S.; Liao, W.; Qian, A. Oxidative Degradation of Organic Contaminants by FeS in the Presence of O2. Environ. Sci. Technol. 2020, 54, 4091–4101. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silwana, N.; Calderón, B.; Ntwampe, S.K.O.; Fullana, A. Heterogeneous Fenton Degradation of Patulin in Apple Juice Using Carbon-Encapsulated Nano Zero-Valent Iron (CE-nZVI). Foods 2020, 9, 674. https://doi.org/10.3390/foods9050674
Silwana N, Calderón B, Ntwampe SKO, Fullana A. Heterogeneous Fenton Degradation of Patulin in Apple Juice Using Carbon-Encapsulated Nano Zero-Valent Iron (CE-nZVI). Foods. 2020; 9(5):674. https://doi.org/10.3390/foods9050674
Chicago/Turabian StyleSilwana, Notemba, Blanca Calderón, Seteno Karabo Obed Ntwampe, and Andrés Fullana. 2020. "Heterogeneous Fenton Degradation of Patulin in Apple Juice Using Carbon-Encapsulated Nano Zero-Valent Iron (CE-nZVI)" Foods 9, no. 5: 674. https://doi.org/10.3390/foods9050674
APA StyleSilwana, N., Calderón, B., Ntwampe, S. K. O., & Fullana, A. (2020). Heterogeneous Fenton Degradation of Patulin in Apple Juice Using Carbon-Encapsulated Nano Zero-Valent Iron (CE-nZVI). Foods, 9(5), 674. https://doi.org/10.3390/foods9050674