Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.1.1. Source of CoNS Isolates
2.1.2. Inoculums Preparation of Isolates
2.1.3. Primary Identification of CoNS Isolates
2.1.4. In Vitro Antibiotic Susceptibilities of CoNS Isolates
2.1.5. Secondary Identification of CoNS Isolates
2.1.6. CoNS Strains for Phages Isolation
2.1.7. Biofilm Characteristics of MDR-CoNS Strains
2.2. Detection of CoNS Bacteriophages
2.2.1. Source of Phages Isolation
2.2.2. Phages Isolation and Enrichment
2.2.3. Phage Determination
Spot-Test Technique
Plaque Assay Technique
2.2.4. Phages Purification, Propagation, and Titration
2.2.5. Phages Host Spectrum Lytic Activity
2.2.6. Multiplicity of Infection (MOI) and One Single-Step Growth Tests
2.2.7. Transmission Electron Microscopy (TEM)
2.2.8. Thermal and pH Stability of CoNShP-3 Phage
2.2.9. Degradation of CoNS Biofilms Using CoNShP-3 Phage
2.2.10. Evaluation Assays of the CoNShP-3 Phage as a Natural Antibacterial
Determination of CoNShP-3 Phage Effect on Bacteriophage-Insensitive Mutants (BIMs)
Bacteriolytic Activity of CoNShP-3 Phage Using the 96-Well Microtiter Plate
Bacterial Challenge Assay in TSB (CoNS Culture Clearing)
Bacterial Challenge Assay in Food (Control CoNS Bacteria in Food)
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Bacterial Isolates
3.1.1. CoNS Isolates and Antibiotics Susceptibility Profile
3.1.2. Biofilm Formation Activity of MDR-CoNS Strains
3.2. CoNS Bacteriophages
3.2.1. Isolation and Characterization
3.2.2. Host Range Spectrum and EOP
3.2.3. Single-Step Growth Curve and Multiplicity of Infection (MOIs)
3.2.4. Morphology (Electron Microscopy)
3.2.5. Thermal and pH Stability of CoNShP-3 Phage
3.2.6. Anti-Biofilm Activity of CoNShP-3 Phage Against CoNS Strains
3.2.7. Efficacy and Stability of the CoNShP-3 Phage as a Natural Antibacterial
Lytic Activity of CoNShP-3 Phage Using 96-Well Microtiter Plate
Control of CoNS Strains in TSB Medium (Culture Clearing) and BIMs Formation
Control of CoNS Strains in Food
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Havelaar, A.; Kirk, M.D.; Torgerson, P.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, K.R.; Kniel, K.E.; Montville, T.J. Food Microbiology: An Introduction; American Society for Microbiology: Washington, DC, USA, 2017. [Google Scholar]
- US food and drug (FDA/CFSAN) bad bug book: Foodborne pathogenic microorganisms and natural toxins handbook. Choice Rev. Online 2006, 44. [CrossRef]
- Veras, J.F.; Carmo, L.S.D.; Tong, L.C.; Shupp, J.W.; Cummings, C.; Dos Santos, D.A.; Cerqueira, M.M.O.P.; Cantini, A.; Nicoli, J.; Jett, M. A study of the enterotoxigenicity of coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. Int. J. Infect. Dis. 2008, 12, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Piette, A.; Verschraegen, G. Role of coagulase-negative staphylococci in human disease. Veter Microbiol. 2009, 134, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzariol, A.; Cascio, G.L.; Kocsis, E.; Maccacaro, L.; Fontana, R.; Cornaglia, G. Outbreak of linezolid-resistant Staphylococcus haemolyticus in an Italian intensive care unit. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 31, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Brito, D.V.D.D.; von Dolinger, E.J.; Abdallah, V.O.; Darini, A.L.C.; Filho, P.P.G. Two outbreaks of mixed etiology associated with central venous catheters inserted by phlebotomy in critical neonates. Braz. J. Infect. Dis. 2009, 13, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentilini, E.; Denamiel, G.; Betancor, A.; Rebuelto, M.; Fermepin, M.R.; de Torres, R. Antimicrobial Susceptibility of Coagulase-Negative Staphylococci Isolated from Bovine Mastitis in Argentina. J. Dairy Sci. 2002, 85, 1913–1917. [Google Scholar] [CrossRef] [Green Version]
- Donlan, R.M. Biofilm Formation: A Clinically Relevant Microbiological Process. Clin. Infect. Dis. 2001, 33, 1387–1392. [Google Scholar] [CrossRef] [Green Version]
- Araújo, P.; Lemos, M.; Mergulháo, F.; Melo, L.; Simões, M. Antimicrobial resistance to disinfectants in biofilms. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; pp. 826–834. [Google Scholar]
- Foka, A.; Chini, V.; Petinaki, E.; Kolonitsiou, F.; Anastassiou, E.D.; Dimitracopoulos, G.; Spiliopoulou, I. Clonality of slime-producing methicillin-resistant coagulase-negative staphylococci disseminated in the neonatal intensive care unit of a university hospital. Clin. Microbiol. Infect. 2006, 12, 1230–1233. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V.; Lopes, C.; Castro, A.I.; Silva, J.; Gibbs, P.; Teixeira, P. Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiol. 2009, 26, 278–282. [Google Scholar] [CrossRef]
- Fooladi, A.I.; Tavakoli, H.; Naderi, A. Detection of enterotoxigenic Staphylococcus aureus isolates in domestic dairy products. Iran. J. Microbiol. 2010, 2, 137–142. [Google Scholar]
- Shan, B.; Cai, Y.-Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Landers, T.; Cohen, B.; Wittum, T.E.; Larson, E.L. A Review of Antibiotic Use in Food Animals: Perspective, Policy, and Potential. Public Heal. Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.-K.; Paik, H.-D. Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems. Food Sci. Anim. Resour. 2016, 36, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Al-Juhaimi, F.Y.; Ghafoor, K.; Özcan, M.M.; Jahurul, M.H.A.; Babiker, E.E.; Jinap, S.; Sahena, F.; Sharifudin, M.S.; Zaidul, I.S.M. Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. J. Food Sci. Technol. 2018, 55, 3872–3880. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Fernebro, J. Fighting bacterial infections—Future treatment options. Drug Resist. Updat. 2011, 14, 125–139. [Google Scholar] [CrossRef]
- Kutateladze, M.; Adamia, R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010, 28, 591–595. [Google Scholar] [CrossRef]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage Applications for Food Production and Processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Sulakvelidze, A. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J. Sci. Food Agric. 2013, 93, 3137–3146. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.; Parveen, S.; Schwarz, J.; Hashem, F.; Vimini, B. Reduction of Salmonella in ground chicken using a bacteriophage. Poult. Sci. 2017, 96, 2845–2852. [Google Scholar] [CrossRef] [PubMed]
- Soffer, N.; Woolston, J.; Li, M.; Das, C.; Sulakvelidze, A. Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PLoS ONE 2017, 12, e0175256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zampara, A.; Sørensen, M.C.H.; Elsser-Gravesen, A.; Brøndsted, L. Significance of phage-host interactions for biocontrol of Campylobacter jejuni in food. Food Control. 2017, 73, 1169–1175. [Google Scholar] [CrossRef]
- Magin, V.; Garrec, N.; Andrés, Y. Selection of Bacteriophages to Control In Vitro 24 h Old Biofilm of Pseudomonas Aeruginosa Isolated from Drinking and Thermal Water. Viruses 2019, 11, 749. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Zhou, Y.; Liang, L.; Nime, I.; Liu, K.; Yan, T.; Wang, X.; Li, J. Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses 2019, 11, 841. [Google Scholar] [CrossRef] [Green Version]
- Harper, D.R.; Parracho, H.M.R.T.; Walker, J.; Sharp, R.; Hughes, G.; Werthén, M.; Lehman, S.; Morales, S. Bacteriophages and Biofilms. Antibiotics 2014, 3, 270–284. [Google Scholar] [CrossRef]
- Abedon, S. Ecology of Anti-Biofilm Agents II: Bacteriophage Exploitation and Biocontrol of Biofilm Bacteria. Pharmaceutical 2015, 8, 559–589. [Google Scholar] [CrossRef] [Green Version]
- Cha, Y.; Chun, J.; Son, B.; Ryu, S. Characterization and Genome Analysis of Staphylococcus aureus Podovirus CSA13 and Its Anti-Biofilm Capacity. Viruses 2019, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Jończyk, E.; Kłak, M.; Międzybrodzki, R.; Górski, A. The influence of external factors on bacteriophages. Rev. Folia Microbiol. 2011, 56, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Olson, M.R.; Axler, R.P.; Hicks, R.E. Effects of freezing and storage temperature on MS2 viability. J. Virol. Methods 2004, 122, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Brovko, L.; Anany, H.; Griffiths, M.W. Bacteriophages for Detection and Control of Bacterial Pathogens in Food and Food-Processing Environment. Adv. Food Nutr. Res. 2012, 67, 241–288. [Google Scholar] [CrossRef] [PubMed]
- Greer, G.G. Bacteriophage Control of Foodborne Bacteria. J. Food Prot. 2005, 68, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, S.; Ross, R.P.; Meaney, W.; Fitzgerald, G.F.; Elbreki, M.F.; Coffey, A. Potential of the Polyvalent Anti-Staphylococcus Bacteriophage K for Control of Antibiotic-Resistant Staphylococci from Hospitals. Appl. Environ. Microbiol. 2005, 71, 1836–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, P.; Mathieu, J.; Li, M.; Dai, Z.; Alvarez, P.J.J. Isolation of Polyvalent Bacteriophages by Sequential Multiple-Host Approaches. Appl. Environ. Microbiol. 2015, 82, 808–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filho, R.L.A.; Higgins, J.P.; Higgins, S.E.; Gaona, G.; Wolfenden, A.D.; Tellez, G.; Hargis, B. Ability of Bacteriophages Isolated from Different Sources to Reduce Salmonella enterica Serovar Enteritidis In Vitro and In Vivo. Poult. Sci. 2007, 86, 1904–1909. [Google Scholar] [CrossRef] [PubMed]
- Bielke, L.; Higgins, S.; Donoghue, A.; Hargis, B.; Donoghue, D. Salmonella Host Range of Bacteriophages That Infect Multiple Genera. Poult. Sci. 2007, 86, 2536–2540. [Google Scholar] [CrossRef]
- Pamuk, Ş.; Eker, E.; Yıldırım, Y. Antibiotic resistance of coagulase negative staphylococci isolated from buffalo milk and some milk products. Kocatepe Vet. J. 2010, 3, 7–12. [Google Scholar]
- Nunes, R.S.C.; Del Aguila, E.M.; Paschoalin, V.M.F. Safety Evaluation of the Coagulase-Negative Staphylococci Microbiota of Salami: Superantigenic Toxin Production and Antimicrobial Resistance. BioMed Res. Int. 2015, 2015, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sieuwerts, S.; de Bok, F.; Mols, E.; de Vos, W.; Vlieg, J.V.H. A simple and fast method for determining colony forming units. Lett. Appl. Microbiol. 2008, 47, 275–278. [Google Scholar] [CrossRef]
- Holt, J.G.; Krieg, N.R.; Sneath, P.H.A.; Staley, J.T.; Williams, S.T. Bergey’s Manuel of Determinative Bacteriology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- Zhang, M.; Li, J.; Lin, H.; Zhang, W.; Lin, M.; Wu, L.; Liu, W.; Mu, J.; Ye, J.; Cui, X. Diagnostic value of cytological and microbiological methods in cryptococcal meningitis. Genet. Mol. Res. 2014, 13, 9253–9261. [Google Scholar] [CrossRef] [PubMed]
- Cheesbrough, M. District Laboratory Practice in Tropical Countries by Monica Cheesbrough; Cambridge University Press (CUP): Cambridge, UK, 2006. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- National Committee for Clinical Laboratory Standards (NCCLS/CLSI). Performance Standards for Antimicrobial Susceptibility Testing; National Committee for Clinical Laboratory Standards/Clinical and Laboratory Standards Institute: Wayne, MI, USA, 2007. [Google Scholar]
- Bannerman, T.L.; Kleeman, K.T.; Kloos, W.E. Evaluation of the Vitek Systems Gram-Positive Identification card for species identification of coagulase-negative staphylococci. J. Clin. Microbiol. 1993, 31, 1322–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funke, G.; Funke-Kissling, P. Performance of the New VITEK 2 GP Card for Identification of Medically Relevant Gram-Positive Cocci in a Routine Clinical Laboratory. J. Clin. Microbiol. 2005, 43, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rokbani, K.B.; Ben Abdallah, F.; Ellafi, A.; Bakhrouf, A. Adherence assays and slime production of Staphylococcus aureus strains after their incubation in seawater microcosms. Ann. Microbiol. 2011, 61, 819–823. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Holá, V.; di Bonaventura, G.; Djukic, S.; Cirkovic, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Borrego, J.J.; Moriñigo, M.Á.; de Vicente, A.; Córnax, R.; Romero, P. Coliphages as an indicator of faecal pollution in water. Its relationship with indicator and pathogenic microorganisms. Water Res. 1987, 21, 1473–1480. [Google Scholar] [CrossRef]
- Capra, M.; Quiberoni, A.; Reinheimer, J. Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages. Lett. Appl. Microbiol. 2004, 38, 499–504. [Google Scholar] [CrossRef]
- Kaur, S.; Harjai, K.; Chhibber, S. Methicillin-Resistant Staphylococcus aureus Phage Plaque Size Enhancement Using Sublethal Concentrations of Antibiotics. Appl. Environ. Microbiol. 2012, 78, 8227–8233. [Google Scholar] [CrossRef] [Green Version]
- Sangha, K.K.; Kumar, B.V.S.; Agrawal, R.K.; Deka, D.; Verma, R. Proteomic Characterization of Lytic Bacteriophages of Staphylococcus aureus Isolated from Sewage Affluent of India. Int. Sch. Res. Not. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, M.K.; Nilsson, A.S. Correction: Isolation of Phages for Phage Therapy: A Comparison of Spot Tests and Efficiency of Plating Analyses for Determination of Host Range and Efficacy. PLoS ONE 2015, 10, e0127606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Shi, J.; Ma, W.; Li, Z.; Wang, J.; Li, J.; Wang, X. Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Res. Int. 2018, 111, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.; Lv, Y.; Zheng, W.; Mi, Z.; Pei, G.; An, X.; Xu, X.; Han, C.; Liu, J.; et al. Characterization and complete genome sequence analysis of novel bacteriophage IME-EFm1 infecting Enterococcus faecium. J. Gen. Virol. 2014, 95, 2565–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackermann, H.-W. Bacteriophage Electron Microscopy; Elsevier BV: Amsterdam, The Netherlands, 2012; pp. 1–32. [Google Scholar]
- Accolas, J.-P.; Spillmann, H. The Morphology of Six Bacteriophages of Streptococcus thermophilus. J. Appl. Bacteriol. 1979, 47, 135–144. [Google Scholar] [CrossRef]
- Philipson, L.; Albertsson, P.; Frick, G. The purification and concentration of viruses by aqueous polymer phase systems. Virology 1960, 11, 553–571. [Google Scholar] [CrossRef]
- Jamalludeen, N.; Johnson, R.P.; Friendship, R.; Kropinski, A.M.; Lingohr, E.J.; Gyles, C.L. Isolation and characterization of nine bacteriophages that lyse O149 enterotoxigenic Escherichia coli. Veter Microbiol. 2007, 124, 47–57. [Google Scholar] [CrossRef]
- Else, T.A.; Pantle, C.R.; Amy, P.S. Boundaries for Biofilm Formation: Humidity and Temperature. Appl. Environ. Microbiol. 2003, 69, 5006–5010. [Google Scholar] [CrossRef] [Green Version]
- Kostaki, M.; Chorianopoulos, N.; Braxou, E.; Nychas, G.-J.E.; Giaouris, E. Differential Biofilm Formation and Chemical Disinfection Resistance of Sessile Cells of Listeria monocytogenes Strains under Monospecies and Dual-Species (with Salmonella enterica) Conditions. Appl. Environ. Microbiol. 2012, 78, 2586–2595. [Google Scholar] [CrossRef] [Green Version]
- O’Flynn, G.; Ross, R.P.; Fitzgerald, G.F.; Coffey, A. Evaluation of a Cocktail of Three Bacteriophages for Biocontrol of Escherichia coli O157:H7. Appl. Environ. Microbiol. 2004, 70, 3417–3424. [Google Scholar] [CrossRef] [Green Version]
- Anany, H.; Lingohr, E.J.; Villegas, A.; Ackermann, H.W.; She, Y.-M.; Griffiths, M.W.; Kropinski, A.M. A Shigella boydii bacteriophage which resembles Salmonella phage ViI. Virol. J. 2011, 8, 242. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration (FDA). Bacteriological Analytical Manual; Food and Drug Administration: Arlington, VA, USA, 2002. [Google Scholar]
- Spricigo, D.A.; Bardina, C.; Cortés, P.; Llagostera, M. Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int. J. Food Microbiol. 2013, 165, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Tomat, D.; Casabonne, C.; Aquili, V.; Balagué, C.; Quiberoni, A. Evaluation of a novel cocktail of six lytic bacteriophages against Shiga toxin-producing Escherichia coli in broth, milk and meat. Food Microbiol. 2018, 76, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.W.; Lancette, G.A. Chapter 12: Staphylococcus aureus. In Bacteriological Analytical Manual Online; Food and Drug Administration: Silver Spring, MD, USA, 2001. [Google Scholar]
- Sofy, A.R.; Aboseidah, A.A.; El-Morsi, E.-S.; Azmy, H.A.; Hmed, A.A. Evaluation of antibacterial and antibiofilm activity of new antimicrobials as an urgent need to counteract stubborn multidrug-resistant bacteria. J. Pure Appl. Microbiol. 2020, 14, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, B.; Headrick, S.; Boonyayatra, S.; Oliver, S. Prevalence and persistence of coagulase-negative Staphylococcus species in three dairy research herds. Veter Microbiol. 2009, 134, 65–72. [Google Scholar] [CrossRef]
- Elshaarawy, R.F.M.; Mustafa, F.H.A.; Sofy, A.R.; Hmed, A.A.; Janiak, C. A new synthetic antifouling coatings integrated novel aminothiazole-functionalized ionic liquids motifs with enhanced antibacterial performance. J. Environ. Chem. Eng. 2019, 7, 102800. [Google Scholar] [CrossRef]
- Jett, M.; Ionin, B.; Das, R.; Neill, R. The staphylococcal enterotoxins. In Molecular Medical Microbiology; Sussman, M., Ed.; Academic Press: San Diego, CA, USA, 2001; pp. 1089–1116. [Google Scholar]
- Kırkan, Ş.; Göksoy, E.Ö.; Kaya, O. Identification and antimicrobial susceptibility of Staphylococcus aureus and coagulase negative staphylococci from bovine mastitis in the Aydın region of Turkey. Turk. J. Vet. Anim. Sci. 2005, 29, 791–796. [Google Scholar]
- Ruaro, A.; Andrighetto, C.; Torriani, S.; Lombardi, A. Biodiversity and characterization of indigenous coagulase-negative staphylococci isolated from raw milk and cheese of North Italy. Food Microbiol. 2013, 34, 106–111. [Google Scholar] [CrossRef]
- Guran, H.S.; Kahya, S. Species Diversity and Pheno-and Genotypic Antibiotic Resistance Patterns of Staphylococci Isolated from Retail Ground Meats. J. Food Sci. 2015, 80, 1291–1298. [Google Scholar] [CrossRef]
- Kenar, B.; Kuyucuoǵlu, Y.; Şeker, E. Antibiotic susceptibility of coagulase-negative staphylococci isolated from bovine subclinical mastitis in Turkey. Pak. Vet. J. 2012, 32, 390–393. [Google Scholar]
- Irlinger, F. Safety assessment of dairy microorganisms: Coagulase-negative staphylococci. Int. J. Food Microbiol. 2008, 126, 302–310. [Google Scholar] [CrossRef]
- Sawant, A.; Gillespie, B.; Oliver, S. Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Veter Microbiol. 2009, 134, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, M.; Dong, D.; Wang, J.; Ren, J.; Otto, M.; Gao, Q. Role of Clp in biofilm formation and virulence of Staphylococcus epidermidis. Microbes Infect. 2007, 9, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Cucarella, C.; Solano, C.; Valle, J.; Amorena, B.; Lasa, I.; Penadés, J.R. Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation. J. Bacteriol. 2001, 183, 2888–2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tormo-Mas, M.; Knecht, E.; Götz, F.; Lasa, I.; Penadés, J.R. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: Evidence of horizontal gene transfer? Microbiology 2005, 151, 2465–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, K.C.; Hair, B.B.; Wienclaw, T.M.; Murdock, M.H.; Hatch, J.B.; Trent, A.T.; White, T.D.; Haskell, K.J.; Berges, B. Isolation and Host Range of Bacteriophage with Lytic Activity against Methicillin-Resistant Staphylococcus aureus and Potential Use as a Fomite Decontaminant. PLoS ONE 2015, 10, e0131714. [Google Scholar] [CrossRef]
- Xu, J.; Chen, M.; He, L.; Zhang, S.; Ding, T.; Yao, H.; Lu, C. Isolation and characterization of a T4-like phage with a relatively wide host range within Escherichia coli. J. Basic Microbiol. 2015, 56, 405–421. [Google Scholar] [CrossRef]
- Uchiyama, J.; Rashel, M.; Maeda, Y.; Takemura, I.; Sugihara, S.; Akechi, K.; Muraoka, A.; Wakiguchi, H.; Matsuzaki, S. Isolation and characterization of a novel Enterococcus faecalis bacteriophage EF24C as a therapeutic candidate. FEMS Microbiol. Lett. 2008, 278, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Han, J.; Ji, X.; Hong, W.; Huang, L.; Wei, Y. Isolation and characterization of a new bacteriophage MMP17 from Meiothermus. Extremophiles 2011, 15, 253–258. [Google Scholar] [CrossRef]
- Anand, T.; Vaid, R.K.; Bera, B.C.; Barua, S.; Riyesh, T.; Virmani, N.; Yadav, N.; Malik, P. Isolation and characterization of a bacteriophage with broad host range, displaying potential in preventing bovine diarrhoea. Virus Genes 2015, 51, 315–321. [Google Scholar] [CrossRef]
- Deghorain, M.; Bobay, L.-M.; Smeesters, P.R.; Bousbata, S.; Vermeersch, M.; Perez-Morga, D.; Drèze, P.-A.; Rocha, E.P.C.; Touchon, M.; Van Melderen, L. Characterization of Novel Phages Isolated in Coagulase-Negative Staphylococci Reveals Evolutionary Relationships with Staphylococcus aureus Phages. J. Bacteriol. 2012, 194, 5829–5839. [Google Scholar] [CrossRef] [Green Version]
- Ly-Chatain, M.H. The factors affecting effectiveness of treatment in phages therapy. Front. Microbiol. 2014, 5, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.-P.; Que, Y.-A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Le Floch, R.; et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa: A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 2019, 19, 35–45. [Google Scholar] [CrossRef]
- Pires, D.P.; Oliveira, H.; Melo, L.D.R.; Cerqueira, M.A.; Azeredo, J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl. Microbiol. Biotechnol. 2016, 100, 2141–2151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leskinen, K.; Tuomala, H.; Wicklund, A.; Horsma-Heikkinen, J.; Kuusela, P.; Skurnik, M.; Kiljunen, S. Characterization of vB_SauM-fRuSau02, a Twort-Like Bacteriophage Isolated from a Therapeutic Phage Cocktail. Viruses 2017, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.K.; Koeris, M.S. The next generation of bacteriophage therapy. Curr. Opin. Microbiol. 2011, 14, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Abedon, S. Phage Therapy Pharmacology. Adv. Appl. Microbiol. 2012, 78, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Cerca, N.; Gomes, F.; Bento, J.C.; França, Â.; Rolo, J.; Miragaia, M.; Teixeira, P.; Oliveira, R. Farnesol induces cell detachment from established S. epidermidis biofilms. J. Antibiot. 2013, 66, 255–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyman, P.; Abedon, S.T. Bacteriophage Host Range and Bacterial Resistance. Adv. Appl. Microbiol. 2010, 70, 217–248. [Google Scholar] [CrossRef]
- Fookes, M.; Schroeder, G.; Langridge, G.C.; Blondel, C.J.; Mammina, C.; Connor, T.R.; Seth-Smith, H.; Vernikos, G.S.; Robinson, K.S.; Sanders, M.; et al. Salmonella bongori Provides Insights into the Evolution of the Salmonellae. PLoS Pathog. 2011, 7, e1002191. [Google Scholar] [CrossRef] [Green Version]
- Loessner, M.J. Bacteriophage endolysins—current state of research and applications. Curr. Opin. Microbiol. 2005, 8, 480–487. [Google Scholar] [CrossRef]
- Rodriguez-Rubio, L.; Martínez, B.; Donovan, D.M.; Rodriguez, A.; García-Delgado, P. Bacteriophage virion-associated peptidoglycan hydrolases: Potential new enzybiotics. Crit. Rev. Microbiol. 2012, 39, 427–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, H.; Melo, L.D.R.; Santos, S.B.; Nobrega, F.L.; Ferreira, E.C.; Cerca, N.; Azeredo, J.; Kluskens, L.D. Molecular Aspects and Comparative Genomics of Bacteriophage Endolysins. J. Virol. 2013, 87, 4558–4570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, S.B.; Carvalho, C.; Azeredo, J.; Ferreira, E.C. Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling. PLoS ONE 2014, 9, e102507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavigne, R.; Darius, P.; Summer, E.J.; Seto, D.; Mahadevan, P.; Nilsson, A.S.; Ackermann, H.-W.; Kropinski, A.M. Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol. 2009, 9, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigwood, T.; Hudson, J.; Billington, C. Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages. FEMS Microbiol. Lett. 2009, 291, 59–64. [Google Scholar] [CrossRef] [PubMed]
- El-Shibiny, A.; El-Sahhar, S.; Adel, M. Phage applications for improving food safety and infection control in Egypt. J. Appl. Microbiol. 2017, 123, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Duc, H.M.; Son, H.M.; Honjoh, K.-I.; Miyamoto, T. Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. LWT 2018, 91, 353–360. [Google Scholar] [CrossRef]
- Hooton, S.P.; Atterbury, R.J.; Connerton, I. Application of a bacteriophage cocktail to reduce Salmonella Typhimurium U288 contamination on pig skin. Int. J. Food Microbiol. 2011, 151, 157–163. [Google Scholar] [CrossRef]
- Abedon, S. Phage Therapy Pharmacology. Adv. Appl. Microbiol. 2011, 77, 1–40. [Google Scholar] [CrossRef]
- Klumpp, J.; Lavigne, R.; Loessner, M.J.; Ackermann, H.-W. The SPO1-related bacteriophages. Arch. Virol. 2010, 155, 1547–1561. [Google Scholar] [CrossRef]
- Łobocka, M.; Hejnowicz, M.S.; Dąbrowski, K.; Gozdek, A.; Kosakowski, J.; Witkowska, M.; Ulatowska, M.I.; Weber-Dąbrowska, B.; Kwiatek, M.; Parasion, S.; et al. Genomics of Staphylococcal Twort-like Phages-Potential Therapeutics of the Post-Antibiotic Era. Adv. Appl. Microbiol. 2012, 83, 143–216. [Google Scholar] [CrossRef]
- Fauquet, C.M.; Mayo, M.A.; Maniloff, J.; Desselberger, U.; Ball, L.A. Virus Taxonomy; Elsevier Academic Press: San Diego, CA, USA, 2005; pp. 35–85. [Google Scholar]
- Maura, D.; Morello, E.; Du Merle, L.; Bomme, P.; Le Bouguénec, C.; Debarbieux, L. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ. Microbiol. 2011, 14, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Langlet, J.; Gaboriaud, F.; Gantzer, C. Effects of pH on plaque forming unit counts and aggregation of MS2 bacteriophage. J. Appl. Microbiol. 2007, 103, 1632–1638. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Abedon, S. Bacteriophages and their enzymes in biofilm control. Curr. Pharm. Des. 2015, 21, 85–99. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Genet. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Briandet, R.; Lacroix-Gueu, P.; Renault, M.; Lecart, S.; Meylheuc, T.; Bidnenko, E.; Steenkeste, K.; Bellon-Fontaine, M.-N.; Fontaine-Aupart, M.-P. Fluorescence Correlation Spectroscopy To Study Diffusion and Reaction of Bacteriophages inside Biofilms. Appl. Environ. Microbiol. 2008, 74, 2135–2143. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Miyanaga, K.; Tanji, Y. Diffusion properties of bacteriophages through agarose gel membrane. Biotechnol. Prog. 2010, 26, 1213–1221. [Google Scholar] [CrossRef]
- Wilking, J.N.; Angelini, T.E.; Seminara, A.; Brenner, M.P.; Weitz, D.A. Biofilms as complex fluids. MRS Bull. 2011, 36, 385–391. [Google Scholar] [CrossRef]
- Pennone, V.; Gaitero, M.S.; O’Connor, P.; Coffey, A.; Jordan, K.; Van Raaij, M.J.; McAuliffe, O.; Gaitero, S.; Connor, O.; Raaij, V. Inhibition of L. Monocytogenes Biofilm Formation by the Amidase Domain of the Phage vB_LmoS_293 Endolysin. Viruses 2019, 11, 722. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Mitchell, M.S.; Donovan, D.M.; Nelson, D.C. Phage-based enzybiotics. In Bacteriophages in Health and Disease; CABI Publishing: Wallingford, UK, 2012; pp. 217–239. [Google Scholar]
- Guenther, S.; Herzig, O.; Fieseler, L.; Klumpp, J.; Loessner, M.J. Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int. J. Food Microbiol. 2012, 154, 66–72. [Google Scholar] [CrossRef]
- Bao, H.; Zhang, P.; Zhang, H.; Zhou, Y.; Zhang, L.; Wang, R. Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages. Viruses 2015, 7, 4836–4853. [Google Scholar] [CrossRef] [PubMed]
MDR-CoNS Strains | Source | Growth at optical density 620 nm (OD620 nm) | Biofilm at optical density 570 nm (OD570 nm) | Biofilm Production |
---|---|---|---|---|
S. haemolyticus CFS14 | Cheese | 1.570 | 1.314 | Strong |
S. haemolyticus CFS22 | Cheese | 1.551 | 1.311 | Strong |
S. haemolyticus CFS29 | Cheese | 1.131 | 0.470 | Moderate |
S. haemolyticus CFS36 | Cheese | 1.462 | 1.274 | Strong |
S. haemolyticus MFS11 | Meat | 0.960 | 0.136 | Weak |
S. haemolyticus MFS19 | Meat | 1.244 | 0.388 | Moderate |
S. haemolyticus CFS43 | Cheese | 1.621 | 1.401 | Strong |
S. haemolyticus MFS53 | Meat | 1.611 | 1.344 | Strong |
S. haemolyticus MFS61 | Meat | 0.883 | 0.119 | Weak |
S. saprophyticus CFS6 | Cheese | 0.844 | 0.199 | Weak |
S. saprophyticus CFS9 | Cheese | 1.008 | 0.511 | Moderate |
S. saprophyticus CFS28 | Cheese | 1.889 | 0.979 | Strong |
S. saprophyticus CFS47 | Cheese | 0.907 | 0.200 | Weak |
S. saprophyticus CFS48 | Cheese | 0.901 | 0.188 | Weak |
S. saprophyticus CFS55 | Cheese | 1.749 | 0.877 | Strong |
S. saprophyticus MFS17 | Meat | 0.969 | 0.439 | Moderate |
S. epidermidis CFS2 | Cheese | 2.071 | 1.570 | Strong |
S. epidermidis CFS10 | Cheese | 1.884 | 1.368 | Strong |
S. epidermidis CFS73 | Cheese | 1.095 | 0.320 | Moderate |
S. epidermidis CFS79 | Cheese | 2.122 | 1.657 | Strong |
S. epidermidis MFS3 | Meat | 1.971 | 1.441 | Strong |
S. epidermidis MFS7 | Meat | 1.714 | 1.504 | Strong |
S. epidermidis MFS45 | Meat | 2.100 | 1.542 | Strong |
S. hominis CFS2 | Cheese | 1.001 | 0.170 | Weak |
S. hominis CFS34 | Cheese | 0.942 | 0.134 | Weak |
S. hominis MFS48 | Meat | 1.245 | 0.401 | Moderate |
S. hominis MFS51 | Meat | 1.081 | 0.199 | Weak |
Bacteria | CoNS Phages Isolates | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CoNShP-1 | CoNShP-2 | CoNShP-3 | CoNSsP-1 | CoNSeP-1 | CoNSeP-2 | |||||||
ST | EOP | ST | EOP | ST | EOP | ST | EOP | ST | EOP | ST | EOP | |
S. haemolyticus CFS14 | − | L | − | L | + | H | + | M | − | L | − | L |
S. haemolyticus CFS22 | + | M | − | L | + | H | + | M | − | L | + | H |
S. haemolyticus CFS29 | + | H | + | M | + | H | − | L | − | L | + | M |
S. haemolyticus CFS36 | + | H | + | M | + | H | − | L | + | M | + | M |
S. haemolyticus MFS11 | − | L | − | L | + | H | − | L | − | L | + | M |
S. haemolyticus MFS19 | + | M | + | M | + | H | − | L | + | M | − | L |
S. haemolyticus MFS43 | + | H | + | H | + | H | + | M | + | M | + | H |
S. haemolyticus MFS53 | + | H | + | H | + | H | + | M | + | M | − | L |
S. haemolyticus MFS61 | + | H | − | L | + | H | + | M | + | M | + | M |
S. saprophyticus CFS6 | − | L | − | L | + | H | + | H | − | L | − | L |
S. saprophyticus CFS9 | − | L | − | L | − | L | + | H | − | L | − | L |
S. saprophyticus CFS28 | + | M | − | L | + | M | + | H | − | L | + | M |
S. saprophyticus CFS47 | + | M | + | M | + | M | + | H | + | M | + | M |
S. saprophyticus CFS48 | + | M | + | M | + | M | + | H | + | M | + | M |
S. saprophyticus CFS55 | + | M | + | M | + | M | + | H | + | M | + | M |
S. saprophyticus MFS17 | + | M | + | M | + | M | + | H | − | L | − | L |
S. epidermidis CFS2 | − | L | − | L | + | M | + | M | + | M | + | H |
S. epidermidis CFS10 | + | M | − | L | + | M | − | L | + | M | + | H |
S. epidermidis CFS73 | + | H | + | M | + | H | − | L | − | L | + | H |
S. epidermidis CFS79 | + | M | + | M | + | M | − | L | + | M | + | H |
S. epidermidis MFS3 | − | L | − | L | + | M | + | M | + | H | + | H |
S. epidermidis MFS7 | + | H | + | M | + | H | + | M | + | H | + | H |
S. epidermidis MFS45 | + | M | − | L | + | H | − | L | + | M | + | H |
S. hominis CFS2 | − | L | − | L | − | N | + | M | _ | L | − | L |
S. hominis CFS34 | + | M | + | M | + | H | − | L | + | M | + | M |
S. hominis MFS48 | − | L | − | L | − | L | − | L | _ | L | − | L |
S. hominis MFS51 | − | L | − | L | + | H | − | L | _ | L | + | M |
S. aureus 1 | − | N | − | N | − | L | − | N | − | N | − | N |
S. aureus 2 | − | N | − | N | − | L | − | N | − | N | − | N |
S. aureus 3 | − | N | − | N | + | M | − | N | − | N | − | N |
S. aureus 4 | − | N | − | N | + | M | − | N | − | N | − | N |
S. aureus 5 | − | N | − | N | − | N | − | N | − | N | − | N |
S. aureus 6 | − | N | − | N | + | H | − | N | − | N | − | N |
MRSA 1 | − | N | − | N | − | L | − | N | − | N | − | N |
MRSA 2 | − | N | − | N | + | M | − | N | − | N | − | N |
MRSA 3 | − | N | − | N | − | L | − | N | − | N | − | N |
VRSA 1 | − | N | − | N | − | L | − | N | − | N | − | N |
VRSA 2 | − | N | − | N | + | H | − | N | − | N | − | N |
B. cereus 1 | − | N | − | N | − | N | − | N | − | N | − | N |
B. cereus 2 | − | N | − | N | − | N | − | N | − | N | − | N |
B. cereus 3 | − | N | − | N | − | N | − | N | − | N | − | N |
B. cereus 4 | − | N | − | N | − | N | − | N | − | N | − | N |
B. cereus 5 | − | N | − | N | + | M | − | N | − | N | − | N |
B. cereus 6 | − | N | − | N | − | N | − | N | − | N | − | N |
B. cereus 7 | − | N | − | N | − | N | − | N | − | N | − | N |
B. subtilis 1 | − | N | − | N | − | N | − | N | − | N | − | N |
B. subtilis 2 | − | N | − | N | + | M | − | N | − | N | − | N |
B. subtilis 3 | − | N | − | N | + | M | − | N | − | N | − | N |
B. subtilis 4 | − | N | − | N | − | N | − | N | − | N | − | N |
B. subtilis 5 | − | N | − | N | − | N | − | N | − | N | − | N |
Isolate Character | Tail Length (nm) | Head Diameter (nm) |
---|---|---|
Myophages | ||
CoNShP-1 | 61.59 | 67.59 |
CoNShP-3 | 152.16 | 64.12 |
CoNSeP-2 | 79.13 | 48.96 |
Siphophages | ||
CoNShP-2 | 263 | 54.38 |
CoNSsP-1 | 95.42 | 53.67 |
CoNSeP-1 | 176.37 | 46.98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofy, A.R.; Abd El Haliem, N.F.; Refaey, E.E.; Hmed, A.A. Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains. Foods 2020, 9, 673. https://doi.org/10.3390/foods9050673
Sofy AR, Abd El Haliem NF, Refaey EE, Hmed AA. Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains. Foods. 2020; 9(5):673. https://doi.org/10.3390/foods9050673
Chicago/Turabian StyleSofy, Ahmed R., Naglaa F. Abd El Haliem, Ehab E. Refaey, and Ahmed A. Hmed. 2020. "Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains" Foods 9, no. 5: 673. https://doi.org/10.3390/foods9050673
APA StyleSofy, A. R., Abd El Haliem, N. F., Refaey, E. E., & Hmed, A. A. (2020). Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains. Foods, 9(5), 673. https://doi.org/10.3390/foods9050673