Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growing Thraustochytrids
2.2. Preparatory Step for Extraction of Oil and Protein from Thraustochytrids
2.2.1. Oil Extraction
2.2.2. Extraction of TPI
2.3. Determination of Moisture, Lipid, Ash and Total Protein Contents of TPI
2.4. Determination of Amino Acid Composition
2.5. Determination of Protein Profile
2.6. Determination of Protein Solubility
2.7. Measurement of Zeta Potential
2.8. Determination of Surface Hydrophobicity
2.9. Determination of the Secondary Structure
2.10. Determination of the Thermal Behavior of TPI
2.11. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.12. Measurement of Emulsifying Properties
2.13. Statistical Analysis
3. Results and Discussion
3.1. Effect of Temperature and pH on the Yield, Recovery and Total Protein Content of TPI
3.2. Solubility and Surface Charge Density (Zeta Potential)
3.3. Surface Hydrophobicity and Emulsifying Properties
3.4. Thermal Characteristics of TPI
3.5. Approximate Amino Acid Composition of TPI
3.6. Molecular Weight of Main Fractions and Secondary Structure
3.7. Melting and Thermal Degradation of Thraustochytrid Oil
3.8. Characteristic FTIR Spectra of Thraustochytrid Oil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pimentel, D.; Pimentel, M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 2002, 78, 660S–663S. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleakley, S.; Hayes, M. Algal proteins: Extraction, application, and challenges concerning production. Foods 2017, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Matos, Â.P. Chapter 3-Microalgae as a Potential Source of Proteins. In Proteins: Sustainable Source, Processing and Applications; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 63–96. [Google Scholar]
- Chambal, B.; Bergenståhl, B.; Dejmek, P. Edible proteins from coconut milk press cake; one step alkaline extraction and characterization by electrophoresis and mass spectrometry. Food Res. Int. 2012, 47, 146–151. [Google Scholar] [CrossRef]
- Martins, J.T.; Bourbon, A.I.; Pinheiro, A.C.; Fasolin, L.H.; Vicente, A.A. Protein-Based Structures for Food Applications: From Macro to Nanoscale. Front. Sustain. Food Syst. 2018, 2. [Google Scholar] [CrossRef]
- Cui, L.; Bandillo, N.; Wang, Y.; Ohm, J.-B.; Chen, B.; Rao, J. Functionality and structure of yellow pea protein isolate as affected by cultivars and extraction pH. Food Hydrocoll. 2020, 108, 106008. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Physicochemical and functional properties of protein isolate produced from Australian chia seeds. Food Chem. 2016, 212, 648–656. [Google Scholar] [CrossRef]
- Kaushik, P.; Dowling, K.; McKnight, S.; Barrow, C.J.; Wang, B.; Adhikari, B. Preparation, characterization and functional properties of flax seed protein isolate. Food Chem. 2016, 197, 212–220. [Google Scholar] [CrossRef]
- Shene, C.; Paredes, P.; Vergara, D.; Leyton, A.; Garcés, M.; Flores, L.; Rubilar, M.; Bustamante, M.; Armenta, R. Antarctic thraustochytrids: Producers of long-chain omega-3 polyunsaturated fatty acids. Microbiol. Open 2020, 9, e00950. [Google Scholar] [CrossRef]
- Massana, R.; Pernice, M.; Bunge, J.A.; del Campo, J. Sequence diversity and novelty of natural assemblages of picoeukaryotes from the Indian Ocean. ISME J. 2011, 5, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Raghukumar, S. Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur. J. Protistol. 2002, 38, 127–145. [Google Scholar] [CrossRef]
- Leyland, B.; Leu, S.; Boussiba, S. Are thraustochytrids algae? Fungal Biol. 2017, 121, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Colonia, B.S.O.; de Melo Pereira, G.V.; Soccol, C.R. Omega-3 microbial oils from marine thraustochytrids as a sustainable and technological solution: A review and patent landscape. Trends Food Sci. Technol. 2020, 99, 244–256. [Google Scholar] [CrossRef]
- Nham Tran, T.L.; Miranda, A.F.; Gupta, A.; Puri, M.; Ball, A.S.; Adhikari, B.; Mouradov, A. The Nutritional and Pharmacological Potential of New Australian Thraustochytrids Isolated from Mangrove Sediments. Mar. Drugs 2020, 18, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innis, S.M. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008, 1237, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Bba.-Mol. Cell Biol. L 2015, 1851, 469–484. [Google Scholar] [CrossRef]
- Byreddy, A.R. Thraustochytrids as an alternative source of omega-3 fatty acids, carotenoids and enzymes. Lipid Technol. 2016, 28, 68–70. [Google Scholar] [CrossRef]
- Ryan, A.S.; Zeller, S.; Nelson, E.B. 15-Safety Evaluation of Single Cell Oils and the Regulatory Requirements for Use as Food Ingredients. In Single Cell Oils, 2nd ed.; Cohen, Z., Ratledge, C., Eds.; AOCS Press: Urbana, IL, USA, 2010; pp. 317–350. [Google Scholar]
- Michael, A.; Kyewalyanga, M.S.; Lugomela, C.V. Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. Ann. Microbiol. 2019, 69, 1387–1395. [Google Scholar] [CrossRef]
- Hildebrand, G.; Poojary, M.M.; O’Donnell, C.; Lund, M.N.; Garcia-Vaquero, M.; Tiwari, B.K. Ultrasound-assisted processing of Chlorella vulgaris for enhanced protein extraction. J. Appl. Phycol. 2020. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists. In Official Methods of Analysis; AOAC: Rockville, MA, USA, 2005. [Google Scholar]
- Miranda, A.F.; Liu, Z.; Rochfort, S.; Mouradov, A. Lipid production in aquatic plant Azolla at vegetative and reproductive stages and in response to abiotic stress. Plant. Physiol. Bioch. 2018, 124, 117–125. [Google Scholar] [CrossRef]
- Podpora, B.; Świderski, F.; Sadowska, A.; Rakowska, R.; Wasiak-Zys, G. Spent brewer’s yeast extracts as a new component of functional food. Czech J. Food Sci. 2016, 34, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.; Stein, W.H. Photometric nin-hydrin method for use in the ehromatography of amino acids. J. Biol. Chem. 1948, 176, 367–388. [Google Scholar]
- Lourenço, S.O.; Barbarino, E.; De-Paula, J.C.; Pereira, L.O.D.S.; Marquez, U.M.L. Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol. Res. 2002, 50, 233–241. [Google Scholar] [CrossRef]
- Matsushita, K. Automatic Precolumn Derivatization of Amino Acids and Analysis by Fast LC using the Agilent 1290 Infinity LC System; Agilent Technologies: Tokyo, Japan, 2010. [Google Scholar]
- Cannon-Carlson, S.; Tang, J. Modification of the Laemmli sodium dodecyl sulfate–polyacrylamide gel electrophoresis procedure to eliminate artifacts on reducing and nonreducing gels. Anal. Biochem. 1997, 246, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Ernst, O.; Zor, T. Linearization of the Bradford protein assay. JoVE 2010. [Google Scholar] [CrossRef]
- Kato, A.; Nakai, S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochim. Biophys. Acta (BBA) Protein Struct. 1980, 624, 13–20. [Google Scholar] [CrossRef]
- Lobley, A.; Whitmore, L.; Wallace, B. DICHROWEB: An interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 2002, 18, 211–212. [Google Scholar] [CrossRef] [Green Version]
- Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
- Teuling, E.; Wierenga, P.A.; Schrama, J.W.; Gruppen, H. Comparison of protein extracts from various unicellular green sources. J. Agric. Food Chem. 2017, 65, 7989–8002. [Google Scholar] [CrossRef] [Green Version]
- Safi, C.; Ursu, A.V.; Laroche, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Res. 2014, 3, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.; Raghukumar, S.; Tharanathan, R.; Bhosle, N. Extracellular polysaccharide production by thraustochytrid protists. Mar. Biotechnol. 2005, 7, 184–192. [Google Scholar] [CrossRef]
- Gerde, J.A.; Wang, T.; Yao, L.; Jung, S.; Johnson, L.A.; Lamsal, B. Optimizing protein isolation from defatted and non-defatted Nannochloropsis microalgae biomass. Algal Res. 2013, 2, 145–153. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Physicochemical and functional properties of protein concentrate from by-product of coconut processing. Food Chem. 2018, 241, 364–371. [Google Scholar] [CrossRef]
- Tang, C.H.; Ten, Z.; Wang, X.-S.; Yang, X.-Q. Physicochemical and functional properties of hemp (Cannabis sativa L.) protein isolate. J. Agric. Food Chem. 2006, 54, 8945–8950. [Google Scholar] [CrossRef]
- Horax, R.; Hettiarachchy, N.; Chen, P.; Jalaluddin, M. Preparation and characterization of protein isolate from cowpea (Vigna unguiculata L. Walp.). J. Food Sci. 2004, 69, fct114–fct118. [Google Scholar] [CrossRef]
- Beverung, C.; Radke, C.J.; Blanch, H.W. Protein adsorption at the oil/water interface: Characterization of adsorption kinetics by dynamic interfacial tension measurements. Biophys. Chem. 1999, 81, 59–80. [Google Scholar] [CrossRef]
- Pham, L.B.; Wang, B.; Zisu, B.; Adhikari, B. Covalent modification of flaxseed protein isolate by phenolic compounds and the structure and functional properties of the adducts. Food Chem. 2019, 293, 463–471. [Google Scholar] [CrossRef]
- Raisa, Z.; de Jesús, Q.V.; Tamara, L.; Graciela, C.; Lorena, O.M.; Claudio, R. New Protein Hydrolysate from Spirulina platensis used as Peptone in Microbiological Culture Media. J. Nat. Prod. Resour. 2016, 2, 71–75. [Google Scholar]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Karaca, A.C.; Low, N.; Nickerson, M. Emulsifying properties of canola and flaxseed protein isolates produced by isoelectric precipitation and salt extraction. Food Res. Int. 2011, 44, 2991–2998. [Google Scholar] [CrossRef]
- Kinsella, J.E. Relatioships between structure and functional properties of food proteins. In Food Proteins; Fox, P.F., Condon, J.J., Eds.; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1982. [Google Scholar]
- Yu, G.; Liu, H.; Venkateshan, K.; Yan, S.; Cheng, J.; Sun, X.; Wang, D. Functional, physiochemical, and rheological properties of duckweed (Spirodela polyrhiza) protein. Trans. ASABE 2011, 54, 555–561. [Google Scholar] [CrossRef]
- Tang, C.-H.; Chen, Z.; Li, L.; Yang, X.-Q. Effects of transglutaminase treatment on the thermal properties of soy protein isolates. Food Res. Int. 2006, 39, 704–711. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Wierenga, P.A.; Gruppen, H. Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour. Technol. 2011, 102, 9121–9127. [Google Scholar] [CrossRef]
- Wade, A.M.; Tucker, H.N. Antioxidant characteristics of L-histidine. J. Nutr. Biochem. 1998, 9, 308–315. [Google Scholar] [CrossRef]
- Peterson, J.W.; Boldogh, I.; Popov, V.L.; Saini, S.S.; Chopra, A.K. Anti-inflammatory and antisecretory potential of histidine in Salmonella-challenged mouse small intestine. Lab. Invest. 1998, 78, 523–534. [Google Scholar]
- Kessler, A.T.; Raja, A. Biochemistry, Histidine; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Kim, Y.; Kim, Y. L-histidine and L-carnosine exert anti-brain aging effects in D-galactose-induced aged neuronal cells. Nutr. Res. Pract. 2020, 14. [Google Scholar] [CrossRef]
- Barton, E.R.; Morris, L.; Kawana, M.; Bish, L.T.; Toursel, T. Systemic administration of L-arginine benefits mdx skeletal muscle function. Muscle Nerve 2005, 32, 751–760. [Google Scholar] [CrossRef]
- Vallabha, V.S.; Tapal, A.; Sukhdeo, S.V.; K, G.; Tiku, P.K. Effect of arginine: Lysine ratio in free amino acid and protein form on l-NAME induced hypertension in hypercholesterolemic Wistar rats. Rsc. Adv. 2016, 6, 73388–73398. [Google Scholar] [CrossRef]
- Vega-López, S.; Matthan, N.R.; Ausman, L.M.; Harding, S.V.; Rideout, T.C.; Ai, M.; Otokozawa, S.; Freed, A.; Kuvin, J.T.; Jones, P.J. Altering dietary lysine: Arginine ratio has little effect on cardiovascular risk factors and vascular reactivity in moderately hypercholesterolemic adults. Atherosclerosis 2010, 210, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, J.; Xu, T.; Qiu, W.; Zhang, Y.; Zhang, L.; Xu, F.; Liu, H. Rice protein extracted by different methods affects cholesterol metabolism in rats due to its lower digestibility. Int. J. Mol. Sci. 2011, 12, 7594–7608. [Google Scholar] [CrossRef] [Green Version]
- Kushnirov, V.V. Rapid and reliable protein extraction from yeast. Yeast 2000, 16, 857–860. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Krimm, S.; Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. In Advances in Protein Chemistry; Elsevier: Amsterdam, The Netherlands, 1986; pp. 181–364. [Google Scholar]
- Jiang, Y.; Li, C.; Nguyen, X.; Muzammil, S.; Towers, E.; Gabrielson, J.; Narhi, L. Qualification of FTIR spectroscopic method for protein secondary structural analysis. J. Pharm. Sci. 2011, 100, 4631–4641. [Google Scholar] [CrossRef]
- Lasch, P.; Naumann, D. Infrared Spectroscopy in Microbiology. In Encyclopedia of Analytical Chemistry; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Tamm, L.K.; Tatulian, S.A. Infrared spectroscopy of proteins and peptides in lipid bilayers. Q. Rev. Biophys. 1997, 30, 365–429. [Google Scholar] [CrossRef] [Green Version]
- Cleaves, H.J. Proteins, Secondary Structure. In Encyclopedia of Astrobiology; Amils, R., Gargaud, M., Cernicharo Quintanilla, J., Cleaves, H.J., Irvine, W.M., Pinti, D., Viso, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; p. 1. [Google Scholar]
- Karunathilaka, S.R.; Choi, S.H.; Mossoba, M.M.; Yakes, B.J.; Brückner, L.; Ellsworth, Z.; Srigley, C.T. Rapid classification and quantification of marine oil omega-3 supplements using ATR-FTIR, FT-NIR and chemometrics. J. Food Compos. Anal. 2019, 77, 9–19. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Vongsvivut, J.; Adhikari, R.; Adhikari, B. Physicochemical and thermal characteristics of Australian chia seed oil. Food Chem. 2017, 228, 394–402. [Google Scholar] [CrossRef]
- Lazzari, M.; Chiantore, O. Drying and oxidative degradation of linseed oil. Polym. Degrad. Stab. 1999, 65, 303–313. [Google Scholar] [CrossRef]
- Vongsvivut, J.; Miller, M.R.; McNaughton, D.; Heraud, P.; Barrow, C.J. Rapid discrimination and determination of polyunsaturated fatty acid composition in marine oils by FTIR spectroscopy and multivariate data analysis. Food Bioprocess Technol. 2014, 7, 2410–2422. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int. 2010, 43, 886–892. [Google Scholar] [CrossRef]
- Guillen, M.D.; Cabo, N. Characterization of edible oils and lard by Fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. J. Am. Oil Chem. Soc. 1997, 74, 1281–1286. [Google Scholar] [CrossRef]
Temperature (°C) | Strains | Protein Extraction Yield (%) | Protein Content (%) | Protein Recovery (%) |
---|---|---|---|---|
25 | MAN65 | 34.6 ± 0.08 | 89.0 ± 0.7 | 66.9 ± 0.02 |
MAN70 | 34.0 ± 0.04 | 91.6 ± 0.4 | 67.5 ± 0.02 | |
45 | MAN65 | 37.4 ± 0.01 | 70.5 ± 1.2 | 57.3 ± 0.02 |
MAN70 | 37.5 ± 0.02 | 70.8 ± 0.5 | 54.9 ± 0.02 |
TPI Characteristics | MAN65 | MAN70 |
---|---|---|
Approximate Composition | ||
Moisture (%) | 3.13 ± 0.85 | 4.30 ± 0.61 |
Protein (%) | 91.64 ± 0.45 | 89.08 ± 0.79 |
Ash (%) | 0.035 ± 0.12 | 3.65 ± 0.06 |
Lipid (%) | 3.05 ± 0.07 | 3.13 ± 0.02 |
Surface hydrophobicity | 53.33 ± 0.27 | 60.85 ± 0.93 |
Emulsion | ||
Emulsifying activity index (m2/g) | 693.98 ± 2.83 | 784.12 ± 1.82 |
Emulsion stability index (min) | 192.09 ± 1.75 | 209.86 ± 12.53 |
Secondary Structure | ||
Alpha helix (%) | 10.00 ± 0.20 | 15.00 ± 0.10 |
Beta sheet (%) | 34.00 ± 0.10 | 29.00 ± 0.20 |
Random coil (%) | 55.00 ± 0.05 | 57.00 ± 0.05 |
Thermal Parameters | ||
Denaturation temperature (Td) (°C) | 167.80 ± 0.50 | 174.50 ± 0.20 |
Denaturation enthalpy (ΔH) (°C) | 3.33 ± 0.40 | 3.21 ± 0.40 |
Initial decomposition temperature (IDT) (°C) | 233.00 ± 3.40 | 242.00 ± 1.60 |
Temperature 50 wt% decomposition (TD1/2) (°C) | 232.96 ± 3.39 | 242.04 ± 1.56 |
Temperature of maximum of decomposition occurs (MDT) (°C) | 342.40 ± 2.20 | 345.6 ± 0.30 |
Amino Acid of TPI (mg/g) | MAN65 a | MAN70 a | SPI b | SPN c | FPI d |
---|---|---|---|---|---|
Essential Amino Acids | |||||
Aspartic acid | 72.4 | 90.7 | 118 | 60.5 | 101.8 |
Alanine | 10.8 | 49.4 | 38.3 | 117.5 | 43.6 |
Arginine | 158.2 | 70.8 | 75.7 | 3.6 | 108 |
Glutamic acid | 146.5 | 143.7 | 212.9 | 112.3 | 185.1 |
Glycine | 16.1 | 19 | 38.6 | 72.3 | 48.2 |
Histidine | 110.6 | 132.6 | 29 | 9.2 | 21.8 |
Serine | 33.7 | 40.5 | 54.8 | 26.9 | 47 |
Threonine | 10.5 | 3.4 | 41 | 25.6 | 33.9 |
Tyrosine | 22.6 | 26.1 | 37.1 | 9.8 | 25.6 |
Non-Essential Amino Acids | |||||
Cysteine | 5.6 | 4.3 | 0.6 | 51.5 | 10.7 |
Isoleucine | 22.9 | 30.2 | 44.8 | 15.7 | 45.4 |
Leucine | 47.6 | 61.3 | 70 | 18.1 | 54.9 |
Lysine | 50 | 64.7 | 53.9 | 36.4 | 27.5 |
Methionine | 14.2 | 13.8 | 9.3 | 45.2 | 18.6 |
Phenylalanine | 27.1 | 35.1 | 53 | 10.1 | 53.1 |
Proline | 33.9 | 34.5 | 52.9 | 7 | 37.7 |
Tryptophan | 41.9 | 36.6 | nr | 7.5 | 20.4 |
Valine | 34.4 | 43.4 | 44.1 | 41.7 | 55.2 |
Characteristics | MAN65 | MAN70 |
---|---|---|
First melting point (°C) | −7.8 ± 0.0 | −7.6 ± 0.4 |
Second melting point (°C) | 34.6 ± 0.6 | 29.2 ± 0.3 |
Temperature at 1 wt% decomposition (°C) | 213.3 ± 8.2 | 163 ± 1.7 |
Temperature at 50 wt% decomposition (°C) | 403.5 ± 0.8 | 410.9 ± 0.4 |
Temperature at >85 wt% decomposition (°C) | 469.7 ± 1.9 | 462.4 ± 4.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nham Tran, T.L.; Miranda, A.F.; Mouradov, A.; Adhikari, B. Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake. Foods 2020, 9, 779. https://doi.org/10.3390/foods9060779
Nham Tran TL, Miranda AF, Mouradov A, Adhikari B. Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake. Foods. 2020; 9(6):779. https://doi.org/10.3390/foods9060779
Chicago/Turabian StyleNham Tran, Thi Linh, Ana F. Miranda, Aidyn Mouradov, and Benu Adhikari. 2020. "Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake" Foods 9, no. 6: 779. https://doi.org/10.3390/foods9060779
APA StyleNham Tran, T. L., Miranda, A. F., Mouradov, A., & Adhikari, B. (2020). Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake. Foods, 9(6), 779. https://doi.org/10.3390/foods9060779