β-Cyclodextrin-Mediated Beany Flavor Masking and Textural Modification of an Isolated Soy Protein-Based Yuba Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of a CD-Treated ISP Suspension
2.3. Solid-phase Microextraction Gas Chromatography–mass Spectrometry (SPME GC–MS)
2.4. Preparation of Yuba Film
2.5. Physical Analysis
2.6. Sensory Analysis
2.7. Scanning Electron Microscopy (SEM) Observation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Composition of Volatile Compounds
3.2. PCA of Volatile Components by GC–MS
3.3. Sensory Evaluation of ISP Colloids and Yuba Films
3.4. Color Properties and Puncture Strength of Yuba Film Based on ISP with/without CD
3.5. SEM Observation of Yuba Film Based on ISP with/without CD
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Birgit, L.D.; Remko, M.B.; van der Goot, A.J. Structuring processes for meat analogues. Trends Food Sci. Technol. 2018, 81, 25–36. [Google Scholar]
- Zhang, S.; Lee, J.; Kim, Y. Chemical composition, water vapor permeability, and mechanical properties of yuba film influenced by soymilk depth and concentration. J. Sci. Food Agric. 2018, 98, 1751–1756. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, A.H.; Weller, C.L.; Testin, R.F. Edible films and coatings from soy protein. J. Food Sci. 1993, 58, 1086–1089. [Google Scholar] [CrossRef]
- Su, G.; Chang, K.C. Trypsin inhibitor activity in vitro digestibility and sensory quality of meat-like yuba products as affected by processing. J. Food Sci. 2002, 67, 1260–1266. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Ko, B.-B.; Davaatseren, M.; Hong, G.-P. Effects of soy protein hydrolysates prepared by varying subcritical media on the physicochemical properties of pork patties. Korean J. Food Sci. Anim. 2016, 36, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Aaslyng, M.D.; Martens, M.; Poll, L.; Nielsen, P.M.; Flyge, H.; Larsen, L.M. Chemical and sensory characterization of hydrolyzed vegetable protein, a savory flavoring. J. Agric. Food Chem. 1998, 46, 481–489. [Google Scholar] [CrossRef]
- Connors, K.A. The stability of cyclodextrin complexes in solution. Chem. Rev. 1997, 97, 1325–1357. [Google Scholar] [CrossRef]
- Esfanjani, A.F.; Jafari, S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloid Surf. B. 2016, 146, 532–543. [Google Scholar] [CrossRef]
- Shaw, P.E.; Tatum, J.H.; Silson, C.W. Improved flavor of navel orange and grapefruit jices by removal of bitter components with b-cyclodextrin polymer. J. Agric. Food Chem. 1984, 32, 8320836. [Google Scholar] [CrossRef]
- Hedges, A.R.; McBride, C. Utilization of b-cyclodextrin in food. Cereal Food. World. 1999, 44, 700–704. [Google Scholar]
- Marques, H.M.C. A review on cyclodextrin encapsulation of sensorial oils and volatiles. Flavor Frag. J. 2010, 25, 313–326. [Google Scholar] [CrossRef]
- Singh, M.; Dua, J.S.; Menra, M.; Soni, M.; Prasad, D.N. Microencapsulation and its various aspects: A review. Int. J. Adv. Res. 2016, 4, 2094–2108. [Google Scholar] [CrossRef]
- Szente, L.; Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [Google Scholar] [CrossRef]
- Zhang, Z.; Pawliszyn, J. Headspace solid-phase microextraction. Anal. Chem. 1993, 65, 1843–1852. [Google Scholar] [CrossRef]
- Gontard, N.; Guilbert, S.; Cuq, J.L. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J. Food Sci. 1992, 57, 190–199. [Google Scholar] [CrossRef]
- Ciobanu, A.; Landy, D.; Fourmentin, S. Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res. Int. 2013, 53, 110–114. [Google Scholar] [CrossRef]
- Kobayashi, A.; Tsuda, Y.; Hirata, N.; Kubota, K.; Kitamura, K. Aroma constituents of soybean (Glycin max (L.) Merril) milk lacking lipoxygenase isozymes. J. Agric. Food Chem. 1995, 43, 2449–2452. [Google Scholar] [CrossRef]
- Kaczmarska, K.T.; Chandra-hioe, M.V.; Frank, D.; Arcot, J. Aroma characteristics of lupin and soybean after germination and effect of fermentation on lupin aroma. LWT Food Sci. Technol. 2018, 87, 225–233. [Google Scholar] [CrossRef]
- Pulvera, Z.M.; Kitamura, K.; Hajika, M.; Shimada, K.; Matsui, K. Oxylipin metabolism in soybean seeds containing different sets of lipoxygenase isozymes after homogenization. Biosci. Biotechnol. Biochem. 2006, 70, 2598–2603. [Google Scholar] [CrossRef] [Green Version]
- Suratman, L.L.I.; Jeon, I.J.; Schmidt, K.A. Ability of cyclodextrins to entrap volatile beany flavor compounds in soymilk. J. Food Sci. 2004, 69, 109–113. [Google Scholar] [CrossRef]
- Shi, X.D.; Lv, Y.C.; Guo, S.T. Effects of heat treatment and cyclodextrin addition on soymilk flavor. Trans. Chin. Soc. Agric. Eng. 2017, 33, 293–300. [Google Scholar]
- Lee, S.-M.; Shin, K.-J.; Lee, S.-J. Exploring Nuruk aroma; Identification of volatile compounds in commercial fermentation starters. Food Sci. Biotechnol. 2016, 25, 393–399. [Google Scholar] [CrossRef]
- Solina, M.; Baumgartner, P.; Johnson, R.L.; Whitfield, F.B. Volatile aroma components of soy protein isolate and acid-hydrolysed vegetable protein. Food Chem. 2005, 90, 861–873. [Google Scholar] [CrossRef]
RT(2) RI(3) | Compound Natures Data File Name | +CD Group (4) | −CD Group | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 (5) | 1 | 2 | 4 | 0 | 1 | 2 | 4 | |||
Alkanes | ||||||||||
8.39 | 800> | 2,4-Dimethylheptane | 0.1 dE (6) | 1.4 cC | 1.9 bB | 4.7 aA | 0.1 bE | 0.9 aD | 0.9 aD | 0.8 aD |
14.58 | 1047 | 2,5,6-Trimethyldecane | 0.0 dF | 0.6cC | 0.9 bB | 2.6 aA | 0.0 cF | 0.4 aD | 0.2 bDE | 0.2 bE |
5.95 | 800> | 2-Methyl-2-methoxypropane | 0.2 (7) | 0.1 | 0 | 0 | 0.1 | 0.1 | 0.1 | 0 |
7.26 | 800> | 2-Methylheptane | 0.0 dE | 0.1 cC | 0.2 bB | 0.5 aA | 0.0 bDE | 0.1 aCD | 0.1 aC | 0.1 aC |
14.75 | 1051 | 4-Methyldecane | 0.0 dF | 0.6 cC | 1.1 bB | 3.1 aA | 0.1 cF | 0.4 aCD | 0.3 abDE | 0.2 bcEF |
7.38 | 800> | 4-Methylheptane | 0.0 cD | 0.1 cCD | 0.2 bB | 0.5 aA | 0.0 cD | 0.2 abBC | 0.1 bBCD | 0.2 aB |
9.7 | 819 | 4-Methyloctane | 0.1 dD | 0.5 cC | 0.8 bB | 2.1 aA | 0.1 bD | 0.4 aC | 0.4 aC | 0.4 aC |
16.24 | 1093 | 5-Methyldecane | 0.0 | 0.1 | 0.2 | 0.6 | 0.0 | 0.1 | 0.1 | 0.1 |
14.34 | 1040 | Decane | 0.3 dD | 1.8 cC | 3.9 bB | 10.6 aA | 0.5 bD | 1.6 aC | 1.4 aC | 1.6 aC |
21.89 | 1244 | Dodecane | 0.1 dD | 0.8 cC | 2.4 bB | 8.9 aA | 0.1 bD | 0.8 aC | 0.7 aC | 0.9 aC |
15.88 | 1083 | Tetradecane | 0.0 dE | 0.7 cC | 1.0 bB | 2.6 aA | 0.0 cF | 0.4 aD | 0.2 bDE | 0.2 bcDF |
23.51 | 1288 | Hexadecane | 0.0 dE | 0.8 cC | 1.5 bB | 5.4 aA | 0.0 cE | 0.4 aD | 0.2 abDE | 0.2 bcDE |
8.13 | 800> | Octane | 0.0 dE | 0.3 cCD | 0.5 bB | 1.2 aA | 0.1 cE | 0.2 bD | 0.3 abCD | 0.4 aBC |
15.68 | 1077 | Tridecane | 0.0 dF | 1.5 cC | 2.2 bB | 6.5 aA | 0.1 cF | 0.7 aD | 0.4 bDE | 0.3 bcDE |
17.68 | 1131 | Undecane | 0.0 dF | 0.6 cC | 1.1 bB | 3.4 aA | 0.0 cF | 0.4 aD | 0.2 bE | 0.2 bE |
Total alkanes | 0.8 dE | 10.0 cC | 17.9 bB | 52.7 aA | 1.2 bE | 7.1 aD | 5.6 aD | 5.8 aD | ||
Alkenes | ||||||||||
27.5 | 1401 | 1,2-Dimethyl-4-ethylbenzene | 0.2 cE | 0.6 cC | 1.1 bB | 1.7 aA | 0.2 bE | 0.6 aC | 0.5 aCD | 0.4 abCD |
26.41 | 1370 | 1,3,5-Trimethylbenzene | 0.2 cC | 0.4 bcC | 0.6 abB | 0.7 aA | 0.2 abC | 0.3 aBC | 0.2 bC | 0.1 bC |
29.62 | 1464 | 1,3-Di-tert-butylbenzene | 1.5 dD | 8.5 aA | 4.6 bB | 3.0 cC | 1.5 cD | 8.1 aA | 3.5 bC | 1.2 cD |
10.18 | 831 | 2,4-Dimethyl-1-heptene | 0.1 bE | 0.3 bDE | 0.6 aAB | 0.8 aA | 0.1 cE | 0.5 abBCD | 0.4 bCD | 0.6 aABC |
21.05 | 1222 | dl-Limonene | 0.0 cC | 1.7 cC | 5.7 bB | 12.8 aA | 0.0 bC | 1.5 aC | 1.7 aC | 1.6 aC |
15.06 | 1060 | Methylbenzene | 0.2 bBC | 0.2 bBC | 0.4 abB | 0.6 aA | 0.1 bC | 0.2 abBC | 0.2 abBC | 0.3 aBC |
Total alkenes | 2.2 cD | 11.7 bB | 13.0 bB | 19.6 aA | 2.1 dD | 11.2 aB | 6.5 bC | 4.2 cCD | ||
Alcohols | ||||||||||
29.46 | 1459 | 1-Octen-3-ol | 2.9 aB | 1.4 bC | 1.1 cD | 0.9 cDE | 3.6 aA | 1.5 bC | 1.1 cD | 0.6 dE |
22.45 | 1260 | 1-Pentanol | 0.5 aB | 0.2 bC | 0.1 cDE | 0.1 cE | 0.7 aA | 0.2 bCD | 0.1 bCDE | 0.1 bDE |
30.92 | 1502 | 2-Ethyl-1-hexanol | 1.4 aA | 0.4 cB | 0.4 cB | 0.3 cB | 1.5 aA | 0.5 bB | 0.4 bB | 0.2 cC |
Total alcohols | 4.8 aA | 2.0 bB | 1.6 cBC | 1.3 cC | 5.8 aA | 2.2 bB | 1.6 bcBC | 0.9 cC | ||
Aldehydes | ||||||||||
26.17 | 1363 | 2-Ethylhexenal | 0.7 aB | 0.5 bCD | 0.5 bcCDE | 0.4 cDEF | 0.9 aA | 0.6 bC | 0.3 cEF | 0.2 cF |
39.14 | 1676 | 4-Methylbenzaldehyde | 4.4 aA | 0.6 bCD | 0.5 bCD | 0.6 bCD | 1.5 aB | 1.3 aBC | 0.6 bCD | 0.3 bD |
32.86 | 1549 | Benzaldehyde | 3.8 aA | 2.2 bBC | 1.6 cCD | 1.3 cDE | 4.1 aA | 2.4 bB | 1.5 cD | 0.9 cE |
16.65 | 1104 | Hexanal | 10.0 aA | 7.8 bB | 6.5 bcBC | 5.7 cC | 10.0 aA | 8.0 bB | 6.8 bBC | 6.5 bBC |
40.05 | 1692 | p-Propylbenzaldehyde | 1.0 aA | 0.8 bB | 0.6 cCD | 0.4 dE | 1.0 aA | 0.7 bC | 0.5 cDE | 0.2 dF |
Total aldehydes | 19.9 aA | 11.9 bBC | 9.7 bcCD | 8.4 cD | 17.5 aA | 13.0 bB | 9.7 cCD | 8.1 cD | ||
Ketones | ||||||||||
38.32 | 1661 | 1-(3-Butyl-2-oxiranyl)ethanone | 1.7 aA | 0.7 bB | 0.5 bBC | 0.2 cD | 1.6 aA | 0.6 bB | 0.4 cCD | 0.2 cD |
20.44 | 1205 | 2-Heptanone | 13.8 aA | 10.9 abB | 8.0 bcC | 5.2 cD | 15.9 aA | 9.1 bBC | 7.2 cCD | 5.2 dD |
28.04 | 1417 | 2-Nonanone | 0.2 BC | 0.4 A | 0.4 A | 0.3 AB | 0.3 aAB | 0.4 aA | 0.2 bBC | 0.1 cC |
34.85 | 1597 | 3,5-Octadien-2-one | 0.9 aB | 0.8 aBC | 0.7 abBCD | 0.5 bCD | 1.3 aA | 0.6 bCD | 0.6 bCD | 0.4 bD |
28.65 | 1435 | 3-Octen-2-one | 1.1 | 1.3 | 1.1 | 0.9 | 1.1 | 1 | 0.9 | 0.7 |
Total ketones | 17.7 aA | 14.1 abB | 10.7 bcC | 7.1 cD | 20.2 aA | 11.7 bBC | 9.3 cCD | 6.6 dD | ||
Furan | ||||||||||
22.27 | 1255 | 2-Pentylfuran | 6.2 cD | 15.0 bC | 20.9 abB | 22.4 aA | 7.4 bD | 13.2 aC | 7.1 bD | 4.7 cD |
Total furans | 6.2 cD | 15.0 bC | 20.9 abB | 22.4 aA | 7.4 bD | 13.2 aC | 7.1 bD | 4.7 cD |
Group (2) | CD con. | Parameters | ||
---|---|---|---|---|
Flavor Strength | Beany Flavor | Sweetness | ||
+CD | 0 | 5.0 ± 0.0 Aa (3) | 5.0 ± 0.0 aAB | 5.0 ± 0.0 aA |
1 | 4.9 ± 0.7 abAB | 4.9 ± 0.6 aAB | 4.9 ± 0.2 aA | |
2 | 4.3 ± 0.8 abABC | 4.5 ± 0.6 aABC | 4.7 ± 0.4 aAB | |
4 | 3.8 ± 1.4 bC | 3.9 ± 0.5 bC | 4.4 ± 0.5 bB | |
−CD | 0 | 5.3 ± 0.4 aA | 5.5 ± 0.5 aA | 4.9 ± 0.2 aA |
1 | 4.7 ± 0.5 abABC | 4.7 ± 0.4 aAB | 4.8 ± 0.4 aAB | |
2 | 4.1 ± 0.7 bBC | 4.3 ± 0.6 bBC | 4.4 ± 0.5 bB | |
4 | 2.9 ± 0.7 cD | 3.1 ± 0.7 cD | 3.9 ± 0.5 cC |
Group (2) | CD con. | Parameters | ||||
---|---|---|---|---|---|---|
L-value | a-value | b-value | Puncture Strength (N) | Puncture Deformation (mm) | ||
+CD | 0 | 50.8 ± 1.67 cC (3) | 2.03 ± 0.54 cC | 18.9 ± 1.38 bC | 3.08 ± 0.33 aA | 7.19 ± 1.15 aA |
1 | 51.9 ± 0.73 cC | 3.00 ± 0.59 bB | 19.9 ± 1.39 bBC | 2.71 ± 0.49 aA | 6.51 ± 1.94 aA | |
2 | 62.7 ± 0.88 bB | 4.13 ± 0.57 aA | 25.2 ± 0.93 aA | 1.62 ± 0.23 bB | 3.23 ± 0.87 bB | |
4 | 71.8 ± 1.77 aA | 4.10 ± 0.22 aA | 24.4 ± 0.67 aA | 1.12 ± 0.22 bB | 1.23 ± 0.18 cB | |
−CD | 0 | 50.5 ± 2.30 bC | 1.75 ± 0.13 cC | 18.9 ± 0.47 cC | 2.87 ± 0.60 aA | 7.15 ± 2.12 aA |
1 | 51.8 ± 1.69 bC | 2.98 ± 0.28 bB | 21.0 ± 0.40 bB | 3.07 ± 0.25 aA | 6.99 ± 3.49 aA | |
2 | 60.4 ± 0.80 aB | 4.23 ± 0.33 aA | 25.3 ± 1.24 aA | 2.83 ± 0.44 aA | 6.37 ± 2.03 aA | |
4 | 61.4 ± 2.05 aB | 4.15 ± 0.25 aA | 25.4 ± 0.26 aA | 2.84 ± 0.44 aA | 6.21 ± 2.04 aA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.-J.; Kim, H.; Lee, J.Y.; Ramachandraiah, K.; Hong, G.-P. β-Cyclodextrin-Mediated Beany Flavor Masking and Textural Modification of an Isolated Soy Protein-Based Yuba Film. Foods 2020, 9, 818. https://doi.org/10.3390/foods9060818
Lee E-J, Kim H, Lee JY, Ramachandraiah K, Hong G-P. β-Cyclodextrin-Mediated Beany Flavor Masking and Textural Modification of an Isolated Soy Protein-Based Yuba Film. Foods. 2020; 9(6):818. https://doi.org/10.3390/foods9060818
Chicago/Turabian StyleLee, Eun-Jung, Honggyun Kim, Jong Yeop Lee, Karna Ramachandraiah, and Geun-Pyo Hong. 2020. "β-Cyclodextrin-Mediated Beany Flavor Masking and Textural Modification of an Isolated Soy Protein-Based Yuba Film" Foods 9, no. 6: 818. https://doi.org/10.3390/foods9060818
APA StyleLee, E. -J., Kim, H., Lee, J. Y., Ramachandraiah, K., & Hong, G. -P. (2020). β-Cyclodextrin-Mediated Beany Flavor Masking and Textural Modification of an Isolated Soy Protein-Based Yuba Film. Foods, 9(6), 818. https://doi.org/10.3390/foods9060818