Improving the Quality Characteristics and Shelf Life of Meat and Growth Performance in Goose Fed Diets Supplemented with Vitamin E
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Bird Management and Diets, and Sample Collection
2.2. Performance Traits
2.3. Cellular Immunity
2.4. Blood Metabolites
2.5. Meat Sample and Carcass Characters
2.6. Chemical Composition Analysis of Meat
2.7. Total Phenolic Content of Meat
2.8. Lipid Oxidation of Meat (TBARS)
2.9. Total Volatile Base Nitrogen of Meat (TVB-N)
2.10. Fatty Acids Composition of Meat
2.11. Statistical Analysis
3. Results and Discussion
3.1. Effect on Vitamin E Supplementation on Growth Performance
3.2. Effect on Vitamin E Supplementation on Blood Metabolites and Cellular Immunity
3.3. Effect on Vitamin E Supplementation on Carcass Characteristics
3.4. Effect on Vitamin E Supplementation on the Chemical Composition of Goose Meat
3.5. Effect on Vitamin E Supplementation on pH, TBARS, TVB-N, and Phenolic Compounds
3.6. Effect on Vitamin E Supplementation on the Meat Fatty Acid Composition
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, H.W.; Zhou, D.W. Influence of pasture intake on meat quality, lipid oxidation, and fatty acid composition of geese. J. Anim. Sci. 2013, 91, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Biesiada-Drzazga, B. Growth and slaughter value of W11, W33 and W31 White Kołuda geese. Eur. Poultry Sci. 2014, 78. [Google Scholar]
- Kołakowska, A.; Bartosz, G. Oxidation of Food Components, in Food Oxidants and Antioxidants Chemical, Biological, and Functional Properties; CRC Press: Boca Raton, FL, USA, 2014; pp. 1–20. [Google Scholar]
- Alirezalu, K.; Nemati, Z.; Hajipour, M.; Besharati, M. Effects of dietary organic and inorganic selenium on the quality aspects, nutritional and shelf life of goose meat. In Proceedings of the XVIII European Symposium on the Quality of Eggs and Egg Products and XXIV European Symposium on the Quality of Poultry meat, Ezmir, Turkey, 23–26 June 2019. [Google Scholar]
- Tao, L. Oxidation of Polyunsaturated Fatty Acids and its Impact on Food Quality and Human Health. Adv. Food Technol. Nutr. Sci. Open J. 2015, 1, 135–142. [Google Scholar] [CrossRef]
- Costantini, D.; Møller, A.P. Does immune response cause oxidative stress in birds? A meta-analysis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2009, 153, 339–344. [Google Scholar] [CrossRef]
- Hopps, E.; Noto, D.; Caimi, G.; Averna, M. A novel component of the metabolic syndrome: The oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 72–77. [Google Scholar] [CrossRef]
- Pamok, S.; Aengwanich, W.; Komutrin, T. Adaptation to oxidative stress and impact of chronic oxidative stress on immunity in heat-stressed broilers. J. Therm. Boil. 2009, 34, 353–357. [Google Scholar] [CrossRef]
- Wang, Z.G.; Pan, X.J.; Peng, Z.; Zhao, R.Q.; Zhou, G.-H. Methionine and selenium yeast supplementation of the maternal diets affects color, water-holding capacity, and oxidative stability of their male offspring meat at the early stage. Poult. Sci. 2009, 88, 1096–1101. [Google Scholar] [CrossRef]
- Kovacic, P.; Jacintho, J. Mechanisms of Carcinogenesis Focus on Oxidative Stress and Electron Transfer. Curr. Med. Chem. 2001, 8, 773–796. [Google Scholar] [CrossRef]
- Ridnour, L.A.; Isenberg, J.S.; Espey, M.G.; Thomas, U.D.; Roberts, D.D.; Wink, D.A. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc. Natl. Acad. Sci. USA 2005, 102, 13147–13152. [Google Scholar] [CrossRef] [Green Version]
- Valko, L.; Morris, H.; Mazur, M.; Rapta, P.; Bilton, R.F. Oxygen free radical generating mechanisms in the colon: Do the semiquinones of vitamin K play a role in the aetiology of colon cancer? Biochim. Biophys. Acta Gen. Subj. 2001, 1527, 161–166. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Barba, F.J.; Lorenzo, J.M.; Domínguez, R.; Pateiro, M.; Mañes, J.; Moltó, J.C. Evaluating the impact of supercritical-CO2 pressure on the recovery and quality of oil from "horchata" by-products: Fatty acid profile, α-tocopherol, phenolic compounds, and lipid oxidation parameters. Food Res. Int. 2018, 120, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, H.; Nemati, Z.; Karimi, A.; Safari, R. Effect of different dietary selenium sources and storage temperature on enhancing the shelf life of quail eggs. Anim. Prod. Res. 2019, 8, 23–33. [Google Scholar]
- Possamai, A.P.S.; Alcalde, C.R.; Feihrmann, A.C.; Possamai, A.C.S.; Rossi, R.M.; Lala, B.; Claudino-Silva, S.C.; Macedo, F. Shelf life of meat from Boer-Saanen goats fed diets supplemented with vitamin E. Meat Sci. 2018, 139, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Laganá, C.; Ribeiro, A.; Kessler, A.D.M.; Kratz, L.; Pinheiro, C. Effect of the supplementation of vitamins and organic minerals on the performance of broilers under heat stress. Rev. Bras. Cienc. Avíc. 2007, 9, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.Y.; Liu, F.Z.; Yan, Q.L.; Li, W.C. Effects of different levels of vitamin E on growth performance and immune responses of broilers under heat stress. Poult. Sci. 2009, 88, 2101–2107. [Google Scholar] [CrossRef]
- Leshchinsky, T.V.; Klasing, K.C. Relationship Between the Level of Dietary Vitamin E and the Immune Response of Broiler Chickens. Poult. Sci. 2001, 80, 1590–1599. [Google Scholar] [CrossRef]
- Khan, R.U.; Rahman, Z.; Javed, I.; Muhammad, F. Supplementation of vitamins, probiotics and proteins on oxidative stress, enzymes and hormones in post-moult male broiler breeders. Arch. Anim. Breed. 2013, 56, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Łukaszewicz, E.; Kowalczyk, A.; Jerysz, A. Effect of dietary selenium and vitamin E on chemical and fatty acid composition of goose meat and liver. Anim. Sci Paper Reprod. 2016, 34, 181–194. [Google Scholar]
- Korosi-Molnar, A.; Mezes, M.; Balogh, K.; Varga, S.; Karsai-Kovacs, M.; Farkas, Z. Effect of selenium and vitamin E supplementation on quality of fatty goose liver and chemical composition of breast muscle. Arch. Geflugelk. 2004, 68, 153–159. [Google Scholar]
- Goni, I.; Brenes, A.; Centeno, C.; Viveros, A.; Saura-Calixto, F.; Rebole, A.; Arija, I.; Estevez, R. Effect of Dietary Grape Pomace and Vitamin E on Growth Performance, Nutrient Digestibility, and Susceptibility to Meat Lipid Oxidation in Chickens. Poult. Sci. 2007, 86, 508–516. [Google Scholar] [CrossRef]
- Lukaszewicz, E.; Kowalczyk, A.; Jerysz, A. The effect of sex and feed supplementation with organic selenium and vitamin E on the growth rate and zoometrical body measurements of oat-fattened White Kołuda® geese. Turk. J. Vet. Anim. Sci. 2011, 35, 435–442. [Google Scholar]
- Alirezalu, K.; Nemati, Z.; Hajipour, M.; Besharati, M. Quality and shelf-life stability of meat and liver from goose fed diets supplemented with vitamin E. In Proceedings of the XVIII European Symposium on the Quality of Eggs and Egg Products and XXIV European Symposium on the Quality of Poultry meat, Ezmir, Turkey, 23–26 June 2019. [Google Scholar]
- Corrier, D.E.; Deloach, J.R. Evaluation of Cell-Mediated, Cutaneous Basophil Hypersensitivity in Young Chickens by an Interdigital Skin Test. Poult. Sci. 1990, 69, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring anthioxidant capacity and its application to monitoring the antioxidant estatus in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alirezalu, K.; Hesari, J.; Nemati, Z.; Munekata, P.E.; Barba, F.J.; Lorenzo, J.M. Combined effect of natural antioxidants and antimicrobial compounds during refrigerated storage of nitrite-free frankfurter-type sausage. Food Res. Int. 2018, 120, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Ensminger, L.G. The Association of Official Analytical Chemists. Clin. Toxicol. 1976, 9, 471. [Google Scholar] [CrossRef]
- Liu, D.; Tsau, R.-T.; Lin, Y.-C.; Jan, S.-S.; Tan, F.-J. Effect of various levels of rosemary or Chinese mahogany on the quality of fresh chicken sausage during refrigerated storage. Food Chem. 2009, 117, 106–113. [Google Scholar] [CrossRef]
- Faustman, C.; Yin, M.; Nadeau, D. Color Stability, Lipid Stability, and Nutrient Composition of Red and White Veal. J. Food Sci. 1992, 57, 302–304. [Google Scholar] [CrossRef]
- Malle, P.; Poumeyrol, M. A New Chemical Criterion for the Quality Control of Fish: Trimethylamine/Total Volatile Basic Nitrogen (%). J. Food Prot. 1989, 52, 419–423. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Boil. Chem. 1957, 226, 497–509. [Google Scholar]
- Pintado, T.; Herrero, A.M.; Ruiz-Capillas, C.; Triki, M.; Carmona, P.; Jimenez-Colmenero, F. Effects of emulsion gels containing bioactive compounds on sensorial, technological, and structural properties of frankfurters. Food Sci. Technol. Int. 2015, 22, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, K.; Sagai, M. Species differences in lipid peroxide levels in lung tissue and investigation of their determining factors. Lipids 1986, 21, 769–775. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Poultry; The National Academies Press: Washington, DC, USA, 1994; pp. 40–41. [Google Scholar]
- Sahin, K.; Kucuk, O. Effects of vitamin E and selenium on performance, digestibility of nutrients, and carcass characteristics of Japanese quails reared under heat stress (34 oC). J. Anim. Physiol. Anim. Nutr. 2001, 85, 342–348. [Google Scholar] [CrossRef]
- Mansoub, N.H.; Chekani-Azar, S.; Tehrani, A.; Lotfi, A.; Manesh, M. Influence of dietary vitamin E and zinc on performance, oxidative stability and some blood measures of broiler chickens reared under heat stress (35 °C). J. Agrobiol. 2010, 27, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Jang, I.-S.; Ko, Y.-H.; Moon, Y.-S.; Sohn, S.-H. Effects of Vitamin C or E on the Pro-inflammatory Cytokines, Heat Shock Protein 70 and Antioxidant status in Broiler Chicks under Summer Conditions. Asian-Austral. J. Anim. Sci. 2014, 27, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, A.; Iv, Y.G.; Khatibjoo, A.; Vakili, R. Effects of Dietary Fat, Vitamin E and Zinc on Immune Response and Blood Parameters of Broiler Reared Under Heat Stress. Res. J. Poult. Sci. 2010, 3, 32–38. [Google Scholar] [CrossRef]
- Sahin, K.; Sahin, K.; Onderci, M. Vitamin E and Selenium Supplementation to Alleviate Cold- Stress-Associated Deterioration in Egg Quality and Egg Yolk Mineral Concentrations of Japanese Quails. Boil. Trace Elem. Res. 2003, 96, 179–190. [Google Scholar] [CrossRef]
- Zduńczyk, Z.; Drażbo, A.; Jankowski, J.; Juśkiewicz, J.; Antoszkiewicz, Z.; Troszyńska, A. The effect of dietary vitamin E and selenium supplements on the fatty acid profile and quality traits of eggs. Arch. Anim. Breed. 2013, 56, 719–732. [Google Scholar] [CrossRef] [Green Version]
- Sarıca, S.; Aydın, H.; Ciftci, G. Effects of Dietary Supplementation of Some Antioxidants on Liver Antioxidant Status and Plasma Biochemistry Parameters of Heat-Stressed Quail. Turk. J. Agric. Food Sci. Technol. 2017, 5, 773. [Google Scholar] [CrossRef]
- Koutsos, E.; López, J.C.G.; Klasing, K.C. Maternal and dietary carotenoids interactively affect cutaneous basophil responses in growing chickens (Gallus gallus domesticus). Comp. Biochem. Physiol. Part B Biochem. Mol. Boil. 2007, 147, 87–92. [Google Scholar] [CrossRef]
- Boa-Amponsem, K.; Price, S.E.; Picard, M.; Geraert, P.A.; Siegel, P.B. Vitamin E and immune responses of broiler pureline chickens. Poult. Sci. 2000, 79, 466–470. [Google Scholar] [CrossRef]
- Combs, G.F. Assessment of Vitamin E status in Animals and Man. In Proceedings of the Nutrition Society; CABI Publishing: Cambridge, UK, 1981; pp. 187–194. [Google Scholar]
- Guo, Q.; Richert, B.T.; Burgess, J.R.; Webel, D.M.; Orr, D.E.; Blair, M.; Grant, A.; Gerrard, D.E. Effect of dietary vitamin E supplementation and feeding period on pork quality. J. Anim. Sci. 2006, 84, 3071–3078. [Google Scholar] [CrossRef] [PubMed]
- Abril, M.; Campo, M.M.; Önenç, A.; Sanudo, C.; Albertí, P.; Negueruela, A. Beef colour evolution as a function of ultimate pH. Meat Sci. 2001, 58, 69–78. [Google Scholar] [CrossRef]
- Lawrie, R.A.; Ledward, D.A. Lawrie’s Meat Science; Elsevier BV: Amsterdam, The Netherlands, 2006; pp. 329–356. [Google Scholar]
- Smith, M.; Nelson, C.L.; Biffin, T.E.; Bush, R.D.; Hall, E.J.; Hopkins, D.L. Vitamin E concentration in alpaca meat and its impact on oxidative traits during retail display. Meat Sci. 2019, 151, 18–23. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J. Ángel Effect of added citrus fibre and spice essential oils on quality characteristics and shelf-life of mortadella. Meat Sci. 2010, 85, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.; Gómez, B.; Barba, F.J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive peptides as natural antioxidants in food products—A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Sun, X.; Guo, X.; Ji, M.; Wu, J.; Zhu, W.; Wang, J.; Cheng, C.; Chen, L.; Zhang, Q. Preservative effects of fish gelatin coating enriched with CUR/βCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4 °C. Food Chem. 2019, 272, 643–652. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Pitargue, F.; Kim, J.; Goo, D.; Reyes, J.D.; Kil, D. Effect of vitamin E sources and inclusion levels in diets on growth performance, meat quality, alpha-tocopherol retention, and intestinal inflammatory cytokine expression in broiler chickens. Poult. Sci. 2019, 98, 4584–4594. [Google Scholar] [CrossRef]
- Bellés, M.; Leal, L.N.; Díaz, V.; Alonso, V.; Roncalés, P.; Beltrán, J. Effect of dietary vitamin E on physicochemical and fatty acid stability of fresh and thawed lamb. Food Chem. 2018, 239, 1–8. [Google Scholar] [CrossRef]
- Ripoll, G.; González-Calvo, L.; Molino, F.; Calvo, J.; Joy, M. Effects of finishing period length with vitamin E supplementation and alfalfa grazing on carcass color and the evolution of meat color and the lipid oxidation of light lambs. Meat Sci. 2013, 93, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Maraba, K.P.; Mlambo, V.; Yusuf, A.O.; Marume, U.; Hugo, A. Extra dietary vitamin E—Selenium as a mitigation strategy against housing-induced stress in Dohne Merino lambs: Effect on growth performance, stress biomarkers, and meat quality. Small Rumin. Res. 2018, 160, 31–37. [Google Scholar] [CrossRef]
- Boler, D.; Gabriel, S.; Yang, H.; Balsbaugh, R.; Mahan, D.C.; Brewer, M.; McKeith, F.K.; Killefer, J. Effect of different dietary levels of natural-source vitamin E in grow-finish pigs on pork quality and shelf life. Meat Sci. 2009, 83, 723–730. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Shpigelman, A.; Granato, D.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Chaparro-Hernández, S.; Ruiz-Cruz, S.; Marquez-Rios, E.; Ocaño-Higuera, V.M.; Valenzuela-López, C.C.; Ornelas-Paz, J.; Del-Toro-Sánchez, C.L. Effect of chitosan-carvacrol edible coatings on the quality and shelf life of tilapia (Oreochromis niloticus) fillets stored in ice. Food Sci. Technol. 2015, 35, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tang, X.; Shen, Z.; Dong, J. Prediction of total volatile basic nitrogen (TVB-N) content of chilled beef for freshness evaluation by using viscoelasticity based on airflow and laser technique. Food Chem. 2019, 287, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, K.; Valizadeh, H.; Sirousazar, M.; Hesari, J.; Eskandari, M.H. Effect of Green Tea, Stinging Nettle and Olive Leaves Extracts on the Quality and Shelf Life Stability of Frankfurter Type Sausage. J. Food Process. Preserv. 2016, 41, 13100. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Madane, P.; Biswas, S.; Das, A.; Zhang, W.; Lorenzo, J.M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Technol. 2020, 99, 323–336. [Google Scholar] [CrossRef]
- Alirezalu, A.; Ahmadi, N.; Salehi, P.; Sonboli, A.; Alirezalu, K.; Khaneghah, A.M.; Barba, F.J.; Munekata, P.E.; Lorenzo, J.M. Physicochemical Characterization, Antioxidant Activity, and Phenolic Compounds of Hawthorn (Crataegus spp.) Fruits Species for Potential Use in Food Applications. Foods 2020, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- Kouba, M.; Mourot, J. A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimistry 2011, 93, 13–17. [Google Scholar] [CrossRef]
- Meyer, B. Are we consuming enough long chain omega-3 polyunsaturated fatty acids for optimal health? Prostag Leukotr Ess. 2011, 85, 275–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valencak, T.G.; Gamsjäger, L.; Ohrnberger, S.; Culbert, N.J.; Ruf, T. Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking. BMC Res. Notes 2015, 8, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthelot, V.; Broudiscou, L.; Schmidely, P. Effect of vitamin E supplementation on fatty acid composition of muscle and adipose tissues of indoor lambs with special attention on rumen-derived trans monounsaturated fatty acids. Meat Sci. 2014, 96, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Mamauag, R.E.P.; Han, Y. Effects of dietary oxidized fish oil with vitamin E supplementation on growth performance and reduction of lipid peroxidation in tissues and blood of red sea bream Pagrus major. Aquaculture 2012, 356, 73–79. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Liang, X.; Gao, J. Effects of dietary vitamin E supplementation on growth performance, fatty acid composition, lipid peroxidation and peroxisome proliferator-activated receptors (PPAR) expressions in juvenile blunt snout bream Megalobrama amblycephala. Fish Physiol. Biochem. 2017, 43, 913–922. [Google Scholar] [CrossRef]
Ingredients (%) | 1 to 4 Weeks | 5 to 8 Weeks |
---|---|---|
Corn | 43 | 55 |
Wheat | 24 | 26 |
Soybean meal | 30 | 16 |
Di-calcium phosphate | 1 | 1 |
Oyster shell | 1 | 1 |
Common salt | 0.1 | 0.1 |
Mineral premix 1 | 0.25 | 0.5 |
Vitamin premix 2 | 0.25 | 0.5 |
L-Lysine | 0.2 | 0.2 |
DL-Methionine | 0.2 | 0.2 |
Calculated nutritional composition | ||
AMEn (kcal/kg) | 2922 | 2911 |
Crude protein (g/kg) | 202.9 | 145.2 |
Crude fiber (g/kg) | 43.0 | 44.6 |
Crude fat (g/kg) | 22.4 | 26.7 |
Total lysine (g/kg) | 13.5 | 9.4 |
Total methionine + cysteine (g/kg) | 7.6 | 6.2 |
Total threonine (g/kg) | 8.7 | 6.4 |
Calcium (g/kg) | 6.8 | 6.6 |
Available phosphorus (g/kg) | 4.0 | 3.7 |
Sodium (g/kg) | 1.1 | 1.1 |
Selenium (mg/kg diet) | 0.17 | 0.17 |
Vitamin E (mg/kg diet) | 11.80 | 14.05 |
ADFI (g/day) | ADG (g/day) | BW (g) | FCR | EPEF | |
---|---|---|---|---|---|
Effect of diet | |||||
Control | 147.90 | 46.36 b | 1739.51 b | 3.31 a | 190.59 b |
Vitamin E | 160.90 | 54.69 a | 1955.30 a | 2.96 b | 215.76 a |
SEM | 6.53 | 1.62 | 57.78 | 0.07 | 6.85 |
Effect of phase | |||||
Phase 1 (days 1–14) | 43.91 d | 34.82 b | 579.60 d | 1.26 d | 329.18 a |
Phase 2 (days 14–28) | 177.57 c | 66.19 a | 1506.33 c | 2.75 c | 203.43 b |
Phase 3 (days 28–42) | 206.36 a | 65.32 a | 2420.83 b | 3.17 b | 182.40 b |
Phase 4 (days 42–56) | 189.74 b | 35.77 b | 2882.86 a | 5.36 a | 97.69 c |
SEM | 5.53 | 2.50 | 51.23 | 0.11 | 12.06 |
Effect of diet × phase | |||||
Control × Phase 1 | 43.08 d | 34.86 | 580.09 f | 1.23 e | 335.67 |
Control × Phase 2 | 166.51 c | 58.04 | 1392.70 e | 2.91 cd | 175.19 |
Control × Phase 3 | 190.65 b | 60.24 | 2236.14 c | 3.17 c | 168.46 |
Control × Phase 4 | 191.35 b | 32.30 | 2749.11 b | 5.90 a | 83.04 |
Vitamin E × Phase 1 | 44.75 d | 34.79 | 579.11 f | 1.29 e | 322.69 |
Vitamin E × Phase 2 | 188.62 bc | 74.34 | 1619.96 d | 2.60 d | 231.66 |
Vitamin E × Phase 3 | 222.07 a | 70.39 | 2605.51 b | 3.16 c | 196.33 |
Vitamin E × Phase 4 | 188.14 bc | 39.24 | 3016.61 a | 4.81 b | 112.34 |
SEM | 7.82 | 3.54 | 72.45 | 0.16 | 17.05 |
F(df1, df2)=x, p-value | |||||
Diet | F(1, 6) = 1.98, p < 0.2094 | F(1, 6) = 13.16, p < 0.0110 | F(1, 6)= 6.97, p < 0.0385 | F(1, 6) = 10.29, p < 0.0184 | F(1, 6) = 6.73, p < 0.0410 |
Phase | F(3, 18) = 394.1, p < 0.0001 | F(3, 18) = 47.3, p < 0.0001 | F(3, 18) = 492.9, p < 0.0001 | F(3, 18) = 217.4, p < 0.0001 | F(3, 18) = 71.4, p < 0.0001 |
Diet × Phase | F(3, 18) = 7.54, p < 0.0018 | F(3, 18) = 1.72, p < 0.1996 | F(3, 18) = 4.02, p < 0.0237 | F(3, 18) = 4.74, p < 0.0132 | F(3, 18) = 1.18, p < 0.3456 |
Serum Metabolites 3 | ||||
---|---|---|---|---|
Treatment | HDL (mg/dL) | Cholesterol (mg/dL) | TG (mg/dL) | TAS (mmol) |
Control | 72.383 | 196.000 | 57.67 | 0.816 |
Vitamin E | 76.683 | 185.333 | 64.33 | 0.893 |
SEM | 3.38 | 6.23 | 9.57 | 0.0626 |
F(df1, df2) = x, p-Value | F(1, 6) = 0.81, p < 0.4031 | F(1, 6) = 1.46, p < 0.2718 | F(1, 6) = 0.24, p < 0.6401 | F(1, 6) = 0.75, p < 0.4201 |
Response to CBH test | ||||
Toe web swelling after different times (mm) | ||||
8 h | 24 h | 48 h | ||
Control | 0.1487 | 0.1425 b | 0.1437 | |
Vitamin E | 0.1650 | 0.2037 a | 0.1850 | |
SEM | 0.0208 | 0.0132 | 0.0250 | |
F(df1, df2) = x, p-Value | F(1, 6) = 0.30, p < 0.6012 | F(1, 6) = 10.73, p < 0.0169 | F(1, 6) = 1.36, p < 0.2871 |
Parameters | Control | Vitamin E | SEM | F(df1, df2) = x, p-Value |
---|---|---|---|---|
Carcass weight (g) | 2198.3 | 2493.8 | 102.2 | F(1, 6) = 4.17, p < 0.087 |
Liver (g) | 60.00 | 75.00 | 8.53 | F(1, 6) = 1.54, p < 0.260 |
Gizzard (g) | 111.66 | 106.25 | 6.87 | F(1, 6) = 0.31, p < 0.597 |
Heart (g) | 25.00 | 22.50 | 1.02 | F(1, 6) = 3.00, p < 0.134 |
Carcass yield (%) | 76.32 b | 79.72 a | 0.77 | F(1, 6) = 9.63, p < 0.021 |
Breast (%) | 18.07 | 17.46 | 0.861 | F(1, 6) = 0.25, p < 0.633 |
Back (%) | 26.46 | 26.60 | 0.92 | F(1, 6) = 0.01, p < 0.525 |
Thigh (%) | 21.33 | 22.47 | 1.42 | F(1, 6) = 0.32, p < 0.590 |
Wing (%) | 14.86 | 14.36 | 0.52 | F(1, 6) = 0.45, p < 0.526 |
Liver (%) | 2.05 | 2.38 | 0.219 | F(1, 6) = 1.14, p < 0.325 |
Heart (%) | 0.85 | 0.72 | 0.049 | F(1, 6) = 3.67, p < 0.103 |
Gizzard (%) | 3.81 | 3.39 | 0.180 | F(1, 6) = 2.69, p < 0.152 |
Abdominal fat (%) | 2.28 | 2.45 | 0.373 | F(1, 6) = 0.12, p < 0.739 |
Parameters | Treatment | Storage Time (Day) | F(df1, df2) = x, p < 0.05 | |||
---|---|---|---|---|---|---|
1 | 3 | 6 | 9 | |||
Moisture | 68.64 ± 0.05 Aa | 67.52 ± 0.01 Ab | 66.94 ± 0.05 Ac | 64.44 ± 0.04 Ad | 68.64 ± 0.05 Aa | F(3, 12) = 6934.73, p < 0.0001 |
67.09 ± 0.02 Ba | 66.75 ± 0.05 Bb | 65.79 ± 0.02 Bc | 63.82 ± 0.04 Bd | 67.09 ± 0.02 Ba | ||
Fat | 5.53 ± 0.04 Bd | 6.28 ± 0.02 Bc | 6.59 ± 0.004 Bb | 6.95 ± 0.017 Ba | 5.53 ± 0.04 Bd | F(3, 12) = 397.72, p < 0.0001 |
6.62 ± 0.11 Ac | 7.77 ± 0.02 Ab | 7.87 ± 0.007 Ab | 8.41 ± 0.005 Aa | 6.62 ± 0.11 Ac | ||
Protein | 20.58 ± 0.17 B | 20.58 ± 0.11 B | 20.62 ± 0.16 B | 20.93 ± 0.17 B | 20.58 ± 0.17 B | F(3, 12) = 1.76, p < 0.2082 |
22.53 ± 0.27 A | 22.32 ± 0.04 A | 22.61 ± 0.13 A | 22.77 ± 0.26 A | 22.53 ± 0.27 A | ||
Ash | 1.86 ± 0.005 Bd | 2.01 ± 0.0003 Ac | 2.11 ± 0.002 Ab | 2.41 ± 0.006 Aa | 1.86 ± 0.005 Bd | F(3, 12) = 858.22, p < 0.0001 |
1.93 ± 0.012 Ad | 1.95 ± 0.007 Bc | 1.98 ± 0.003 Bb | 2.07 ± 0.004 Ba | 1.93 ± 0.012 Ad |
Fatty Acids | Control | Vitamin E | SEM | F(df1, df2) = x, p < 0.05 |
---|---|---|---|---|
C9:0 (Pelargonic acid) | 21.75 | 36.96 | 8.21 | F(1, 4) = 1.72, p < 0.260 |
C10:0 (Capric acid) | 223.10 | 331.82 | 62.89 | F(1, 4) = 1.50, p < 0.288 |
C11:0 (Undecanoic acid) | 18.78 | 29.95 | 6.13 | F(1, 4) = 1.66, p < 0.267 |
C12:0 (Lauric acid) | 173.32 | 272.30 | 37.52 | F(1, 4) = 3.49, p < 0.135 |
C13:0 (Tridecylic acid) | 21.75 | 26.06 | 5.79 | F(1, 4) = 0.28, p < 0.625 |
C14:0 (Myristic acid) | 16.48 b | 49.79 a | 1.24 | F(1, 4) = 356.04, p < 0.0001 |
C16:0 (Palmitic acid) | 1122.94 b | 1312.88 a | 13.85 | F(1, 4) = 94.17, p < 0.0006 |
C18:0 (Stearic acid) | 972.00 | 900.92 | 34.35 | F(1, 4) = 2.15, p < 0.216 |
C20:0 (Arachidic acid) | 0.11 | 0.17 | 0.029 | F(1, 4) = 0.84, p < 0.342 |
SFA | 2570.23 b | 2960.85 a | 6.38 | F(1, 4) = 1874.12, p < 0.0001 |
C14:1 (Myristoleic acid) | 19.77 a | 10.01 b | 4.03 | F(1, 4) = 12.00, p < 0.025 |
C16:1 (Palmitoleic acid) | 113.68 b | 153.27 a | 9.05 | F(1, 4) = 9.57, p < 0.036 |
C18:1 (Oleic acid) | 1717.4 b | 2101.80 a | 76.87 | F(1, 4) = 12.53, p < 0.024 |
C20:1 (Gadoleic acid) | 0.08 | 0.11 | 0.027 | F(1, 4) = 0.88, p < 0.071 |
MUFA | 1850.93 b | 2255.19 a | 70.84 | F(1, 4) = 16.32, p < 0.016 |
C18:2 (Linoleic acid) | 802.66 b | 1072.47 a | 16.06 | F(1, 4) = 141.19, p < 0.0003 |
C18:3 (α-Linolenic acid) | 1.33 | 1.34 | 0.16 | F(1, 4) = 0.76, p < 0.214 |
C20:4 (Arachidonic acid) | 677.10 | 735.60 | 16.16 | F(1, 4) = 6.56, p < 0.062 |
C22:6 (Docosahexaenoic acid) | 36.24 | 64.57 | 13.08 | F(1, 4) = 2.35, p < 0.200 |
PUFA | 1517.33 b | 1873.98 a | 10.86 | F(1, 4) = 539.89, p < 0.0001 |
PUFA/SFA | 0.59 b | 0.63 a | 0.002 | F(1, 4) = 169.00, p < 0.0002 |
n3 | 37.58 a | 65.91 a | 13.07 | F(1, 4) = 2.35, p < 0.199 |
n6 | 1479.78 b | 1808.07 a | 4.65 | F(1, 4) = 2486.17, p < 0.0001 |
PI | 3850.00 b | 4590.50 a | 142.10 | F(1, 4) = 13.61, p < 0.021 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemati, Z.; Alirezalu, K.; Besharati, M.; Amirdahri, S.; Franco, D.; Lorenzo, J.M. Improving the Quality Characteristics and Shelf Life of Meat and Growth Performance in Goose Fed Diets Supplemented with Vitamin E. Foods 2020, 9, 798. https://doi.org/10.3390/foods9060798
Nemati Z, Alirezalu K, Besharati M, Amirdahri S, Franco D, Lorenzo JM. Improving the Quality Characteristics and Shelf Life of Meat and Growth Performance in Goose Fed Diets Supplemented with Vitamin E. Foods. 2020; 9(6):798. https://doi.org/10.3390/foods9060798
Chicago/Turabian StyleNemati, Zabihollah, Kazem Alirezalu, Maghsoud Besharati, Saeid Amirdahri, Daniel Franco, and José M. Lorenzo. 2020. "Improving the Quality Characteristics and Shelf Life of Meat and Growth Performance in Goose Fed Diets Supplemented with Vitamin E" Foods 9, no. 6: 798. https://doi.org/10.3390/foods9060798
APA StyleNemati, Z., Alirezalu, K., Besharati, M., Amirdahri, S., Franco, D., & Lorenzo, J. M. (2020). Improving the Quality Characteristics and Shelf Life of Meat and Growth Performance in Goose Fed Diets Supplemented with Vitamin E. Foods, 9(6), 798. https://doi.org/10.3390/foods9060798