Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas
Abstract
:1. Introduction
2. Material and Methods
2.1. Study-Area Bioclimatology
2.2. Honey Samples
2.3. Melissopalynological Analysis
2.3.1. Quantitative Pollen Analysis
2.3.2. Qualitative Pollen Analysis
2.3.3. Physicochemical Analysis
2.4. Color Determination
2.5. Determination of Total Polyphenol and Flavonoid Content
2.6. Radical-Scavenging Activity
2.7. Sugar-Composition Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Pollen Spectra and Content of Honey Samples
3.2. Sample Palynological Profile Regarding Bioclimatic Areas of Origin
3.3. Quality and Physicochemical Sample Properties
3.4. Influence of Area of Origin on Sample Characteristics
3.5. Botanical Characterization of Honey Samples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussein, M.H. A review of beekeeping in Arab countries. Bee World 2000, 81, 56–71. [Google Scholar] [CrossRef]
- Makhloufi, C.; Kerkvliet, J.D.; D’albore, G.R.; Choukri, A.; Samar, R. Characterization of Algerian honeys by palynological and physico-chemical methods. Apidologie 2010, 41, 509–521. [Google Scholar] [CrossRef]
- Escuredo, O.; Míguez, M.; Fernández-González, M.; Seijo, M.C. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem. 2013, 138, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Migliore, J. Plant biogeography in the western mediterranean basin: New insights from phylogeographical studies. BMIB-Bollettino dei Musei e degli Istituti Biologici 2013, 75, 64–68. [Google Scholar]
- Médail, F.; Quézel, P. Hot-Spots Analysis for Conservation of Plant Biodiversity in the Mediterranean Basin. Ann. Mo. Bot. Gard. 1997, 84, 112–127. [Google Scholar] [CrossRef]
- Mediouni, K. Elaboration d’un Bilan et d’une Strategie Nationale de Developpement Durable de la Diversite Biologique; Projet ALG/97 G31; Tome IX. Editions du Ministere de la Amenagement du territoire et de Environnement; FEM/PNUD: New York, NY, USA, 2004; p. 69. [Google Scholar]
- Zerrouk, S.; Boughediri, L.; Seijo, M.C.; Fallico, B.; Arena, E.; Ballistreri, G. Pollen spectrum and physicochemical attributes of sulla (Hedysarum coronarium) honeys of Médéa region (Algeria). Albanian J. Agric. Sci. 2013, 12, 511–517. [Google Scholar]
- Makhloufi, C.; Kerkvliet, J.; Schweitzer, P. Characterisation of some monofloral Algerian honeys by pollen analysis. Grana 2015, 54, 156–166. [Google Scholar] [CrossRef]
- Mekious, S.; Houmani, Z.; Houmani, M. Étude des potentialités mellifères de deux régions du Nord de l’Algérie. Phytothérapie 2018, 1–6. [Google Scholar] [CrossRef]
- Zerrouk, S.; Seijo, M.C.; Boughediri, L.; Escuredo, O.; Rodríguez-Flores, M.S. Palynological characterisation of Algerian honeys according to their geographical and botanical origin. Grana 2014, 53, 147–158. [Google Scholar] [CrossRef]
- Latifa, H.; Mouna, B.; Arezki, M. Ziziphus lotus and Euphorbia bupleuroides Algerian honeys. World Appl. Sci. J. 2013, 24, 1536–1543. [Google Scholar]
- Ouchemoukh, S.; Amessis-Ouchemoukh, N.; Romero, M.G.; Aboud, F.; Giuseppe, A.; Gutierrez, A.F.; Segura-Carretero, A. Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry. LWT-Food Sci. Technol. 2017, 85, 460–469. [Google Scholar] [CrossRef]
- Boutabia, L.; Telailia, S.; Chefrour, A. Spectre pollinique de miels d’abeille (Apis mellifera L.) de la région d’El Tarf (Nord-Est algérien). Livest. Res. Rural. Dev. 2016, 28, 1–8. [Google Scholar]
- Ouchemoukh, S.; Louaileche, H.; Schweitzer, P. Physicochemical characteristics and pollen spectrum of some Algerian honeys. Food Control 2007, 18, 52–58. [Google Scholar] [CrossRef]
- Azzedine, C.; Marie-José, B.; Yasmina, A.K.; Salima, B.; Ali, T. Melissopalynologic and physicochemical analysis of some north-east Algerian honeys. Eur. J. Sci. Res. 2005, 18, 389–401. [Google Scholar]
- Nair, S.; Maghraoui, N.B. Physicochemical Properties of Honeys Produced in North-West of Algeria. Adv. Food Sci. Eng. 2017, 1, 123–128. [Google Scholar] [CrossRef]
- Mesbahi, M.A.; Ouahrani, M.R.; Rebiai, A.; Amara, D.G.; Chouikh, A.; Mesbahi, M.A.; Ouahrani, M.R.; Rebial, A. Characterization of Zygophyllum album L Monofloral Honey from El-Oued, Algeria. Curr. Nutr. Food Sci. 2019, 15, 476–483. [Google Scholar] [CrossRef]
- Otmani, I.; Abdennour, C.; Dridi, A.; Kahalerras, L.; Halima-Salem, A. Characteristics of the bitter and sweet honey from Algeria Mediterranean coast. Vet. World 2019, 12, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Zerrouk, S.; Seijo, M.C.; Escuredo, O.; Rodríguez-Flores, M.S. Characterization of Ziziphus lotus (jujube) honey produced in Algeria. J. Apic. Res. 2017, 57, 166–174. [Google Scholar] [CrossRef]
- Alzahrani, H.A.; Boukraa, L.; Bellik, Y.; Abdellah, F.; Bakhotmah, B.A.; Kolayli, S.; Sahin, H. Evaluation of the Antioxidant Activity of Three Varieties of Honey from Different Botanical and Geographical Origins. Glob. J. Health Sci. 2012, 4, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Ouchemoukh, S.; Schweitzer, P.; Bey, M.B.; Djoudad-Kadji, H.; Louaileche, H. HPLC sugar profiles of Algerian honeys. Food Chem. 2010, 121, 561–568. [Google Scholar] [CrossRef]
- Neggad, A.; Benkaci-Ali, F.; Alsafra, Z.; Eppe, G. Headspace Solid Phase Microextraction Coupled to GC/MS for the Analysis of Volatiles of Honeys from Arid and Mediterranean Areas of Algeria. Chem. Biodivers. 2019, 16, e1900267. [Google Scholar] [CrossRef]
- Bogdanov, S.; Martin, P.; Lullmann, C. Harmonised Methods of the International Honey Commission; Swiss Bee Research Centre: Liebefeld, Switzerland, 2002. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardization of propolis extract and identification of principal constituents. J. Pharm. Belg. 1994, 49, 462–468. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Adgaba, N.; Al-Ghamdi, A.; Tadesse, Y.; Getachew, A.; Awad, A.M.; Rana, R.M.; Owayss, A.A.; Mohammed, S.E.A.; AlQarni, A.S. Nectar secretion dynamics and honey production potentials of some major honey plants in Saudi Arabia. Saudi J. Boil. Sci. 2016, 24, 180–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Khalifa, A.S.; Al-Arify, I. Physicochemical characteristics and pollen spectrum of some Saudi honeys. Food Chem. 1999, 67, 21–25. [Google Scholar] [CrossRef]
- Alqarni, A.S.; Owayss, A.A.; Mahmoud, A.A. Physicochemical characteristics, total phenols and pigments of national and international honeys in Saudi Arabia. Arab. J. Chem. 2016, 9, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Achouri, M.; Selka, M.A.; Chenafa, A.; Brahim, S.; Messafeur, M.A.; Toumi, H. Teneur en 5-hydroxyméthylfurfural (HMF) dans les miels du Nord-Ouest de l’Algérie. Toxicol. Anal. Clin. 2019, 31, 100–105. [Google Scholar] [CrossRef]
- Ahmida, M.H.S.; Elwerfali, S.; Agha, A.; Elagori, M. Physicochemical, Heavy Metals and Phenolic Compounds Analysis of Libyan Honey Samples Collected from Benghazi during 2009–2010. Food Nutr. Sci. 2013, 4, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Andersen, D.C.; Nelson, S. Floral ecology and insect visitation in riparian Tamarix sp. (saltcedar). J. Arid. Environ. 2013, 94, 105–112. [Google Scholar] [CrossRef]
- Eisikowitch, D.; Ivri, Y.; Dafni, A. Reward partitioning in Capparis spp. along ecological gradient. Oecologia 1986, 71, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Petanidou, T.; Van Laere, A.J.; Smets, E. Change in floral nectar components from fresh to senescent flowers of Capparis spinosa (Capparidaceae), a nocturnally flowering Mediterranean shrub. Plant. Syst. Evol. 1996, 199, 79–92. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Al-Waili, N.; Aazza, S.; Elamine, Y.; Zizi, S.; Al-Waili, T.; Al-Waili, A.; Lyoussi, B. Antioxidant and diuretic activity of co-administration of Capparis spinosa honey and propolis in comparison to furosemide. Asian Pac. J. Trop. Med. 2017, 10, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Greco, C.F.; Banks, P.; Kevan, P.G. Foraging behaviour of honeybees (Apis mellifera) on asparagus (Asparagus officinalis). Proc. Entomol. Soc. Ont. 1995, 126, 37–43. [Google Scholar]
- Flores, M.S.R.; Pérez, O.E.; Rodríguez-Flores, M.S. Characterization of Eucalyptus globulus honeys produced in the Eurosiberian Area of the Iberian Peninsula. Int. J. Food Prop. 2014, 17, 2177–2191. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Maia, M.; Karabagias, V.K.; Gatzias, I.; Badeka, A.V. Characterization of Eucalyptus, Chestnut and Heather Honeys from Portugal Using Multi-Parameter Analysis and Chemo-Calculus. Foods 2018, 7, 194. [Google Scholar] [CrossRef] [Green Version]
- Benayache, S.; Benayache, F.; Benyahia, S.; Chalchat, J.-C.; Garry, R.-P. Leaf Oils of some Eucalyptus Species Growing in Algeria. J. Essent. Oil Res. 2001, 13, 210–213. [Google Scholar] [CrossRef]
- Flores, M.S.R.; Escuredo, O.; Seijo, M.C. Assessment of physicochemical and antioxidant characteristics of Quercus pyrenaica honeydew honeys. Food Chem. 2015, 166, 101–106. [Google Scholar] [CrossRef]
- Seijo, M.C.; Escuredo, O.; Rodríguez-Flores, M.S. Physicochemical Properties and Pollen Profile of Oak Honeydew and Evergreen Oak Honeydew Honeys from Spain: A Comparative Study. Foods 2019, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Jara-Palacios, M.J.; Ávila, F.J.; Escudero-Gilete, M.L.; Pajuelo, A.G.; Heredia, F.J.; Hernanz, D.; Terrab, A. Physicochemical properties, colour, chemical composition, and antioxidant activity of Spanish Quercus honeydew honeys. Eur. Food Res. Technol. 2019, 245, 2017–2026. [Google Scholar] [CrossRef]
- Vasić, V.; Gašić, U.M.; Stanković, D.; Lušić, D.; Vukić-Lušić, D.; Milojković-Opsenica, D.; Tešić, Ž.; Trifković, J. Towards better quality criteria of European honeydew honey: Phenolic profile and antioxidant capacity. Food Chem. 2019, 274, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Karabagias, I.K.; Karabournioti, S.; Karabagias, V.K.; Badeka, A.V. Palynological, physico-chemical and bioactivity parameters determination, of a less common Greek honeydew honey: “dryomelo”. Food Control 2020, 109, 106940. [Google Scholar] [CrossRef]
- Nešović, M.; Gašić, U.M.; Tosti, T.; Trifković, J.; Baošić, R.; Blagojević, S.; Ignjatović, L.; Tešić, Ž. Physicochemical analysis and phenolic profile of polyfloral and honeydew honey from Montenegro. RSC Adv. 2020, 10, 2462–2471. [Google Scholar]
- Shaaban, B.; Seeburger, V.C.; Schroeder, A.; Lohaus, G. Sugar, amino acid and inorganic ion profiling of the honeydew from different hemipteran species feeding on Abies alba and Picea abies. PLoS ONE 2020, 15, e0228171. [Google Scholar] [CrossRef] [Green Version]
- Vasić, V.; Đurđić, S.; Tosti, T.; Radoičić, A.; Lušić, D.; Milojković-Opsenica, D.; Tešić, Ž.; Trifković, J. Two aspects of honeydew honey authenticity: Application of advance analytical methods and chemometrics. Food Chem. 2020, 305, 125457. [Google Scholar] [CrossRef] [PubMed]
- Terrab, A.; Díez, M.J.; Heredia, F.J. Characterisation of Moroccan unifloral honeys by their physicochemical characteristics. Food Chem. 2002, 79, 373–379. [Google Scholar] [CrossRef]
- Elamine, Y.; Aazza, S.; Lyoussi, B.; Antunes, M.D.; Estevinho, L.M.; Anjos, O.; Resende, M.; Faleiro, M.; Miguel, M.G. Preliminary characterization of a Moroccan honey with a predominance of Bupleurum spinosum pollen. J. Apic. Res. 2017, 57, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Manzanares, A.B.; García, Z.H.; Galdón, B.R.; Rodríguez-Rodríguez, E.M.; Romero, C.D. Physicochemical characteristics and pollen spectrum of monofloral honeys from Tenerife, Spain. Food Chem. 2017, 228, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Vella, A.; Cammilleri, G.; Pulvirenti, A.; Galluzzo, F.; Randisi, B.; Giangrosso, G.; Macaluso, A.; Gennaro, S.; Ciaccio, G.; Cicero, N.; et al. High hydroxycinnamic acids contents in fennel honey produced in Southern Italy. Nat. Prod. Res. 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zerrouk, S.; Boughediri, L.; Seijo, M.C.; Fallico, B.; Arena, E.; Ballistreri, G. Palynological and Physicochemical Properties of Citrus and Eucalyptus Honeys Produced in Blida Region (Algeria). Eur. J. Sci. Res. 2013, 104, 79–90. [Google Scholar]
- Masalha, M.; Abu-Lafi, S.; Abu-Farich, B.; Rayan, M.; Issa, N.; Zeidan, M.; Rayan, A. A New Approach for Indexing Honey for Its Heath/Medicinal Benefits: Visualization of the Concept by Indexing Based on Antioxidant and Antibacterial Activities. Medicines 2018, 5, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Localities | Geographical Situation | Climate | Harvest Period | No. Samples |
---|---|---|---|---|
Bechar | SW, Sahara | Arid | Summer | 1 |
Laghouat | S, Sahara | Arid | Summer | 1 |
M’Sila | E, High plateau | Arid | Summer | 2 |
Naama | W, Sahara | Arid | Summer | 3 |
Tebessá | E, High plateau | Arid | Spring, Summer | 2 |
El Taref | NE, Tell | Humid | Summer | 4 |
Boumerdes | N, Tell | Semiarid | Summer | 1 |
Mascara | NW, Tell | Semiarid | Summer | 2 |
Mostaganem | NW, Tell | Semiarid | Spring, Summer | 15 |
Relizane | NW, Tell | Semiarid | Summer | 2 |
Saida | NW, High plateau | Semiarid | Summer | 3 |
Sidi Bel Abbés | NW, Tell | Semiarid | Summer, Winter | 3 |
Souk-Ahras | NE, High plateau | Semiarid | Summer | 1 |
Médea | N, High plateau | Semiarid | Summer | 7 |
Blida | N, Tell | Subhumid | Spring | 2 |
Guelmá | NE, Tell | Subhumid | Summer | 5 |
Tizi-Ouzou | N, Tell | Subhumid | Summer | 3 |
Tlemcen | NW, Tell | Subhumid | Summer | 5 |
Localities | Dominant Pollen (≥45%) | Accompanying Pollen (45–15%) | Important Pollen (15–3%) | Other Pollen (3–1%) |
---|---|---|---|---|
Bechar (n = 1) | Olea (82.8% 1)/1 2 | Tamarix, Citrus | Sinapis | |
Blida (n = 2) | Foeniculum (82.8%)/1 Eucalyptus (46.1%)/1 | Hedysarum (35.4%) | Pimpinella, Echium, Genista, Punica, Citrus | Paronychia, Brassica |
Boumerdes (n = 1) | - | Pimpinella (23.3%), Ziziphus (17.5%) | Thapsia, Apium, Eryngium, Echium, Hedysarum, Eucalyptus, Tamarix | Brassica |
El Taref (n = 4) | Eucalyptus (85.7%)/2 Erica (55.1%)/1 | Genista (26.3%) | Melilotus, Onobrychis, Malus | Foeniculum, Trifolium. Papaver, Punica, Phacelia |
Guelmá (n = 5) | Eucalyptus (50.5%)/1 | Olea (37.2%), Ziziphus (22.7%), Punica (42.4%), Hedysarum (15.5%), Pimpinella (29.8%), Phacelia (17.6%), Myrtus (17.3%) | Eryngium, Thapsia, Carduus, Borago, Echium, Erica, Genista, Melilotus, Ononis, Trifolium, Papaver, Malus, Ailanthus | Pistacia, Artitalicisia, Brassica, Onobrychis, Peganum, Capparis |
Laghouat (n = 1) | Punica (56.2%)/1 | Ziziphus, Olea | Acacia, Centaurea, Brassica | |
M’Sila (n = 2) | Brassica (69.03%)/2 | Galega (21.1%) | Artitalicisia, Rosmarinus, Thymus, Capparis | Euphorbia, Ziziphus, Daphne |
Mascara (n = 2) | Eucalyptus (69.9%)/1 Olea (56.8%)/1 | Tamarix (26.3%) | Genista, Hedysarum, Quercus, Citrus | Pistacia, Thapsia, Melilotus, Chamaerops, Prunus |
Médea (n = 7) | Eryngium (52.1%)/1 | Ziziphus (41.5%), Melilotus (15.6%), Tamarix (37.0%), Eryngium (27.6%), Hedysarum (19.4%), Pimpinella (16.1%), Eucalyptus (43.0%) | Foeniculum, Pimpinella, Thapsia, Artitalicisia, Carduus, Centaurea, Cichorium, Echium, Brassica, Chenopodium, Convolvulus, Genista, Onobrychis, Quercus, Olea, Papaver, Capparis | Apium, Thymus, Cistus, Cyperus, Euphorbia, Allium, Chamaerops, Phacelia |
Mostaganitalic (n = 15) | Eucalyptus (88.9%)/4 Genista (58.8%)/1 Punica (48.6%)/1 | Olea (35.7%), Tamarix (19.8%), Melilotus (24.8%), Genista (30.8%), Capparis (24.4%), Paronychia (28.2%), Brassica (15.2%) | Schinus, Foeniculum, Centaurea, Chrysantitalicum, Echium, Sinapis, Buxus, Convolvulus, Acacia, Ceratonia, Hedysarum, Muscari, Chamaerops, Papaver, Ziziphus, Rubus, Citrus, Ailanthus | Melia, Smilax |
Naama (n = 3) | Ziziphus (81.5%)/1 Eruca (75.1%)/1 | Eucalyptus (32.5%), Melilotus (25.6%) | Pimpinella, Olea, Tamarix | Apium, Eryngium, Acacia, Genista, Chamaerops, Punica, Peganum, Capparis |
Relizane (n = 2) | Genista (45.6%)/1 | Foeniculum (38.3%), Citrus (16.3%), Ziziphus (38.8%) | Ammi, Eryngium, Sinapis, Olea, Tamarix | Convolvulus, Galega |
Saida (n = 3) | Ziziphus (68.9%)/1 | Eucalyptus (19.7%), Chamaerops (17.6%), Capparis (36.7%), Echium (18.2%), Centaurea (22.0%) | Tamarix, Papaver, Olea, Asparagus, Hedysarum, Cistus, Echium, Cichorium | Genista, Brassica |
Sidi Bel Abbés (n = 3) | Eriobotrya (75.4%)/1 Melilotus (68.7%)/1 | Globularia (16.5%), Eucalyptus (17.8%), Tamarix (28.9%) | Brassica, Ceratonia, Ziziphus | Artitalicisia, Chrysanthitalicum, Sinapis, Euphorbia, Rosmarinus, Olea |
Souk-Ahras (n = 1) | Eucalyptus (76.1%)/1 | Melilotus, Ononis | Ammi, Erica, Punica | |
Tebessá (n = 2) | Hedysarum (45.9%)/1 | Brassica (21.3%) | Eryngium, Foeniculum, Sinapis, Lotus, Quercus, Eucalyptus | Apium, Casuarina, Ephedra, Olea, Malus, Citrus, Capparis |
Tizi-Ouzou (n = 4) | - | Asparagus (34.3%), Hedysarum (22.2%), Ziziphus (32.1%), Foeniculum (17.9%) | Pimpinella, Carduus, Echium, Thymus, Other Lamiaceae, Olea, Papaver, Rubus, Castanea | Apium, Eryngium, Thapsia, Chrysantitalicum, Cichorium, Brassica, Cistus, Ononis, Quercus |
Tlitaliccen (n = 5) | Ziziphus (59.5%)/1 Tamarix (58.1%)/1 | Eucalyptus (23.2%), Punica (30.9%), Chamaerops (37.3%) | Schinus, Eryngium, Foeniculum, Pimpinella, Chenopodium, Ceratonia, Olea, Peganum harmala, Capparis | Pistacia, Artitalicisia, Taraxacum, Arctium, Brassica, Cistus, Hedysarum, Muscari, Papaver |
Bechar (n = 1) | Olea (82.8% 1)/1 2 | Tamarix, Citrus | Sinapis | |
Blida (n = 2) | Foeniculum (82.8%)/1 Eucalyptus (46.1%)/1 | Hedysarum (35.4%) | Pimpinella, Echium, Genista, Punica, Citrus | Paronychia, Brassica |
Boumerdes (n = 1) | - | Pimpinella (23.3%), Ziziphus (17.5%) | Thapsia, Apium, Eryngium, Echium, Hedysarum, Eucalyptus, Tamarix | Brassica |
El Taref (n = 4) | Eucalyptus (85.7%)/2 Erica (55.1%)/1 | Genista (26.3%) | Melilotus, Onobrychis, Malus | Foeniculum, Trifolium. Papaver, Punica, Phacelia |
Guelmá (n = 5) | Eucalyptus (50.5%)/1 | Olea (37.2%), Ziziphus (22.7%), Punica (42.4%), Hedysarum (15.5%), Pimpinella (29.8%), Phacelia (17.6%), Myrtus (17.3%) | Eryngium, Thapsia, Carduus, Borago, Echium, Erica, Genista, Melilotus, Ononis, Trifolium, Papaver, Malus, Ailanthus | Pistacia, Artemisia, Brassica, Onobrychis, Peganum, Capparis |
Laghouat (n = 1) | Punica (56.2%)/1 | Ziziphus, Olea | Acacia, Centaurea, Brassica | |
M’Sila (n = 2) | Brassica (69.03%)/2 | Galega (21.1%) | Artemisia, Rosmarinus, Thymus, Capparis | Euphorbia, Ziziphus, Daphne |
Mascara (n = 2) | Eucalyptus (69.9%)/1 Olea (56.8%)/1 | Tamarix (26.3%) | Genista, Hedysarum, Quercus, Citrus | Pistacia, Thapsia, Melilotus, Chamaerops, Prunus |
Médea (n = 7) | Eryngium (52.1%)/1 | Ziziphus (41.5%), Melilotus (15.6%), Tamarix (37.0%), Eryngium (27.6%), Hedysarum (19.4%), Pimpinella (16.1%), Eucalyptus (43.0%) | Foeniculum, Pimpinella, Thapsia, Artemisia, Carduus, Centaurea, Cichorium, Echium, Brassica, Chenopodium, Convolvulus, Genista, Onobrychis, Quercus, Olea, Papaver, Capparis | Apium, Thymus, Cistus, Cyperus, Euphorbia, Allium, Chamaerops, Phacelia |
Mostaganem (n = 15) | Eucalyptus (88.9%)/4 Genista (58.8%)/1 Punica (48.6%)/1 | Olea (35.7%), Tamarix (19.8%), Melilotus (24.8%), Genista (30.8%), Capparis (24.4%), Paronychia (28.2%), Brassica (15.2%) | Schinus, Foeniculum, Centaurea, Chrysantemum, Echium, Sinapis, Buxus, Convolvulus, Acacia, Ceratonia, Hedysarum, Muscari, Chamaerops, Papaver, Ziziphus, Rubus, Citrus, Ailanthus | Melia, Smilax |
Naama (n = 3) | Ziziphus (81.5%)/1 Eruca (75.1%)/1 | Eucalyptus (32.5%), Melilotus (25.6%) | Pimpinella, Olea, Tamarix | Apium, Eryngium, Acacia, Genista, Chamaerops, Punica, Peganum, Capparis |
Relizane (n = 2) | Genista (45.6%)/1 | Foeniculum (38.3%), Citrus (16.3%), Ziziphus (38.8%) | Ammi, Eryngium, Sinapis, Olea, Tamarix | Convolvulus, Galega |
Saida (n = 3) | Ziziphus (68.9%)/1 | Eucalyptus (19.7%), Chamaerops (17.6%), Capparis (36.7%), Echium (18.2%), Centaurea (22.0%) | Tamarix, Papaver, Olea, Asparagus, Hedysarum, Cistus, Echium, Cichorium | Genista, Brassica |
Sidi Bel Abbés (n = 3) | Eriobotrya (75.4%)/1 Melilotus (68.7%)/1 | Globularia (16.5%), Eucalyptus (17.8%), Tamarix (28.9%) | Brassica, Ceratonia, Ziziphus | Artemisia, Chrysanthemum, Sinapis, Euphorbia, Rosmarinus, Olea |
Souk-Ahras (n = 1) | Eucalyptus (76.1%)/1 | Melilotus, Ononis | Ammi, Erica, Punica | |
Tebessá (n = 2) | Hedysarum (45.9%)/1 | Brassica (21.3%) | Eryngium, Foeniculum, Sinapis, Lotus, Quercus, Eucalyptus | Apium, Casuarina, Ephedra, Olea, Malus, Citrus, Capparis |
Tizi-Ouzou (n = 4) | - | Asparagus (34.3%), Hedysarum (22.2%), Ziziphus (32.1%), Foeniculum (17.9%) | Pimpinella, Carduus, Echium, Thymus, Other Lamiaceae, Olea, Papaver, Rubus, Castanea | Apium, Eryngium, Thapsia, Chrysantemum, Cichorium, Brassica, Cistus, Ononis, Quercus |
Tlemcen (n = 5) | Ziziphus (59.5%)/1 Tamarix (58.1%)/1 | Eucalyptus (23.2%), Punica (30.9%), Chamaerops (37.3%) | Schinus, Eryngium, Foeniculum, Pimpinella, Chenopodium, Ceratonia, Olea, Peganum harmala, Capparis | Pistacia, Artemisia, Taraxacum, Arctium, Brassica, Cistus, Hedysarum, Muscari, Papaver |
Polyfloral (n = 26) | Eucalyptus (n = 7) | Honeydew (n = 6) | Apiaceae (n = 5) | Citrus (n = 5) | Sedra (n = 4) | Punica (n = 3) | Heather (n = 2) | Retama (n = 1) | Rosmarinus (n = 1) | Medlar (n = 1) | Sulla (n = 1) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Main pollen (%) | Eucalyptus (76.7 ± 9.3) | Apiaceae (59.0 ± 19.5) | Citrus (22.0 ± 6.3) | Z. lotus (52.5%) | P. granatum (53.3%) | E. arborea (55.7 ± 0.6) | Genista 79.9% | Rosmarinus 17.0% | Eriobotrya 75.4% | Hedysarum 49.3% | ||
N. Pollen types | 25 ± 6 | 19 ± 6 | 23 ± 8 | 23 ± 6 | 18 ± 6 | 26 ± 7 | 22 ± 3 | 20 ± 2 | 12 | 23 | 13 | 23 |
PK (pollen/g) | 8526 ± 13,738 | 27,985 ± 22,930 | 7433 ± 5757 | 5155 ± 3674 | 9935 ± 5787 | 16,775 ± 10,200 | 3612 ± 2033 | 23,750 ± 17,182 | 21,925 | 1575 | 6125 | 6750 |
Humidity (%) | 16.6 ± 1.3 | 19.4 ± 2.0 | 17.2 ± 0.7 | 16.2 ± 1.0 | 17.3 ± 1.6 | 16.6 ± 1.0 | 14.9 ± 0.2 | 20.0 ± 0.2 | 18.9 | 16 | 14.6 | 15.2 |
EC (mS/cm) | 0.481 ± 0.2 | 0.825 ± 0.2 | 1.033 ± 0.231 | 0.495 ± 0.2 | 0.318 ± 0.1 | 0.535 ± 0.1 | 0.580 ± 0.1 | 0.956 ± 0.2 | 0.440 | 0.330 | 0.135 | 0.133 |
pH | 3.9 ± 0.2 | 4.0 ± 0.2 | 4.2 ± 0.2 | 4.0 ± 0.3 | 3.9 ± 0.2 | 4.4 ± 0.3 | 4.1 ± 0.1 | 4.1 ± 0.1 | 3.6 | 3.8 | 3.9 | 4.0 |
Color (mm Pfund) | 73 ± 22 | 96 ± 10 | 125 ± 13 | 78 ± 19 | 45 ± 7 | 79 ± 9 | 77 ± 7 | 141 ± 3 | 67 | 13 | 28 | 34 |
DI (° Ghote) | 20.1 ± 8.9 | 18.0 ± 6.6 | 21.5 ± 8.1 | 25.7 ± 5.0 | 18.7 ± 6.3 | 23 ± 3.2 | 14.1 ± 6.7 | 14.0 ± 6.6 | 28.3 | 6.4 | 20.6 | 6.7 |
HMF (mg/100 g) | 1.7 ± 0.9 | 1.2 ± 0.4 | 1.7 ± 1.5 | 1.4 ± 1.1 | 1.3 ± 0.6 | 0.9 ± 0.6 | 1.4 ± 0.4 | 1.4 ± 1.9 | 1.4 | 0.9 | 0.7 | 1.0 |
Fructose (%) | 39.9 ± 2.3 | 37.8 ± 1.9 | 38.6 ± 0.8 | 41.5 ± 0.6 | 40.8 ± 1.7 | 39.5 ± 0.7 | 38.5 ± 0.4 | 37.1 ± 0.2 | 38.2 | 38.1 | 40.3 | 33 |
Glucose (%) | 29.3 ± 2.7 | 29.8 ± 1.8 | 28.0 ± 2.6 | 29.3 ± 2.3 | 29.3 ± 2.0 | 28.8 ± 1.8 | 28.9 ± 0.4 | 31.2 ± 3.3 | 31.6 | 30.1 | 34.1 | 25.9 |
Sacarose (%) | 1.1 | nd | nd | nd | 2.3 | nd | 0.1 | nd | 0.7 | nd | 0.6 | 1.3 |
Maltose (%) | 2.1 ± 0.6 | 2.0 ± 0.4 | 2.2 ± 0.6 | 1.3 ± 0.3 | 2.3 ± 0.7 | 2.1 ± 0.5 | 2.4 ± 0.4 | 1.5 ± 0.1 | 2.4 | 3.3 | 2.1 | 1.8 |
Turanose (%) | 1.7 ± 0.4 | 2.0 ± 0.4 | 1.7 ± 0.5 | 1.8 ± 0.5 | 1.7 ± 0.3 | 2.5 ± 0.5 | 2.0 ± 0.2 | 1.3 ± 0.1 | 1.3 | 3.1 | 1.7 | 1.2 |
Raffinose (%) | 0.4 ± 0.6 | 1.5 ± 1.3 | 0.4 ± 0.5 | 0.2 ± 0.1 | 0.2 ± 0.2 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.1 ± 0.0 | 0.1 | 0.3 | 0.1 | 1.5 |
Polyphenol (mg/100 g) | 67.7 ± 22.2 | 72.7 ± 16.8 | 141.2 ± 34.1 | 104.5 ± 10.3 | 50.5 ± 31.5 | 71.6 ± 21.3 | 95.1 ± 5.4 | 130.8 ± 10.8 | 48.1 | 26.5 | 20 | 60.1 |
Flavonoid (mg/100 g) | 4.9 ± 1.8 | 7.1 ± 1.2 | 10.6 ± 1.4 | 5.5 ± 0.8 | 4.1 ± 2.7 | 5.6 ± 1.0 | 5.1 ± 1.0 | 11.1 ± 0.9 | 1.4 | 1.0 | 1.4 | 5.9 |
RSA (%) | 30.6 ± 12.2 | 42.4 ± 10.6 | 61.5 ± 14.7 | 28.0 ± 9.28 | 16.8 ± 8.7 | 31.1 ± 8.8 | 33.6 ± 8.3 | 43.7 ± 5.0 | 22.4 | 13.3 | 14.3 | 17.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Homrani, M.; Escuredo, O.; Rodríguez-Flores, M.S.; Fatiha, D.; Mohammed, B.; Homrani, A.; Seijo, M.C. Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas. Foods 2020, 9, 938. https://doi.org/10.3390/foods9070938
Homrani M, Escuredo O, Rodríguez-Flores MS, Fatiha D, Mohammed B, Homrani A, Seijo MC. Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas. Foods. 2020; 9(7):938. https://doi.org/10.3390/foods9070938
Chicago/Turabian StyleHomrani, Mounia, Olga Escuredo, María Shantal Rodríguez-Flores, Dalache Fatiha, Bouzouina Mohammed, Abdelkader Homrani, and M. Carmen Seijo. 2020. "Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas" Foods 9, no. 7: 938. https://doi.org/10.3390/foods9070938
APA StyleHomrani, M., Escuredo, O., Rodríguez-Flores, M. S., Fatiha, D., Mohammed, B., Homrani, A., & Seijo, M. C. (2020). Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas. Foods, 9(7), 938. https://doi.org/10.3390/foods9070938