Chemical and Sensory Impacts of Accentuated Cut Edges (ACE) Grape Must Polyphenol Extraction Technique on Shiraz Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Vinification Protocol
2.3. Basic Wine Composition and Wine Colour Measurements
2.4. Phenolic Components and Polysaccharide Analyses in Wines
2.5. Sensory Evaluations
2.5.1. Wine Descriptive Profiling by Naïve Wine Consumers Using Rate-All-That-Apply (RATA)
2.5.2. Astringency Profiles of Wines Assessed by a Trained Sensory Panel Using Modified Progressive Profiling (PP)
2.6. Data Analyses
3. Results and Discussion
3.1. Basic Wine Chemical Composition and Colour
3.2. Wine Total Phenolics and Total Tannin
3.2.1. ACE Effects
3.2.2. Maceration Time and Dilution Impacts
3.3. Wine Tannin Composition
3.3.1. Maceration Time and Dilution Impacts
3.3.2. ACE Effects
3.4. Wine Polysaccharide Composition
3.5. Sensory Characteristics
3.5.1. Wine Descriptive Profiling by RATA
3.5.2. Astringency Profiles of Wines Assessed by PP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sparrow, A.M.; Smart, R.E.; Dambergs, R.G.; Close, D.C. Skin particle size affects the phenolic attributes of Pinot noir wine: Proof of concept. Am. J. Enol. Viticult. 2016, 67, 29–37. [Google Scholar] [CrossRef]
- Sparrow, A.M.; Holt, H.E.; Pearson, W.; Dambergs, R.G.; Close, D.C. Accentuated cut edges (ace): Effects of skin fragmentation on the composition and sensory attributes of Pinot Noir wines. Am. J. Enol. Viticult. 2016, 67, 169–178. [Google Scholar] [CrossRef]
- Smart, R.; Sparrow, A. New winemaking process conceived in a northern Tasmania pilot winery-the beginnings of ACE. Wine Vitic. J. 2016, 31, 9. [Google Scholar]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A review of the effect of winemaking techniques on phenolic extraction in red wines. Am. J. Enol. Viticult. 2005, 56, 197–206. [Google Scholar]
- Parpinello, G.P.; Versari, A.; Chinnici, F.; Galassi, S. Relationship among sensory descriptors, consumer preference and color parameters of Italian Novello red wines. Food Res. Int. 2009, 42, 1389–1395. [Google Scholar] [CrossRef]
- Harrison, R. Practical interventions that influence the sensory attributes of red wines related to the phenolic composition of grapes: A review. J. Food Sci. Technol. 2018, 53, 3–18. [Google Scholar] [CrossRef]
- Gawel, R.; Iland, P.G.; Francis, I.L. Characterizing the astringency of red wine: A case study. Food Qual. Prefer. 2001, 12, 83–94. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: Synergistic effect and modulation by aromas. Food Res. Int. 2014, 62, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Schelezki, O.J.; Smith, P.A.; Hranilovic, A.; Bindon, K.A.; Jeffery, D.W. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on polysaccharide and tannin content and composition. Food Chem. 2018, 244, 50–59. [Google Scholar] [CrossRef]
- Petrie, P. Quantifying the advancement and compression of vintage. Aust. N. Z. Grapegrow. Winemak. 2016, 5, 40. [Google Scholar]
- Sparrow, A.M.; Smart, R.E. Pinot noir wine processing and quality improved by skin fragmentation. Catal. Discov. Pract. 2017, 1, 88–98. [Google Scholar] [CrossRef]
- Schelezki, O.J.; Antalick, G.; Šuklje, K.; Jeffery, D.W. Pre-fermentation approaches to producing lower alcohol wines from Cabernet Sauvignon and Shiraz: Implications for wine quality based on chemical and sensory analysis. Food Chem. 2020, 309, 125698. [Google Scholar] [CrossRef] [PubMed]
- Schelezki, O.J.; Šuklje, K.; Boss, P.K.; Jeffery, D.W. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on wine volatile composition and sensory properties. Food Chem. 2018, 259, 196–206. [Google Scholar] [CrossRef]
- King, E.S.; Dunn, R.L.; Heymann, H. The influence of alcohol on the sensory perception of red wines. Food Qual. Prefer. 2013, 28, 235–243. [Google Scholar] [CrossRef]
- Longo, R.; Blackman, J.W.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. Changes in volatile composition and sensory attributes of wines during alcohol content reduction. J. Sci. Food Agric. 2017, 97, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Petrie, P.; Teng, B.; Smith, P.A.; Bindon, K.A. Sugar reduction: Managing high Baume juice using dilution. Wine Vitic. J. 2019, 34, 36. [Google Scholar]
- Teng, B.; Petrie, P.R.; Smith, P.A.; Bindon, K.A. Comparison of water addition and early-harvest strategies to decrease alcohol concentration in Vitis vinifera cv. Shiraz wine: Impact on wine phenolics, tannin composition and colour properties. Aust. J. Grape Wine Res. 2020, 26, 158–171. [Google Scholar] [CrossRef]
- Australian Government, Bureau of Meteorology. Available online: http//www.bom.gov.au (accessed on 11 October 2019).
- Mercurio, M.D.; Dambergs, R.G.; Herderich, M.J.; Smith, P.A. High throughput analysis of red wine and grape phenolics adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format. J. Agric. Food Chem. 2007, 55, 4651–4657. [Google Scholar] [CrossRef]
- Kang, W.; Niimi, J.; Bastian, S.E.P. Reduction of red wine astringency perception using vegetable protein fining agents. Am. J. Enol. Viticult. 2018, 69, 22–31. [Google Scholar] [CrossRef]
- Kassara, S.; Kennedy, J.A. Relationship between red wine grade and phenolics. 2. Tannin composition and size. J. Agric. Food Chem. 2011, 59, 8409–8412. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Jones, G.P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.A.; Taylor, A.W. Analysis of proanthocyanidins by high-performance gel permeation chromatography. J. Chromatogr. A 2003, 995, 99–107. [Google Scholar] [CrossRef]
- Bindon, K.A.; Kennedy, J.A. Ripening-induced changes in grape skin proanthocyanidins modify their interaction with cell walls. J. Agric. Food Chem. 2011, 59, 2696–2707. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Bindon, K.; Bastian, S.E.; Jiranek, V.; Wilkinson, K.L. Use of winemaking supplements to modify the composition and sensory properties of shiraz wine. J. Agric. Food Chem. 2017, 65, 1353–1364. [Google Scholar] [CrossRef]
- Ruiz-Garcia, Y.; Smith, P.A.; Bindon, K.A. Selective extraction of polysaccharide affects the adsorption of proanthocyanidin by grape cell walls. Carbohydr. Polym. 2014, 114, 102–114. [Google Scholar] [CrossRef]
- Danner, L.; Crump, A.M.; Croker, A.; Gambetta, J.M.; Johnson, T.E.; Bastian, S.E.P. Comparison of rate-all-that-apply (RATA) and descriptive analysis (DA) for the sensory profiling of wine. Am. J. Enol. Viticult. 2018, 69, 12–21. [Google Scholar] [CrossRef]
- Oppermann, A.; de Graaf, C.; Scholten, E.; Stieger, M.; Piqueras-Fiszman, B. Comparison of rate-all-that-apply (RATA) and descriptive sensory analysis (DA) of model double emulsions with subtle perceptual differences. Food Qual. Prefer. 2017, 56, 55–68. [Google Scholar] [CrossRef]
- Vidal, L.; Giménez, A.; Medina, K.; Boido, E.; Ares, G. How do consumers describe wine astringency? Food Res. Int. 2015, 78, 321–326. [Google Scholar] [CrossRef]
- Kang, W.; Niimi, J.; Muhlack, R.A.; Smith, P.A.; Bastian, S.E. Dynamic characterization of wine astringency profiles using modified progressive profiling. Food Res. Int. 2019, 120, 244–254. [Google Scholar] [CrossRef]
- Somers, T.C.; Evans, M.E. Spectral evaluation of young red wines: Anthocyanin equilibria, total phenolics, free and molecular SO2, “chemical age”. J. Sci.I Food Agric. 1977, 28, 279–287. [Google Scholar] [CrossRef]
- Payne, C.; Bowyer, P.K.; Herderich, M.; Bastian, S.E.P. Interaction of astringent grape seed procyanidins with oral epithelial cells. Food Chem. 2009, 115, 551–557. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Sá, M.d.; Leandro, C.a.o.; Caldeira, I.; Duarte, F.L.; Spranger, I. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency. J. Agric. Food Chem. 2013, 61, 939–946. [Google Scholar] [CrossRef]
- McRae, J.M.; Schulkin, A.; Kassara, S.; Holt, H.E.; Smith, P.A. Sensory properties of wine tannin fractions: Implications for in-mouth sensory properties. J. Agric. Food Chem. 2013, 61, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.O. Phenolics and ripening in grape berries. Am. J. Enol. Viticult. 2006, 57, 249–256. [Google Scholar]
- Bindon, K.A.; Kassara, S.; Smith, P.A. Towards a model of grape tannin extraction under wine-like conditions: The role of suspended mesocarp material and anthocyanin concentration. Aust. J. Grape Wine Res. 2017, 23, 22–32. [Google Scholar] [CrossRef]
- Bindon, K.A.; Smith, P.A.; Holt, H.; Kennedy, J.A. Interaction between grape-derived proanthocyanidins and cell wall material. 2. Implications for vinification. J. Agric. Food Chem. 2010, 58, 10736–10746. [Google Scholar] [CrossRef]
- Moskowitz, H.R. The sweetness and pleasantness of sugars. Am. J. Psychol 1971, 84, 387–405. [Google Scholar] [CrossRef]
- Quijada-Morín, N.; Williams, P.; Rivas-Gonzalo, J.C.; Doco, T.; Escribano-Bailón, M.T. Polyphenolic, polysaccharide and oligosaccharide composition of Tempranillo red wines and their relationship with the perceived astringency. Food Chem. 2014, 154, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Chong, H.H.; Cleary, M.T.; Dokoozlian, N.; Ford, C.M.; Fincher, G.B. Soluble cell wall carbohydrates and their relationship with sensory attributes in Cabernet Sauvignon wine. Food Chem. 2019, 298, 124745. [Google Scholar] [CrossRef]
- Vidal, S.; Francis, L.; Noble, A.; Kwiatkowski, M.; Cheynier, V.; Waters, E. Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine. Anal. Chim. Acta 2004, 513, 57–65. [Google Scholar] [CrossRef]
- Unterkofler, J.; Muhlack, R.A.; Jeffery, D.W. Processes and purposes of extraction of grape components during winemaking: Current state and perspectives. Appl. Microbiol. Biotechnol. 2020, 104, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Cretin, B.N.; Dubourdieu, D.; Marchal, A. Influence of ethanol content on sweetness and bitterness perception in dry wines. LWT 2018, 87, 61–66. [Google Scholar] [CrossRef]
- Hufnagel, J.C.; Hofmann, T. Quantitative reconstruction of the nonvolatile sensometabolome of a red wine. J. Agric. Food Chem. 2008, 56, 9190–9199. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons: Chichester, West Sussex, UK, 2016. [Google Scholar]
- Pearson, W.; Schmidtke, L.; Francis, L.; Blackman, J. Sensory analysis: Provenance, preference and pivot: Exploring premium Shiraz with international sommeliers and Australian winemakers using a new rapid sensory method. Wine Vitic. J. 2018, 33, 35. [Google Scholar]
- Bajec, M.R.; Pickering, G.J. Astringency: Mechanisms and perception. Crit. Rev. Food Sci. Nutr. 2008, 48, 858–875. [Google Scholar] [CrossRef]
- Guinard, J.-X.; Pangborn, R.M.; Lewis, M.J. The time-course of astringency in wine upon repeated ingestion. Am. J. Enol. Viticult. 1986, 37, 184–189. [Google Scholar]
- Vidal, L.; Antúnez, L.; Giménez, A.; Medina, K.; Boido, E.; Ares, G. Dynamic characterization of red wine astringency: Case study with Uruguayan Tannat wines. Food Res. Int. 2016, 82, 128–135. [Google Scholar] [CrossRef]
- Vidal, L.; Antúnez, L.; Giménez, A.; Medina, K.; Boido, E.; Ares, G. Sensory characterization of the astringency of commercial Uruguayan Tannat wines. Food Res. Int. 2017, 102, 425–434. [Google Scholar] [CrossRef]
- Kemp, B.; Trussler, S.; Willwerth, J.; Inglis, D. Applying temporal check-all-that-apply (TCATA) to mouthfeel and texture properties of red wines. J. Sens. 2019, 34, e12503. [Google Scholar] [CrossRef]
- Jack, F.R.; Piggott, J.R.; Paterson, A. Analysis of textural changes in hard cheese during mastication by progressive profiling. J. Food Sci. 1994, 59, 539–543. [Google Scholar] [CrossRef]
- Peltier, C.; Visalli, M.; Schlich, P. Enhancing canonical variate analysis by taking the scaling effect into account. Food Qual. Prefer. 2018, 64, 88–93. [Google Scholar] [CrossRef]
- Lattey, K.A.; Bramley, B.; Francis, I. Consumer acceptability, sensory properties and expert quality judgements of Australian Cabernet Sauvignon and Shiraz wines. Aust. J. Grape Wine Res. 2010, 16, 189–202. [Google Scholar] [CrossRef]
- Cramer, R.D. Partial least squares (PLS): Its strengths and limitations. Perspect. Drug Discov. Des. 1993, 1, 269–278. [Google Scholar] [CrossRef]
- Bindon, K.A.; Kassara, S.; Solomon, M.; Bartel, C.; Smith, P.A.; Barker, A.; Curtin, C. Commercial Saccharomyces cerevisiae yeast strains significantly impact Shiraz tannin and polysaccharide composition with implications for wine colour and astringency. Biomolecules 2019, 9, 466. [Google Scholar] [CrossRef] [Green Version]
- Courregelongue, S.; Schlich, P.; Noble, A.C. Using repeated ingestion to determine the effect of sweetness, viscosity and oiliness on temporal perception of soymilk astringency. Food Qual. Prefer. 1999, 10, 273–279. [Google Scholar] [CrossRef]
- Nguyen, A.N.; Johnson, T.E.; Jeffery, D.W.; Capone, D.L.; Danner, L.; Bastian, S.E. Sensory and chemical drivers of wine consumers’ preference for a new Shiraz wine product containing Ganoderma lucidum extract as a novel ingredient. Foods 2020, 9, 224. [Google Scholar] [CrossRef] [Green Version]
Alcohol (% v/v) | Total Residual Sugar (g/L) | pH | TA (g/L) | VA(g/L) | Malic Acid (g/L) | Free SO2 (mg/L) | Total SO2 (mg/L) | |
---|---|---|---|---|---|---|---|---|
ACE_Short | § 14.83 ± 0.05 a | 1.63 ± 0.12 | 3.54 ± 0.02 ab | 6.83 ± 0.06 bc | 0.72 ± 0.06 | <0.40 | 29.67 ± 0.57 | 51.33 ± 2.52 |
ACE_Long | 14.57 ± 0.15 b | 1.57 ± 0.21 | 3.53 ± 0.02 b | 6.77 ± 0.06 c | 0.70 ± 0.06 | <0.40 | 30.00 ± 1.00 | 48.33 ± 1.52 |
ACE_Long_Dil | 14.23 ± 0.25 c | 1.37 ± 0.12 | 3.57 ± 0.02 a | 6.67 ± 0.21 c | 0.70 ± 0.21 | <0.40 | 28.67 ± 1.52 | 50.33 ± 0.57 |
NOACE_Short | 14.83 ± 0.05 a | 1.93 ± 0.15 | 3.48 ± 0.01 c | 7.17 ± 0.06 a | 0.73 ± 0.06 | <0.40 | 27.33 ± 1.52 | 48.67 ± 1.53 |
NOACE_Long | 14.93 ± 0.05 a | 1.33 ± 0.23 | 3.52 ± 0.01 b | 6.97 ± 0.06 b | 0.71 ± 0.06 | <0.40 | 29.00 ± 2.00 | 48.00 ± 0.00 |
NOACE_Long_Dil | 14.50 ± 0.00 b | 1.47 ± 0.25 | 3.57 ± 0.01 a | 6.70 ± 0.06 c | 0.70 ± 0.10 | <0.40 | 31.00 ± 1.00 | 50.00 ± 1.73 |
F | 8.452 | 2.914 | 8.502 | 6.488 | 1.492 | N/A | 1.594 | 1.827 |
p | †0.002 | 0.061 | 0.002 | 0.004 | 0.273 | N/A | 0.243 | 0.187 |
§ Wine Color Density (a.u.) | Hue | Total Anthocyanins (mg/L) | SO2 Resistant Pigments (a.u.) | |
---|---|---|---|---|
ACE_Short | † 14.74 ± 0.73 a | 0.56 ± 0.00 | 590 ± 28 | 2.70 ± 0.10 ab |
ACE_Long | 14.76 ± 0.31 a | 0.56 ± 0.01 | 607 ± 10 | 2.68 ± 0.08 ab |
ACE_Long_Dil | 13.75 ± 0.53 ab | 0.56 ± 0.01 | 608 ± 20 | 2.56 ± 0.09 bc |
NOACE_Short | 14.28 ± 0.61 a | 0.56 ± 0.00 | 587 ± 13 | 2.72 ± 0.06 a |
NOACE_Long | 12.58 ± 0.43 c | 0.58 ± 0.01 | 557 ± 21 | 2.48 ± 0.06 c |
NOACE_Long_Dil | 12.93 ± 0.80 bc | 0.58 ± 0.01 | 573 ± 31 | 2.45 ± 0.06 c |
F | 7.261 | 2.860 | 2.391 | 6.225 |
p | ‡0.002 | 0.063 | 0.100 | 0.005 |
§ MM (Phloro) (g/mol) | † mDP | Epigallocatechin (%) | epicatechin Gallate (%) | Mass Conversion (%) of Phloroglucinolysis | ‡ MM (GPC) (g/mol) | |
---|---|---|---|---|---|---|
ACE_Short | δ 2893 ± 53 a | 9.58 ± 0.17 a | 34.6 ± 1.0 a | 4.1 ± 0.0 c | 40 ± 2 | 1793 ± 33 b |
ACE_Long | 2616 ± 15 b | 8.64 ± 0.06 b | 32.6 ± 0.7 bc | 4.9 ± 0.2 a | 40 ± 1 | 1833 ± 32 a |
ACE_Long_Dil | 2691 ± 82 b | 8.89 ± 0.27 b | 31.8 ± 1.3 c | 4.7 ± 0.2 a | 38 ± 2 | 1811 ± 12 ab |
NOACE_Short | 2884 ± 46 a | 9.55 ± 0.15 a | 34.3 ± 0.7 ab | 4.1 ± 0.1 c | 38 ± 2 | 1778 ± 23 b |
NOACE_Long | 2720 ± 105 b | 8.99 ± 0.34 b | 31.1 ± 1.0 c | 4.7 ± 0.1 a | 39 ± 3 | 1787 ± 36 b |
NOACE_Long_Dil | 2583 ± 114 b | 8.55 ± 0.37 b | 32.0 ± 1.3 c | 4.4 ± 0.0 b | 39 ± 4 | 1673 ± 24 c |
F | 7.752 | 7.968 | 5.595 | 18.758 | N/A | 20.966 |
p | Φ0.003 | 0.003 | 0.010 | <0.0001 | N/A | <0.0001 |
Mannose | Rhamnose | Glucuronic Acid | Galacturonic Acid | Glucose | Galactose | Xylose | Arabinose | Fucose | Total Polysaccharides | |
---|---|---|---|---|---|---|---|---|---|---|
ACE_Short | § 114 ± 4 | 40 ± 2 b | 8 ± 1 b | 271 ± 12 c | 32 ± 4 c | 123 ± 4 bc | 7 ± 1 | 126 ± 6 c | 13 ± 1 c | 736 ± 28 c |
ACE_Long | 116 ± 4 | 49 ± 3 a | 10 ± 0 a | 307 ± 9 a | 50 ± 11 ab | 135 ± 2 a | 7 ± 2 | 153 ± 4 a | 16 ± 2 ab | 842 ± 26 a |
ACE_Long_Dil | 113 ± 1 | 49 ± 2 a | 11 ± 1 a | 293 ± 9 ab | 57 ± 4 ab | 130 ± 3 ab | 8 ± 0 | 148 ± 2 ab | 15 ± 0 ab | 824 ± 9 ab |
NOACE_Short | 116 ± 5 | 38 ± 1 b | 11 ± 1 a | 251 ± 9 d | 61 ± 2 a | 121 ± 5 c | 7 ± 1 | 125 ± 5 c | 14 ± 1 bc | 744 ± 23 c |
NOACE_Long | 117 ± 2 | 46 ± 1 a | 11 ± 1 a | 283 ± 6 bc | 47 ± 12 b | 131 ± 4 ab | 6 ± 1 | 145 ± 3 b | 16 ± 1 a | 802 ± 26 ab |
NOACE_Long_Dil | 111 ± 9 | 46 ± 1 a | 11 ± 1 a | 281 ± 4 bc | 50 ± 5 ab | 129 ± 6 abc | 7 ± 1 | 144 ± 7 b | 17 ± 1 a | 795 ± 35 b |
F | 0.602 | 15.325 | 3.947 | 14.743 | 5.155 | 3.898 | 1.029 | 19.492 | 5.621 | 8.146 |
p | 0.700 | †<0.0001 | 0.024 | <0.0001 | 0.009 | 0.025 | 0.443 | <0.0001 | 0.007 | 0.001 |
Attribute | Definition | F | p |
---|---|---|---|
Aroma | |||
A_FL | Floral/perfume/musk | 2.292 | 0.044 |
A_Van | Vanilla | 2.112 | 0.062 |
Taste | |||
T_Sw | Sweet | 2.201 | 0.052 |
Flavour | |||
F_RF | Red fruits (e.g., raspberry, strawberry, red cherry, and red current...) | 2.036 | 0.071 |
F_ED | Earthy/dusty | 3.210 | 0.007 |
F_FL | Floral/perfume/musk | 1.999 | 0.076 |
F_Her | Herbaceous | 1.984 | 0.079 |
F_Van | Vanilla | 2.144 | 0.058 |
Mouth Coat 2 | Adhesive 2 | Overall Astringency Intensity 3 | Graininess 3 | |
---|---|---|---|---|
Cumulative Q2 quality index | 0.721 | 0.918 | 0.757 | 0.924 |
R2 | 0.897 | 0.971 | 0.899 | 0.974 |
Std. deviation | 0.913 | 0.549 | 0.964 | 0.209 |
Mean-square error | 0.334 | 0.120 | 0.372 | 0.017 |
Root mean squared error of prediction | 0.578 | 0.347 | 0.610 | 0.132 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, W.; Bindon, K.A.; Wang, X.; Muhlack, R.A.; Smith, P.A.; Niimi, J.; Bastian, S.E.P. Chemical and Sensory Impacts of Accentuated Cut Edges (ACE) Grape Must Polyphenol Extraction Technique on Shiraz Wines. Foods 2020, 9, 1027. https://doi.org/10.3390/foods9081027
Kang W, Bindon KA, Wang X, Muhlack RA, Smith PA, Niimi J, Bastian SEP. Chemical and Sensory Impacts of Accentuated Cut Edges (ACE) Grape Must Polyphenol Extraction Technique on Shiraz Wines. Foods. 2020; 9(8):1027. https://doi.org/10.3390/foods9081027
Chicago/Turabian StyleKang, Wenyu, Keren A. Bindon, Xingchen Wang, Richard A. Muhlack, Paul A. Smith, Jun Niimi, and Susan E. P. Bastian. 2020. "Chemical and Sensory Impacts of Accentuated Cut Edges (ACE) Grape Must Polyphenol Extraction Technique on Shiraz Wines" Foods 9, no. 8: 1027. https://doi.org/10.3390/foods9081027
APA StyleKang, W., Bindon, K. A., Wang, X., Muhlack, R. A., Smith, P. A., Niimi, J., & Bastian, S. E. P. (2020). Chemical and Sensory Impacts of Accentuated Cut Edges (ACE) Grape Must Polyphenol Extraction Technique on Shiraz Wines. Foods, 9(8), 1027. https://doi.org/10.3390/foods9081027