Modern Methods for Assessing the Quality of Bee Honey and Botanical Origin Identification
Abstract
:1. Introduction
2. Honey Composition
3. Methods for Assessing Bee Honey Quality
3.1. Variety of Honey
3.2. Sugars
3.3. Water
3.4. Enzymes: Diastase and Invertase
3.5. pH and Free Acidity
3.6. Ash and Elements
3.7. Proline
3.8. Polyphenols and Other Antioxidant Composition
3.9. Hydroxymethylfurfural
3.10. Insoluble Matter and Contaminants
3.11. Adulterations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Council Directive 2001/110/EC of 20 December 2001 relating to honey. 2001. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32001L0110 (accessed on 19 August 2019).
- International Honey Commision. World Network of Honey Science. Harmonised Methods of the International Honey Commission. 2009. Available online: http://ihc-platform.net/ihcmethods2009.pdf (accessed on 19 August 2019).
- Kocyigit, A.; Guler, E.M.; Kaleli, S. Anti-inflammatory and antioxidative properties of honey bee venom on Freund’s Complete Adjuvant-induced arthritis model in rats. Toxicon. 2019, 161, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Fauzi, A.N.; Norazmi, M.N.; Yaacob, N.S. Tualang honey induces apoptosis and disrupts the mitochondrial membrane potential of human breast and cervical cancer cell lines. Food Chem. Toxicol. 2019, 49, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Bompadre, S.; Quiles, J.L.; Sanna, G.; Spano, N.; Giampieri, F.; Battino, M. Strawberry-tree honey induces growth inhibition of human colon cancer cells and increases ROS generation: A comparison with Manuka honey. Int. J. Mol. 2017, 18, 613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oduwole, O.; Oyo–Ita, A.; Meremikwu, M.M.; Udoh, E.E. Honey for acute cough in children. Cochrane Database Syst. Rev. 2018, 4, CD007094. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, F.; Salehi, S.; Kohanmoo, A.; Akhlaghi, M. Effect of natural honey on glycemic control and anthropometric measures of patients with type 2 diabetes: A randomized controlled crossover trial. Int. Prev. Med. 2019, 10, 3. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, Y.; Xing, F.; Leung, T.M.; Liong, E.C.; Tipoe, G.L. Bee’s honey attenuates non–alcoholic steatohepatitis–induced hepatic injury through the regulation of thioredoxin–interacting protein–NLRP3 inflammasome pathway. Eur. J. Nutr. 2016, 55, 1465–1477. [Google Scholar] [CrossRef]
- Watanabe, K.; Rahmasari, R.; Matsunaga, A.; Haruyama, T.; Kobayashi, N. Anti–influenza viral effects of honey in vitro: Potent high activity of manuka honey. Arch. Med. Res. 2014, 45, 359–365. [Google Scholar] [CrossRef]
- Moskwa, J.; Borawska, M.H.; Markiewicz-Żukowska, R.; Puścion-Jakubik, A.; Naliwajko, S.K.; Socha, K.; Soroczyńska, J. Polish natural bee honeys are anti-proliferative and anti-metastatic agents in human glioblastoma multiforme U87MG cell line. PLoS ONE 2014, 9, e90533. [Google Scholar] [CrossRef]
- Boyanova, L.; Ilieva, J.; Gergova, G.; Vladimirov, B.; Nikolov, R.; Mitov, I. Honey and green/black tea consumption may reduce the risk of Helicobacter pylori infection. Diag. Micr. Infec. Dis. 2015, 82, 85–86. [Google Scholar] [CrossRef]
- Liu, T.M.; Luo, Y.W.; Tam, K.W.; Lin, C.C.; Huang, T.W. Prophylactic and therapeutic effects of honey on radiochemotherapy-induced mucositis: A meta-analysis of randomized controlled trials. Support. Care Cancer 2019, 27, 2361–2370. [Google Scholar] [CrossRef]
- Tavafzadeh, S.S.; Ooi, F.K.; Chen, C.K.; Sulaiman, S.A.; Hung, L.K. Bone mechanical properties and mineral density in response to cessation of jumping exercise and honey supplementation in young female rats. BioMed Res. Int. 2015, 938782. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Chattopadhyay, S.; Azam, M.; Sur, P.K. The role of honey in healing of bedsores in cancer patients. South Asian J. Cancer 2012, 1, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Punitan, R.; Sulaiman, S.A.; Hasan, H.B.; Shatriah, I. Clinical and antibacterial effects of Tualang honey on Pseudomonas-induced keratitis in rabit eyes. Cureus 2019, 11, e4332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samarghandian, S.; Afshari, J.T.; Davoodi, S. Honey induces apoptosis in renal cell carcinoma. Pharmacogn. Mag. 2011, 7, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braithwaite, I.; Hunt, A.; Riley, J.; Fingleton, J.; Kocks, J.; Corin, A.; Helm, C.; Sheahan, D.; Tofield, C.; Montgomery, B.; et al. Randomised controlled trial of topical kanuka honey for the treatment of rosacea. BMJ Open 2015, 5, e007651. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Food and Agriculture Organization of the United Nations. (1987)—Rev. 1, (2001)—Rev. 2. Codex Alimentarius Standard. Revised Codex Standard for Honey 12–1981. Available online: http://ihc-platform.net/codex2001.pdf (accessed on 20 August 2019).
- Directive 2014/63/EU of The European Parliament and of the Council of 15 May 2014 Amending Council Directive 2001/110/EC Relating to Honey. Available online: https://www.fsai.ie/uploadedFiles/Dir2014_63.pdf (accessed on 22 July 2020).
- Bogdanov, S. Honey Composition. Bee Product Science. 2016. Available online: https://www.researchgate.net/publication/304011775_Honey_Composition (accessed on 30 August 2019).
- Dybova-Jachowicz, S.; Sadowska, A. Palinologia [Palynology]; IB PAN: Kraków, Poland, 2003. (In Polish) [Google Scholar]
- Maurizio, A.; Hodges, F.E.D., Translators; Pollen analysis of honey. Bee World 1951, 32, 1–5. [CrossRef]
- Ulloa, P.A.; Guerra, R.; Cavaco, A.M.; Rosa da Costa, A.M.; Figueira, A.C.; Brigas, A.F. Determination of the botanical origin of honey by sensor fusion of impedance e-tongue and optical spectroscopy. Comput. Electron. Agric. 2013, 94, 1–11. [Google Scholar] [CrossRef]
- Čačić, F.; Primorac, L.; Kenjerić, D.; Benedetti, S.; Mandić, M.L. Application of electronic nose in honey geographical origin characterization. J. Cent. Eur. Agric. 2009, 10, 19–26. Available online: https://www.researchgate.net/publication/285919383_Application_of_electronic_nose_in_honey_geographical_origin_characterisation (accessed on 22 July 2020).
- Sousa, M.E.; Dias, L.G.; Veloso, A.C.; Estevinho, L.; Peres, A.M.; Machado, A.A. Practical procedure for discriminating monofloral honey with a broad pollen profile variability using an electronic tongue. Talanta 2014, 128, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Dymerski, T.; Gębicki, J.; Wardencki, W.; Namieśnik, J. Application of an electronic nose instrument to fast classification of Polish honey types. Sensors (Basel) 2014, 14, 10709–10724. [Google Scholar] [CrossRef] [Green Version]
- Simova, S.; Atanassov, A.; Shishiniova, M.; Bankova, V. A rapid differentiation between oak honeydew honey and nectar and other honeydew honeys by NMR spectroscopy. Food Chem. 2012, 134, 1706–1710. [Google Scholar] [CrossRef] [PubMed]
- Rossano, R.; Larocca, M.; Polito, T.; Perna, A.M.; Padula, M.C.; Martelli, G.; Riccio, P. What are the proteolytic enzymes of honey and what they do tell us? A fingerprint analysis by 2–D zymography of unifloral honeys. PLoS ONE 2012, 7, e49164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.Z.; Wang, S.; Chen, Y.F.; Wu, Y.Q.; Tian, J.; Si, J.J.; Zhang, C.P.; Zheng, H.Q.; Hu, F.L. Authentication of Apis cerana honey and Apis mellifera honey based on Major Royal Jelly Protein 2 Gene. Molecules 2019, 24, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuberoso, C.I.; Jerković, I.; Sarais, G.; Congiu, F.; Marijanović, Z.; Kuś, P.M. Color evaluation of seventeen European unifloral honey types by means of spectrophotometrically determined CIE L*C*abh°ab chromaticity coordinates. Food Chem. 2014, 145, 284–291. [Google Scholar] [CrossRef]
- Lenhardt, L.; Bro, R.; Zeković, I.; Dramićanin, T.; Dramićanin, M.D. Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey. Food Chem. 2015, 175, 284–291. [Google Scholar] [CrossRef]
- Bruni, I.; Galimberti, A.; Caridi, L.; Scaccabarozzi, D.; De Mattia, F.; Casiraghi, M.; Labra, M. A DNA barcoding approach to identify plant species in multiflower honey. Food Chem. 2015, 170, 308–315. [Google Scholar] [CrossRef]
- Richardson, R.T.; Lin, C.H.; Sponsler, D.B.; Quijia, J.O.; Goodell, K.; Johnson, R.M. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl. Plant Sci. 2015, 3, 1400066. [Google Scholar] [CrossRef]
- She, S.; Chen, L.; Song, H.; Lin, G.; Li, Y.; Zhou, J.; Liu, C. Discrimination of geographical origins of Chinese acacia honey using complex 13C/12C, oligosaccharides and polyphenols. Food Chem. 2019, 272, 580–585. [Google Scholar] [CrossRef]
- Frew, R.; McComb, K.; Croudis, L.; Clark, D.; Van Hale, R. Modified sugar adulteration test applied to New Zealand honey. Food Chem. 2013, 141, 4127–4131. [Google Scholar] [CrossRef]
- Kamiloglu, S. Authenticity and traceability in beverages. Food Chem. 2019, 277, 12–24. [Google Scholar] [CrossRef]
- Moore, J.C.; Spink, J.; Lipp, M. Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. J. Food Sci. 2012, 77, R118–R126. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yao, L.; Li, Y.; Chen, L.; Wu, L.; Zhao, J. Floral classification of honey using liquid chromatography–diode array detection–tandem mass spectrometry and chemometric analysis. Food Chem. 2014, 145, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Alotibi, I.A.; Harakeh, S.M.; Al-Mamary, M.; Mariod, A.A.; Al-Jaouni, S.K.; Al-Masaud, S.; Alharbi, M.G.; Al-Hindi, R.R. Floral markers and biological activity of Saudi honey. Saudi J. Biol. Sci. 2018, 25, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Prabucki, J. (Ed.) Pszczelnictwo [Apiculture]; Wydawnictwo Promocyjne Albatros: Szczecin, Poland, 1998. (In Polish) [Google Scholar]
- Ruiz–Matute, A.I.; Sanz, M.L.; Martinez–Castro, I. Use of gas chromatography–mass spectrometry for identification of a new disaccharide in honey. J. Chromatogr. A 2007, 1157, 480–483. [Google Scholar] [CrossRef] [Green Version]
- Wilde, J. (Ed.) Encyklopedia Pszczelarska [Beekeeping Encyclopedia]; Powszechne Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 2013. (In Polish) [Google Scholar]
- Rizelio, V.M.; Tanfen, L.; da Silveira, R.; Gonzaga, L.V.; Costa, A.C.; Fett, R. Development of a fast capillary electrophoresis method for determination of carbohydrates in honey samples. Talanta 2012, 93, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Puscas, A.; Hosu, A.; Cimpoiu, C. Application of a newly developed and validated high–performance thin–layer chromatographic method to control honey adulteration. J. Chromatogr. A 2013, 1272, 132–135. [Google Scholar] [CrossRef]
- Ӧzbalci, B.; Boyaci, İ.H.; Topcu, A.; Kadilar, C.; Tamer, U. Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chem. 2013, 136, 1444–1452. [Google Scholar] [CrossRef]
- Wang, C.W.; Chen, W.T.; Chang, H.T. Quantification of saccharides in honey samples through surface–assisted laser desorption/ionization mass spectrometry using HgTe nanostructures. J. Am. Soc. Mass Spectrom. 2014, 25, 1247–1252. [Google Scholar] [CrossRef]
- Ma, T.; Zhao, H.; Liu, C.; Zhu, M.; Gao, H.; Cheng, N.; Cao, W. Discrimination of natural mature acacia honey based on multi-physicochemical parameters combined with chemometric analysis. Molecules 2019, 24, 2674. [Google Scholar] [CrossRef] [Green Version]
- Tappi, S.; Laghi, L.; Dettori, A.; Piana, L.; Ragni, L.; Rocculi, P. Investigation of water state during induced crystallization of honey. Food Chem. 2019, 294, 260–266. [Google Scholar] [CrossRef]
- Naik, R.R.; Gandhi, N.S.; Thakur, M.; Nanda, V. Analysis of crystallization phenomenon in Indian honey using molecular dynamics simulation and artificial neural network. Food Chem. 2019, 300, 125182. [Google Scholar] [CrossRef] [PubMed]
- Sakač, N.; Sak–Bosnar, M. A rapid method for the determination of honey diastase activity. Talanta 2012, 93, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, L.; Chen, M.; Yuan, D.; Nong, S. Sensitive monitoring of penicillin antibiotics in milk and honey treated by stir bar sorptive extraction based on monolith and LC–electrospray MS detection. J. Sep. Sci. 2013, 36, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, B.; Zhang, X.Y.; Shen, C.Y.; Zhang, R.; Li, L.H.; Fei, X.Q.; Zhao, Z.Y. Determination of β-fructofuranosidase by Liquid Chromatography with Refractive Index Detector. Chin. J. Anal. Chem. 2012, 40, 1602–1606. [Google Scholar] [CrossRef]
- Ananias, K.R.; de Melo, A.A.; de Moura, C.J. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil. Braz. J. Microbiol. 2014, 44, 679–683. [Google Scholar] [CrossRef] [Green Version]
- Ratiu, I.A.; Al-Suod, H.; Bukowska, M.; Ligor, M.; Buszewski, B. Correlation study of honey regarding their physicochemical properties and sugar and cyclitos content. Molecules 2020, 25, 34. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Gao, Q.; Feng, J.; Lu, Y. Analysis of inorganic cations in honey by capillary zone electrophoresis with indirect UV detection. J. Chromatogr. Sci. 2012, 50, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Grembecka, M.; Szefer, P. Evaluation of honeys and bee products quality based on their mineral composition using multivariate techniques. Environ. Monit. Asses. 2013, 185, 4033–4047. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, C.K.; dos Anjos, V.E.; Felsner, M.L.; Torres, Y.R.; Quináia, S.P. Direct determination of Cd, Pb and Cr in honey by slurry sampling electrothermal atomic absorption spectrometry. Food Chem. 2014, 146, 166–173. [Google Scholar] [CrossRef]
- Borawska, M.H.; Kapała, J.; Hukałowicz, K.; Markiewicz, R. Radioactivity of honeybee honey. Bull. Environ. Contam. Toxicol. 2000, 10, 617–621. [Google Scholar] [CrossRef]
- Borawska, M.H.; Kapała, J.; Puścion–Jakubik, A.; Horembała, J.; Markiewicz–Żukowska, R. Radioactivity of honeys from Poland after the Fukushima accident. Bull. Environ. Contam. Toxicol. 2013, 91, 489–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro Rde, O.; Mársico, E.T.; de Jesus, E.F.; da Silva Carneiro, C.; Júnior, C.A.; de Almeida, E.; Filho, V.F. Determination of trace elements in honey from different regions in Rio de Janeiro State (Brazil) by total reflection X–Ray fluorescence. J. Food Sci. 2014, 79, T738–T742. [Google Scholar] [CrossRef] [PubMed]
- Bocian, A.; Buczkowicz, J.; Jaromin, M.; Hus, K.K.; Legáth, J. An effective method of isolating honey proteins. Molecules 2019, 24, 2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vacek, J.; Ulrichová, J.; Klejdus, B.; Šimánek, V. Analytical methods and strategies in the study of plant polyphenolics in clinical samples. Anal. Methods 2010, 2, 604–613. [Google Scholar] [CrossRef]
- Djeridane AYousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wu, H.L.; Wang, J.Y.; Tu, D.Z.; Kang, C.; Zhao, J.; Chen, Y.; Miu, X.X.; Yu, R.Q. Fast HPLC–DAD quantification of nine polyphenols in honey by using second–order calibration method based on trilinear decomposition algorithm. Food Chem. 2013, 138, 62–69. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Yung An, C.; Rao, P.V.; Hawlader, M.N.; Azlan, S.A.; Sulaiman, S.A.; Gan, S.H. Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: Determination of antioxidant capacity. BioMed Res. Int. 2014, 737490. [Google Scholar] [CrossRef]
- White, J.W. Instrumental color classification of honey: Collaborative study. J. AOAC 1984, 67, 1129–1131. [Google Scholar] [CrossRef]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, R.F. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Aires, E.; Barreira, J.C.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic compounds. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Aljadi, A.M.; Kamaruddin, M.Y. Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chem. 2004, 85, 513–518. [Google Scholar] [CrossRef]
- Islam, M.R.; Pervin, T.; Hossain, H.; Saha, B.; Hossain, S.J. Physicochemical and antioxidant properties of honeys from the Sundarbans Mangrove Forest of Bangladesh. Prev. Nutr. Food Sci. 2017, 22, 335–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, L.S.; Rahaman, N.L.; Adnan, N.A.; Tan, T.T. Antioxidant activity of three honey samples in relation with their biochemical components. J. Anal. Methods Chem. 2013, 313798. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxid. Med. Cell. Longev. 2018, 8367846. [Google Scholar] [CrossRef] [Green Version]
- Bueno-Costa, F.M.; Zambiazi, R.C.; Bohmer, B.W.; Chaves, F.C.; da Silva, W.P.; Zanusso, J.T.; Dutra, I. Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. LWT Food Sci. Technol. 2016, 65, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Hošt’alková, A.; Klingelhöfer, I.; Morlock, G.E. Comparison of an HPTLC method with the Reflectoquant assay for rapid determination of 5–hydroxymethylfurfural in honey. Anal. Bioanal. Chem. 2013, 405, 9207–9218. [Google Scholar] [CrossRef]
- Stöbener, A.; Naefken, U.; Kleber, J.; Liese, A. Determination of trace amounts with ATR FTIR spectroscopy and chemometrics: 5-(hydroxymethyl)furfural in honey. Talanta 2019, 204, 1–5. [Google Scholar] [CrossRef]
- Bargańska, Ż.; Namieśnik, J.; Ślebioda, M. Determination of antibiotic residues in honey. Trends Anal. Chem. 2011, 30, 1035–1041. [Google Scholar] [CrossRef]
- Sajid, M.; Na, N.; Safdar, M.; Lu, X.; Ma, L.; He, L.; Ouyang, J. Rapid trace level determination of sulfonamide residues in honey with online extraction using short C–18 column by high–performance liquid chromatography with fluorescence detection. J. Chromatogr. A 2013, 1314, 173–179. [Google Scholar] [CrossRef]
- Genersch, E.; Evans, J.D.; Fries, I. Honey bee disease overview. J. Invertebr. Pathol. 2010, 103 (Suppl. 1), S2–S4. [Google Scholar] [CrossRef]
- Szczęsna, T.; Rybak–Chmielewska, H.; Waś, E.; Pohorecka, K. Study on sulphonamide residues in honey. J. Apic. Sci. 2009, 53, 39–47. Available online: https://www.researchgate.net/publication/260245541_Study_on_sulphonamide_residues_in_honey (accessed on 22 July 2020).
- Cotton, J.; Leroux, F.; Broudin, S.; Marie, M.; Corman, B.; Tabet, J.C.; Ducruix, C.; Junot, C. High–resolution mass spectrometry associated with data mining tools for the detection of pollutants and chemical characterization of honey samples. J. Agric. Food Chem. 2014, 62, 11335–11345. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, A.; Ballesteros, E. Multiresidue method for the determination of pharmacologically active substances in egg and honey using a continuous solid–phase extraction system and gas chromatography–mass spectrometry. Food Chem. 2015, 178, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Vanengelsdorp, D.; Meixner, M.D. A historical review of managed honey bee populations in Europe and the United Sates and the factors that may affect them. J. Invertebr. Pathol. 2010, 103 (Suppl. 1), S80–S95. [Google Scholar] [CrossRef] [PubMed]
- Paradis, D.; Bérail, G.; Bonmatin, J.M.; Belzunces, L.P. Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC–MS/MS and LC–MS/MS. Anal. Bioanal. Chem. 2014, 406, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Griffin, C.T.; Danaher, M.; Elliott, C.T.; Glenn Kennedy, D.; Furey, A. Detection of pyrrolizidine alkaloids in commercial honey using liquid chromatography–ion trap mass spectrometry. Food Chem. 2013, 136, 1577–1583. [Google Scholar] [CrossRef]
- Oplatowska, M.; Elliott, C.T.; Huet, A.C.; McCarthy, M.; Mulder, P.P.; von Hols, C.; Delahaut, P.; Van Egmond, H.P.; Campbell, K. Development and validation of a rapid multiplex ELISA for pyrrolizidine alkaloids and their N–oxides in honey and feed. Anal. Bioanal. Chem. 2014, 406, 757–770. [Google Scholar] [CrossRef] [Green Version]
- Moreno–González, D.; Lara, F.J.; Jurgovská, N.; Gámiz–Gracia, L.; Gracía–Campaña, A.M. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers. Anal. Chim. Acta 2015, 891, 321–328. [Google Scholar] [CrossRef]
- Swaileh, K.M.; Abdulkhaliq, A. Analysis of aflatoxins, caffeine, nicotine and heavy metals in Palestinian multifloral honey from different geographic regions. J. Sci. Food Agric. 2013, 93, 2116–2120. [Google Scholar] [CrossRef]
- Sinacori, M.; Francesca, N.; Alfonzo, A.; Cruciata, M.; Sannino, C.; Settanni, L.; Moschetti, G. Cultivable microorganisms associated with honeys of different geographical and botanical origin. Food Microbiol. 2014, 38, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, X.; Yuan, D. Determination of benzimidazole anthelmintics in milk and honey by monolithic fiber–based solid–phase microextraction combined with high–performance liquid chromatography–diode array detection. Anal. Bioanal. Chem. 2015, 407, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.C.; Picoloto, R.S.; Hartwig, C.A.; Mello, P.A.; Flores, E.M.; Mesko, M.F. Feasibility of ultra-trace determination of bromine and iodine in honey by ICP–MS using high sample mass in microwave–induced combustion. Anal. Bioanal. Chem. 2015, 407, 7957–7964. [Google Scholar] [CrossRef] [PubMed]
- Sixto, A.; Mollo, A.; Knochen, M. Fast and simple method using DLLME and FAAS for the determination of trace cadmium in honey. J. Food Compos. Anal. 2019, 82, 103229. [Google Scholar] [CrossRef]
- Saksinchai, S.; Suzuki, M.; Lumyong, S.; Ohkuma, M.; Chantawannakul, P. Two new species of the genus Candida in the Zygoascus clade, Candida lundiana sp. nov. and Candida suthepensis sp. nov., isolated from raw honey in Thailand. Antonie Leeuwenhoek 2012, 101, 633–640. [Google Scholar] [CrossRef]
- Brighenti, V.; Licata, M.; Pedrazzi, T.; Maran, D.; Bertelli, D.; Pellati, F.; Benvenuti, S. Development of a new method for the analysis of cannabinoids in honey by means of high-performance liquid chromatography coupled with electrospray ionization-tandem mass spectrometry detection. J. Chromatogr. A 2019, 1597, 179–186. [Google Scholar] [CrossRef]
- Chen, L.; Li, B. Magnetic molecularly imprinted polymer extraction of chloramphenicol from honey. Food Chem. 2013, 141, 23–28. [Google Scholar] [CrossRef]
- Fan, C.; Li, N.; Cao, X. Determination of chlorophenols in honey samples using in–situ ionic liquid–dispersive liquid–liquid microextraction as a pretreatment method followed by high–performance liquid chromatography. Food Chem. 2015, 174, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Özcan, M.M.; Al Juhaimi, F.Y. Determination of heavy metals in bee honey with connected and not connected metal wires using inductively coupled plasma atomic emission spectrometry (ICP–AES). Environ. Monit. Assess. 2012, 184, 2373–2375. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, Y.; Liu, M. Spectrofluorimetric determination of fluoroquinolones in honey with 2,3–dichloro–5,6-dicyano–1,4–benzoquinone in the presence of β–cyclodextrin. J. Fluoresc. 2013, 23, 713723. [Google Scholar] [CrossRef]
- De Andrade, C.K.; dos Anjos, V.E.; Felsner, M.L.; Torres, Y.R.; Quináia, S.P. Relationship between geographical origin and contents of Pb, Cd, and Cr in honey samples from the state of Paraná (Brazil) with chemometric approach. Environ. Sci. Pollut. Res. Int. 2014, 21, 12372–12381. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, K.; Xu, F.; Wang, W.; Jiang, H.; Wang, Z.; Ding, S. Development of a microsphere-based fluorescence immunochromatographic assay for monitoring lincomycin in milk, honey, beef, and swine urine. J. Agric. Food Chem. 2014, 62, 12061–12066. [Google Scholar] [CrossRef] [PubMed]
- Kurtoglu, A.B.; Yavuz, R.; Evrendilek, G.A. Characterisation and fate of grayanatoxins in mad honey produced from Rhododendron ponticum nectar. Food Chem. 2014, 161, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, M.A.; Grünhut, M.; Pistonesi, M.F.; Di Nezio, M.S.; Centurión, M.E. Automatic flow–batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment. J. Agric. Food Chem. 2012, 60, 4812–4817. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Takeba, K.; Sasamoto, T.; Kusano, T.; Hayashi, H.; Kanai, S.; Kanda, M.; Nagayama, T. Determination of dimetridazole, metronidazole and ronidazole in salmon and honey by liquid chromatography coupled with tandem mass spectrometry. J. Food Hyg. Saf. (Shokuhin Eiseigaku Zasshi) 2011, 52, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Aghamirlou, H.M.; Khadem, M.; Rahmani, A.; Sadeghian, M.; Mahvi, A.H.; Akbarzadeh, A.; Nazmara, S. Heavy metals determination in honey samples using inductively coupled plasma–optical emission spectrometry. J. Environ. Health Sci. Eng. 2015, 13, 39. [Google Scholar] [CrossRef] [Green Version]
- Lambert, O.; Veyrand, B.; Durand, S.; Marchand, P.; Le Bizec, B.; Piroux, M.; Puyo, S.; Thorin, C.; Delbac, F.; Pouliquen, H. Polycyclic aromatic hydrocarbons: Bees, honey and pollen as sentinels for environmental chemical contaminants. Chemosphere 2012, 86, 98–104. [Google Scholar] [CrossRef]
- Economou, A.; Petraki, O.; Tsipi, D.; Botitsi, E. Determination of a liquid chromatography–tandem mass spectrometry method for the determination of sulfonamides, trimethoprim and dapsone in honey and validation according to Commission Decision 2002/657/EC for banned compounds. Talanta 2012, 97, 32–41. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Yong, W.; Chen, Q.; Zhang, L.; Dong, Y.; Su, H.; Tan, T. A direct competitive assay–based aptasensor for sensitive determination of tetracycline residue in honey. Talanta 2015, 131, 562–569. [Google Scholar] [CrossRef]
- Martín, I.G.; Macías, E.M.; Sánchez, J.S.; Rivera, B.G. Detection of honey adulteration with beet sugar using stable isotope methodology. Food Chem. 1998, 61, 281–286. [Google Scholar] [CrossRef]
- Padovan, G.J.; Rodrigues, L.P.; Leme, I.A.; De Jong, D.; Marchini, J.S. Presence of C4 sugars in honey samples detected by the carbon isotope ratio measured by IRMS. Eurasian J. Anal. Chem. 2007, 2, 134–141. Available online: https://www.researchgate.net/publication/228638619_Presence_of_C4_Sugars_in_Honey_Samples_Detected_by_The_Carbon_Isotope_Ratio_Measured_by_IRMS (accessed on 22 July 2020).
- Çinar, S.B.; Ekşi, A.; Coşkun, İ. Carbon isotope ratio (13C/12C) of pine honey and detection of HFCS adulteration. Food Chem. 2014, 157, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Förstel, H. The natural fingerprint of stable isotopes–use of IRMS to test food authenticity. Anal. Bioanal. Chem. 2007, 388, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.T.; Chen, B.Y.; Nai, Y.S.; Chang, Y.M.; Chen, K.H.; Chen, Y.W. Novel inspection of sugar residue and origin in honey based on the 13C/12C isotopic ratio and protein content. J. Food Drug Anal. 2019, 27, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Palma, M.; Barbero, G.F. A screening method based on Headspace-Ion Mobility Spectrometry to identify adulterated honey. Sensors 2019, 19, 1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Qi, S.; Li, H.; Han, X.; Ouyang, Q.; Zhao, J. Determination of rice syrup adulterant concentration in honey using three–dimensional fluorescence spectra and multivariate calibrations. Spectrochim. Acta A 2014, 131, 177–182. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Q.; Wang, L.; Lin, L.; Shi, H.; Cao, H.; Cao, B. Detection of honey adulteration with starch syrup by high performance liquid chromatography. Food Chem. 2015, 172, 669–674. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Palma, M.; Barbero, G.F. A screening method based on Visable-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey. Talanta 2019, 203, 235–241. [Google Scholar] [CrossRef]
Component | Honeydew Honey | Blossom Honey |
---|---|---|
(Min−Max) | (Min−Max) | |
[g/100 g] | [g/100 g] | |
Fructose | 31.8 | 38.2 |
Glucose | 26.1 | 31.3 |
Water | 16.3 | 17.2 |
Sucrose | 0.5 | 0.7 |
Other disaccharides | 4.0 | 5.0 |
Melezitose | 4.0 | <0.1 |
Erlose | 1.0 | 0.8 |
Other oligosaccharides | 13.1 | 3.6 |
Acids | 1.1 | 0.5 |
Minerals | 0.9 | 0.2 |
Amino acids, proteins | 0.6 | 0.3 |
Method | Country | Varieties of Honey or Origin | Literature |
---|---|---|---|
Electronic with UV—VIS—NIR | Portugal | Arbutus unedo L.—strawberry-tree (n = 4), Citrus spp.—orange blossom (n = 3), Helianthus annuus L.—sunflower (n = 3), Lavandula stoechas L. — French lavender (n = 3) | [23] |
Electronic tongue | Croatia | Castanea sativa Mill.—chestnut (n = 16), Robinia pseudoacacia L.—black locust (n = 49) | [24] |
Electronic potentiometric tongue | Portugal | Representative samples from regions: Algarve regions, Alentejo, Beira Interior, Beira Litoral, Entre Douro e Minho, Estremadura e Ribatejo, Trás-os-Montes e Alto Douro, and Pico and São Miguel islands (n = 65) | [25] |
Electronic nose | Poland | acacia flower (n = 3), buckwheat (n = 3), honeydew (n = 3), linden flower (n = 3), and rape (n = 3) | [26] |
NMR | Bulgaria | citrus (n = 1), fir honeydew (n = 1), honeydew (n = 1), oak honeydew (n = 15), polyfloral (n = 4), rapeseed (n = 1), and spruce honeydew (n = 1) | [27] |
Twodimensional zymography | Italy | Castanea sativa—chestnut (n = 4), Citrus—orange (n = 4), Eucalyptus sp.—eucalyptus (n = 4), and Hedysarium coronarium—sulla (n = 4) | [28] |
PCR | Australia, Brazil, China, South Africa Vietnam | Apis carena: China (n = 3), Vietnam (n = 3), Apis mellifera: Australia (n = 3), Brazil (n = 3), China (n = 31), and South Africa (n = 2) | [29] |
CIE L * C * abh ab scale | Croatia, France, Germany, Hungary, Italy, Poland, Spain, Ukraine | Arbatus unedo L.—strawberry tree (n = 42), Asphodelus microcarpus Salzm. Et Viv—asphodel (n = 36), Brassica napus L.—rapeseed (n = 14), Castanea sativa Mill.—sweet chestnut (n = 14), Citrus spp.—citrus (n = 9), Erica spp.—heather (n = 11), Eucalyptus spp.—eucalyptus (n = 22), Fagopyrum esculentum L.—buckwheat (n = 12), honeydew (n = 22), Galactites tomentosa Moench—thistle (n = 26), Hedysarum coronarium L.—sulla flower (n = 16), Mentha spp.—mint (n = 12), Paliurus spina-christi Mill.—garland thorn (Christ’s thorn) (n = 14), Robinia pseudoacacia L.—black locust (n = 14), Tilia spp.—lime (n = 12), Salvia officinalis L.—sage (n = 14), Satureja spp.—savory (n = 15), | [30] |
Fluorescence spectroscopy | Serbia | acacia (n = 37), fake honey (n = 14), linden (n = 10), meadow mix (n = 23), and sunflower (n = 11). | [31] |
DNA identification and plastids | Italy | Multifloral (n = 4) | [32] |
DNA metabarcoding | USA | Pollen from hives (n = 4) | [33] |
Statistical analysis: PLS-DA | China | Acacia from six geographical regions of China: Gansu (n = 10), Henan (n = 12), Liaoning (n = 10), Shaanxi (n = 14), Shandong (n = 15), and Shanxi (n = 10) | [34] |
Continuous flow mass spectrometry | Hive frames with 64 seats | [35] |
Honey Varieties | Botanical Origin | Percent of Specific Pollen | Markers | Method | Literature |
---|---|---|---|---|---|
Buckwheat | Fagopyrum esculentum L. | 32–53 | 3-hydroxybenzoic acid; ferulic acid | LC-DAD, GC-MS | [30] |
Citrus | Citrus spp. | 14–39 | caffeine; methyl anthranilate | LC-DAD, GC-MS | [30] |
Heather | Erica spp. | 40–62 | 4-methoxybenzaldehyde; 4-methoxybenzoic acid; methyl 4-hydroxy-3-methoxybenzoate | GC-MS | [30] |
Lime | Tilia spp. | 11–47 | 1-(4-methylphenyl)ethanone; 4-terpinenol | GC-MS | [30] |
Mint | Mentha spp. | 18–39 | methylnsyringate; vomifoliol | LC-DAD, GC-MS | [30] |
Rape | Brassica napus L. | - | kaempferol; morin | HPLC-MS, with tandem ion detect | [38] |
Toran, Saha | - | - | 2-amino-4-hydroxypteridine-6-carboxylic acid, methyl 3-hydroxyhexanoate | GC-MS | [39] |
Method | Wavelength | Unit | Literature |
---|---|---|---|
Ascorbic acid | 515 nm | mg ascorbic acid/kg | [68] |
Carotenoids content | 453, 505, and 663 nm | mg of carotenoid/kg | [68] |
Color intensity ABS450 | 450 and 720 nm | mAU | [67] |
Color in Pfund scale | 635 nm | mm | [66] |
DPPH (scavenging activity) | 517 nm | % radical scavenging activity, ICE50 | [67] |
Flavonoid contents | 510 nm | mg (+)-catechin equivalents /kg | [68] |
FRAP assay | 593 nm | μM Fe(II) | [67] |
ORAC | Emission: 535 nm Excitation: 485 nm | trolox equivalent/g | [67] |
Phenol content | 750 nm | mg gallic acid/kg | [67] |
Reducing power | 700 nm | EC50 | [68] |
TAC | 695 nm | Ascorbic acid equivalents/g or gallic acid equivalents/g | [70] |
Component | Year of Publication | Literature |
---|---|---|
aminoglycosides | 2015 | [86] |
aflatoxin | 2013 | [87] |
Bacillus subtilis and Bacillus cereus | 2014 | [88] |
benzimidazole derivatives | 2015 | [89] |
bromine and iodine | 2015 | [90] |
cadmium | 2019 | [91] |
Candida lundiana sp. nov. i Candidia suthepensis sp. nov. | 2012 | [92] |
cannabinoids | 2019 | [93] |
chloramphenicol | 2013 | [94] |
chlorophenol | 2015 | [95] |
cobalt | 2012 | [96] |
fluoroquinolones | 2013 | [97] |
lead | 2014 | [98] |
lincomycin | 2014 | [99] |
mayanotoxin from Rhododendron ponticum | 2014 | [100] |
mercury | 2012 | [101] |
metronidazole | 2011 | [102] |
nickel | 2015 | [103] |
penicillin | 2013 | [51] |
polycyclic aromatic hydrocarbons | 2012 | [104] |
sulfonamides | 2012 | [105] |
tetracycline | 2015 | [106] |
137Cs | 2013 | [59] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puścion-Jakubik, A.; Borawska, M.H.; Socha, K. Modern Methods for Assessing the Quality of Bee Honey and Botanical Origin Identification. Foods 2020, 9, 1028. https://doi.org/10.3390/foods9081028
Puścion-Jakubik A, Borawska MH, Socha K. Modern Methods for Assessing the Quality of Bee Honey and Botanical Origin Identification. Foods. 2020; 9(8):1028. https://doi.org/10.3390/foods9081028
Chicago/Turabian StylePuścion-Jakubik, Anna, Maria Halina Borawska, and Katarzyna Socha. 2020. "Modern Methods for Assessing the Quality of Bee Honey and Botanical Origin Identification" Foods 9, no. 8: 1028. https://doi.org/10.3390/foods9081028
APA StylePuścion-Jakubik, A., Borawska, M. H., & Socha, K. (2020). Modern Methods for Assessing the Quality of Bee Honey and Botanical Origin Identification. Foods, 9(8), 1028. https://doi.org/10.3390/foods9081028