Towards Digital Twins of Multimodal Supply Chains
Abstract
:1. Introduction
2. Current and Target State of Multimodal Supply Chains
- Visibility: Real-time transparency across the entire transport network, including available capacities, disruptions, and process status information
- Data Analysis: Predictions on future states of the system, for example, upcoming disruptions and lacks of capacity
- Extensive Decision Support: Process optimization by providing decision support for both transport planning as well as handling of disruptions
3. Enabler
3.1. The Internet of Things
3.2. 5G
3.3. Cloud Computing
3.4. Artificial Intelligence
3.5. Data Availability
3.6. Blockchain
3.7. Privacy-Preserving Computation
4. Holistic Digital Supply Chain Twin
- Bidirectional: Data is exchanged in both directions. Therefore, changes in the state of the logistics system lead to changes in the state of the digital model. Similarly, the knowledge gained from the digital model leads to actions or decision-making in the logistics system. A certain degree of automation of the data exchange is explicitly not a prerequisite for a DSCT.
- Timely: Data exchange takes place in a timely manner. The use case determines the specific frequency. Continuous updates in real-time are explicitly not a prerequisite for a DSCT unless the use case requires this.
- Long-term: The data exchange and thus the lifetime of the DSCT are designed for continuous, long-term use. Digital simulation models created as part of project activities or for one-time use are explicitly not considered DSCTs.
- Macro Level: DSCT of a multi stakeholder value network
- Macro Level: DSCT of an internal supply chain
- Site Level: DSCT of a logistics site (e.g., warehouses, production facilities, etc.)
- Asset Level: DT of a logistics asset (e.g., trucks, forklifts, etc.)
4.1. Distinction from Other Digital Solutions
- Update Frequency: Most of the currently used systems do not support real-time data exchange. While this is not a requirement for every single use case, it is crucial for time-sensitive tasks like acute risk management functionalities (cf. [28]).
- Advanced Analytical Capabilities: The classic ERP system was static and focused on information retrieval only. Modern ERP systems are more user-oriented and offer some functions to analyze data. Still, in most cases, these functions are not sufficient for a holistic optimization approach toward an improved logistics performance (cf. Chapter 4.7 [31]).
- Simulation Capabilities: Ultimately, there exist virtually no solutions today that feature simulation capabilities regarding the Supply Chain level (cf. Chapter 2.7 [32]). These are, however, indispensable for the assessment of probable future scenarios. Without the ability to run these what-if-scenarios, there are serious limitations to a systems decision-making capabilities (cf. [33]).
4.2. Requirements and Framework for a Digital Supply Chain Twin in Intermodal Transport Networks
4.3. Validation of the DSCT Framework
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pfohl, H.C. Logistiksysteme: Betriebswirtschaftliche Grundlagen. 9., neu bearb. u. aktual. Aufl.; Springer: Berlin, Germany, 2018. [Google Scholar]
- Marmolejo-Saucedo, J.A. Design and Development of Digital Twins: A Case Study in Supply Chains. Mob. Netw. Appl. 2020, 25, 2141–2160. [Google Scholar] [CrossRef]
- Straube, F. e-Logistik: Ganzheitliches Logistikmanagement; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Straube, F.; Reipert, J.; Schöder, D. City-Logistik der Zukunft—Im Spannungsfeld von Elektromobilität und Digitalisierung. Wirtsch. Manag. 2017, 9, 28–35. [Google Scholar] [CrossRef]
- Nitsche, B.; Straube, F. Efficiently managing supply chain volatility—A management framework for the manufacturing industry. Procedia Manuf. 2020, 43, 320–327. [Google Scholar] [CrossRef]
- Reifsnider, K.; Majumdar, P. Multiphysics Stimulated Simulation Digital Twin Methods for Fleet Management. In Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, USA, 8–11 April 2013. [Google Scholar] [CrossRef]
- Majumdar, P.K.; FaisalHaider, M.; Reifsnider, K. Multi-physics Response of Structural Composites and Framework for Modeling Using Material Geometry. In Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, USA, 8–11 April 2013. [Google Scholar] [CrossRef]
- Hevner, A.; Chatterjee, S. Design Science Research in Information Systems. In Design Research in Information Systems: Theory and Practice; Springer: Boston, MA, USA, 2010; pp. 9–22. [Google Scholar] [CrossRef]
- Peffers, K.; Tuunanen, T.; Rothenberger, M.; Chatterjee, S. A Design Science Research Methodology for Information Systems Research. J. Manage. Inf. Syst. 2007, 24, 45–77. [Google Scholar] [CrossRef]
- Straube, F.; Pfohl, H.C. Trends und Strategien in der Logistik-Globale Netzwerke im Wandel. Umwelt, Sicherheit, Internationalisierung, Menschen; Technical report; Darmstadt Technical University, Department of Business Administration, Bundesvereinigung Logistik (BVL) e.V.: Bremen, Germany, 2008. [Google Scholar]
- Serdarasan, S. A review of supply chain complexity drivers. Comput. Ind. Eng. 2013, 66, 533–540. [Google Scholar] [CrossRef]
- Marinekommando. Fakten und Zahlen zur maritimen Abhängigkeit der Bundesrepublik Deutschland: Jahresbericht 2019. Technical Report 32, Deutche Bundeswehr. 2019. Available online: https://www.bundeswehr.de/resource/blob/156014/fa1039c05301b9c63ad642c683880778/jahresbericht-marinekommando-2019-data.pdf (accessed on 16 February 2021).
- Jahn, C. Seeschiffsgüterverkehr. In Verkehrs- und Transportlogistik; Springer: Berlin/Heidelberg, Germany, 2013; pp. 203–215. [Google Scholar] [CrossRef]
- Poschmann, P.; Weinke, M.; Balster, A.; Straube, F.; Friedrich, H.; Ludwig, A. Realization of ETA Predictions for Intermodal Logistics Networks Using Artificial Intelligence. In Advances in Production, Logistics and Traffic; Clausen, U., Langkau, S., Kreuz, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 155–176. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Mell, P.M.; Grance, T. SP 800-145. The NIST Definition of Cloud Computing; Technical Report; National Institute of Standards & Technology: Gaithersburg, MD, USA, 2011.
- Hentschel, R.; Leyh, C. Cloud Computing: Status quo, aktuelle Entwicklungen und Herausforderungen. In Cloud Computing: Die Infrastruktur der Digitalisierung; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2018; pp. 3–20. [Google Scholar] [CrossRef]
- Weber, M.; Burchardt, A. Entscheidungsunterstützung mit Künstlicher Intelligenz: Wirtschaftliche Bedeutung, gesellschaftliche Herausforderungen, Menschliche Verantwortung. Technical Report, Bitkom e.V. and Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI). 2017. Available online: https://www.bitkom.org/sites/default/files/file/import/171012-KI-Gipfelpapier-online.pdf (accessed on 16 February 2021).
- Kreutzer, R.T.; Sirrenberg, M. Was versteht man unter Künstlicher Intelligenz und wie kann man sie nutzen? In Künstliche Intelligenz Verstehen: Grundlagen—Use-Cases—Unternehmenseigene KI-Journey; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2019; pp. 1–71. [Google Scholar] [CrossRef]
- Reinsel, D.; Gantz, J.; Rydning, J. The Digitization of the World: From Edge to Core. Technical Report US44413318, IDC. 2018. Available online: https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf (accessed on 24 February 2021).
- Borgi, T.; Zoghlami, N.; Abed, M. Big data for transport and logistics: A review. In Proceedings of the 2017 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 14–17 January 2017; pp. 44–49. [Google Scholar] [CrossRef]
- Yaga, D.; Mell, P.; Roby, N.; Scarfone, K. Blockchain Technology Overview; Technical Report NISTIR 8202; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2018. [CrossRef]
- Zheng, Z.; Xie, S.; Dai, H.N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [Google Scholar] [CrossRef] [Green Version]
- The Privacy Preserving Techniques Task Team. UN Handbook on Privacy-Preserving Computation Techniques; Technical Report; UN Global Working Group on Big Data: 2019. Available online: http://publications.officialstatistics.org/handbooks/privacy-preserving-techniques-handbook/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf (accessed on 24 February 2021).
- Gerlach, B.; Zarnitz, S.; Straube, F. Digital Twins in Logistics and Supply Chain Management – Conceptual Clarification, Use Cases and Potentials of “Digital Supply Chain Twins”. Unpublished work.
- Srai, J.; Settanni, E.; Tsolakis, N.; Aulakh, P. Supply Chain Digital Twins: Opportunities and Challenges Beyond the Hype. In Proceedings of the 23rd Cambridge International Manufacturing Symposium, Cambridge, UK, 26–27 September 2019. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A. A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Prod. Plan. Control 2020, 1–14. [Google Scholar] [CrossRef]
- Park, K.T.; Son, Y.H.; Noh, S.D. The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control. Int. J. Prod. Res. 2020, 1–22. [Google Scholar] [CrossRef]
- Miller, J.; Nie, Y.; Liu, X. Hyperpath Truck Routing in an Online Freight Exchange Platform. Transp. Sci. 2020, 54, 1676–1696. [Google Scholar] [CrossRef]
- Hausladen, I. IT-Gestützte Logistik: Systeme-Prozesse-Anwendung, 4th ed.; Springer Gabler: Wiesbaden, Germany, 2020. [Google Scholar] [CrossRef]
- Gutenschwager, K.; Rabe, M.; Spieckermann, S.; Wenzel, S. Simulation in Produktion und Logistik: Grundlagen und Anwendungen, 1st ed.; Springer Vieweg: Wiesbaden, Germany, 2017. [Google Scholar] [CrossRef]
- Korth, B.; Schwede, C.; Zajac, M. Simulation-ready digital twin for realtime management of logistics systems. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 4194–4201. [Google Scholar] [CrossRef]
- Bradfield, R.; Wright, G.; Burt, G.; Cairns, G.; Van Der Heijden, K. The origins and evolution of scenario techniques in long range business planning. Futures 2005, 37, 795–812. [Google Scholar] [CrossRef]
Criteria | Reasoning |
---|---|
visibility and transparency | across the entire network, including... |
update frequency | e.g., real time in some use cases |
data collection | e.g., + external data + IoT-Data in some cases |
data analysis | advanced predictive analytics + holistic optimization |
simulation capabiltiies | enabling what-if-scenarios |
decision support capabilities | for both transport planning as well as handling of disruptions |
Criteria | Enabled by |
---|---|
visibility and transparency | cloud computing connectivity(5G) |
update frequency | IoT-technology connectivity (5G) |
data collection | IoT-technology cloud computing (storage) privacy-preserving computation |
data analysis | cloud computing (computation) artificial intelligence |
simulation capabilities | model module (DSCT) |
decision support capabilities | reporting module (DSCT) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busse, A.; Gerlach, B.; Lengeling, J.C.; Poschmann, P.; Werner, J.; Zarnitz, S. Towards Digital Twins of Multimodal Supply Chains. Logistics 2021, 5, 25. https://doi.org/10.3390/logistics5020025
Busse A, Gerlach B, Lengeling JC, Poschmann P, Werner J, Zarnitz S. Towards Digital Twins of Multimodal Supply Chains. Logistics. 2021; 5(2):25. https://doi.org/10.3390/logistics5020025
Chicago/Turabian StyleBusse, Anselm, Benno Gerlach, Joel Cedric Lengeling, Peter Poschmann, Johannes Werner, and Simon Zarnitz. 2021. "Towards Digital Twins of Multimodal Supply Chains" Logistics 5, no. 2: 25. https://doi.org/10.3390/logistics5020025
APA StyleBusse, A., Gerlach, B., Lengeling, J. C., Poschmann, P., Werner, J., & Zarnitz, S. (2021). Towards Digital Twins of Multimodal Supply Chains. Logistics, 5(2), 25. https://doi.org/10.3390/logistics5020025