Sustainable Innovations in the Food Industry through Artificial Intelligence and Big Data Analytics
Abstract
:1. Introduction
2. Review Methodology
3. Scope
4. Findings
5. Applications of AI and BDA in the Food Sector
5.1. Milk and Milk Products
5.2. Meat and Meat Products
5.3. Fruits and Vegetables
5.4. Bakery
5.5. Beverage
5.6. Spices
6. Implications and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slavin, P. Climate and famines: A historical reassessment. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 433–447. [Google Scholar] [CrossRef]
- Kitzes, J.; Wackernagel, M.; Loh, J.; Peller, A.; Goldfinger, S.; Cheng, D.; Tea, K. Shrink and share: Humanity’s present and future Ecological Footprint. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popa, C. Adoption of Artificial Intelligence in Agriculture. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric. 2011, 68, 284–293. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Coops, R.; Witberg, P. Threats, and opportunities. PEI Power Eng. Int. 2005, 13, 53–57. [Google Scholar] [CrossRef]
- Coffey, B.; Mintert, J.; Fox, S.; Schroeder, T.; Valentin, L. The Economic Impact of BSE on the USA. Beef Industry: Product Value Losses, Regulatory Costs, and Consumer Reactions. Available online: https://krex.k-state.edu/dspace/bitstream/handle/2097/12460/EconomicImpactofBSE.pdf?sequence=1&isAllowed=y (accessed on 27 July 2021).
- Kakani, V.; Nguyen, V.H.; Kumar, B.P.; Kim, H.; Pasupuleti, V.R. A critical review on computer vision and artificial intelligence in food industry. J. Agric. Food Res. 2020, 2, 100033. [Google Scholar] [CrossRef]
- Marvin, H.J.P.; Janssen, E.M.; Bouzembrak, Y.; Hendriksen, P.J.M.; Staats, M. Big data in food safety: An overview. Crit. Rev. Food Sci. Nutr. 2017, 57, 2286–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armbruster, W.J.; Macdonell, M.M. Informatics to Support International Food Safety. In Proceedings of the 28th EnviroInfo 2014 Conference, Oldenburg, Germany, 10–12 September 2014; pp. 127–134. [Google Scholar]
- King, T.; Cole, M.; Farber, J.M.; Eisenbrand, G.; Zabaras, D.; Fox, E.M.; Hill, J.P. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci. Technol. 2017, 68, 160–175. [Google Scholar] [CrossRef]
- Feye, K.M.; Lekkala, H.; Lee-Bartlett, J.A.; Thompson, D.R.; Ricke, S.C. Survey analysis of computer science, food science, and cybersecurity skills and coursework of undergraduate and graduate students interested in food safety. J. Food Sci. Educ. 2020, 1–10. [Google Scholar] [CrossRef]
- Ben-Daya, M.; Hassini, E.; Bahroun, Z. Internet of things and supply chain management: A literature review. Int. J. Prod. Res. 2019, 57, 4719–4742. [Google Scholar] [CrossRef] [Green Version]
- Liu, K. Research on the Food Safety Supply Chain Traceability Management System Base on the Internet of Things. Int. J. Hybrid Inf. Technol. 2015, 8, 25–34. [Google Scholar] [CrossRef]
- Bouzembrak, Y.; Marvin, H.J.P. Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control 2016, 61, 180–187. [Google Scholar] [CrossRef]
- Riahi, Y.; Saikouk, T.; Gunasekaran, A.; Badraoui, I. Artificial Intelligence Applications in Supply Chain: A Descriptive Bibliometric Analysis and Future Research Directions. Expert Syst. Appl. 2021, 173, 114702. [Google Scholar] [CrossRef]
- Kulkarni, A.A.; Dhanush, P.; Chetan, B.S.; Thamme Gowda, C.S.; Shrivastava, P.K. Applications of Automation and Robotics in Agriculture Industries; A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 748. [Google Scholar] [CrossRef]
- Saetta, S.; Caldarelli, V. How to increase the sustainability of the agri-food supply chain through innovations in 4.0 perspective: A first case study analysis. Procedia Manuf. 2020, 42, 333–336. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Kumar, A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Konur, S.; Lan, Y.; Thakker, D.; Morkyani, G.; Polovina, N.; Sharp, J. Towards design and implementation of Industry 4.0 for food manufacturing. Neural Comput. Appl. 2021, 25, 1–13. [Google Scholar] [CrossRef]
- Roozbeh Nia, A.; Awasthi, A.; Bhuiyan, N. Industry 4.0 and demand forecasting of the energy supply chain: A literature review. Comput. Ind. Eng. 2021, 154, 107128. [Google Scholar] [CrossRef]
- Klumpp, M. Innovation Potentials and Pathways Merging AI, CPS, and IoT. Appl. Syst. Innov. 2018, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Baliga, R.; Raut, R.; Kamble, S. The effect of motivators, supply, and lean management on sustainable supply chain management practices and performance. Benchmarking Int. J. 2019, 27, 347–381. [Google Scholar] [CrossRef]
- Kamble, S.; Gunasekaran, A. Big data-driven supply chain performance measurement system: A review and framework for implementation. Int. J. Prod. Res. 2019, 58, 65–86. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Yong-Hak, J. Web of Science. Thomson Reuters. Available online: http://wokinfo.com/media/pdf/WoSFS_08_7050.pdf (accessed on 11 May 2021).
- Gevarter, W.B. An overview of artificial intelligence and robotics. Natl. Aeronaut. Sp. Adm. 1983, 1, 80. [Google Scholar]
- Zhao, G.; Liu, S.; Lopez, C.; Lu, H.; Elgueta, S.; Chen, H.; Boshkoska, B.M. Blockchain technology in agri-food value chain management: A synthesis of applications, challenges, and future research directions. Comput. Ind. 2019, 109, 83–99. [Google Scholar] [CrossRef]
- Ebrahimnejad, H.; Ebrahimnejad, H.; Salajegheh, A.; Barghi, H. Use of magnetic resonance imaging in food quality control: A review. J. Biomed. Phys. Eng. 2018, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- Kiger, P.J. How Artificial Intelligence Is Totally Changing Everything|HowStuffWorks. Available online: https://science.howstuffworks.com/artificial-intelligence.htm (accessed on 9 May 2021).
- Wauters, T.; Verbeeck, K.; Verstraete, P.; Vanden Berghe, G.; De Causmaecker, P. Real-world production scheduling for the food industry: An integrated approach. Eng. Appl. Artif. Intell. 2012, 25, 222–228. [Google Scholar] [CrossRef]
- Grác, Š.; Beňo, P.; Duchoň, F.; Dekan, M.; Tölgyessy, M. Automated Detection of Multi-Rotor UAVs Using a Machine-Learning Approach. Appl. Syst. Innov. 2020, 3, 29. [Google Scholar] [CrossRef]
- Bronson, K.; Knezevic, I. Big Data in food and agriculture. Big Data Soc. 2016, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Roy, A. Discussion Paper National Strategy for Artificial Intelligence#AIFORALL. 2018; Volume 115. Available online: http://www.niti.gov.in/sites/default/files/2019-01/NationalStrategy-for-AI-Discussion-Paper.pdf (accessed on 9 May 2021).
- Dai, H.N.; Wang, H.; Xu, G.; Wan, J.; Imran, M. Big data analyticsfor manufacturing internet of things: Opportunities, challenges and enabling technologies. Enterp. Inf. Syst. 2019. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, M.; Vats, A.; Biel, A. Agriculture 4.0: The Future of Farming Technology. World Gov. Summit Rep. 2018, 30. Available online: https://www.worldgovernmentsummit.org/api/publications/document?id=95df8ac4-e97c-6578-b2f8-ff0000a7ddb6 (accessed on 9 May 2021).
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Sravanthi, K. Applications of Big data in Various Fields. Int. J. Comput. Sci. Inf. Technol. 2015, 6, 4629–4632. [Google Scholar]
- Shubhendu, S.; Vijay, J. Applicability of Artificial Intelligence in Different Fields of Life. Int. J. Sci. Eng. Res. 2013, 1, 28–35. [Google Scholar]
- Granato, D.; Putnik, P.; Kovačević, D.B.; Santos, J.S.; Calado, V.; Rocha, R.S.; Cruz, A.G.; Jarvis, B.; Rodionova, O.Y.; Pomerantsev, A. Trends in Chemometrics: Food Authentication, Microbiology, and Effects of Processing. Compr. Rev. Food Sci. Food Saf. 2018, 17, 663–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lezoche, M.; Panetto, H.; Kacprzyk, J.; Hernandez, J.E.; Alemany Díaz, M.M.E. Agri-food 4.0: A survey of the Supply Chains and Technologies for the Future Agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Mani, V.; Delgado, C.; Hazen, B.T.; Patel, P. Mitigating supply chain risk via sustainability using big data analytics: Evidence from the man-ufacturing supply chain. Sustainability 2017, 9, 608. [Google Scholar] [CrossRef] [Green Version]
- Chong, A.Y.L.; Ch’ng, E.; Liu, M.J.; Li, B. Predicting consumer product demands via Big Data: The roles of online promotional marketing and online reviews. Int. J. Prod. Res. 2017, 55, 5142–5156. [Google Scholar] [CrossRef]
- Xiang, Z.; Schwartz, Z.; Gerdes, J.H.; Uysal, M. What can big data and text analytics tell us about hotel guest experience and satisfaction? Int. J. Hosp. Manag. 2015, 44, 120–130. [Google Scholar] [CrossRef]
- Kuzminov, I.; Bakhtin, P.; Khabirova, E.; Kotsemir, M.; Lavrynenko, A. Mapping the Radical Innovations in Food Industry: A Text Mining Study. SSRN Electron. J. 2018. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Mirza, K.B.; Nikolic, K. Neuromorphic Robotic Platform with Visual Input, Processor and Actuator, Based on Spiking Neural Networks. Appl. Syst. Innov. 2020, 3, 28. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Corney, D. Food bytes: Intelligent systems in the food industry. Br. Food J. 2002, 104, 787–805. [Google Scholar] [CrossRef] [Green Version]
- Goonatilake, S. Intelligent hybrid systems for financial decision making. Proc. ACM Symp. Appl. Comput. 1995, 471–476. [Google Scholar] [CrossRef]
- Singh, S.; Hines, E.L.; Gardner, J.W. Fuzzy neural computing of coffee and tainted-water data from an electronic nose. Sensors Actuators, B Chem. 1996, 30, 185–190. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, M.; Mujumdar, A.S. Recent developments of artificial intelligence in drying of fresh food: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2258–2275. [Google Scholar] [CrossRef] [PubMed]
- Dai, A.; Zhou, X.; Liu, X. Design and simulation of a genetically optimized fuzzy immune PID controller for a novel grain dryer. IEEE Access 2017, 5, 14981–14990. [Google Scholar] [CrossRef]
- Azadbakht, M.; Aghili, H.; Ziaratban, A.; Torshizi, M.V. Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes. Energy 2017, 120, 947–958. [Google Scholar] [CrossRef]
- Castillo, O.; Melin, P. Automated quality control in the food industry combining artificial intelligence techniques with fractal theory. Communications 1994, 9. [Google Scholar] [CrossRef]
- Jacxsens, L.; Luning, P.A.; van der Vorst, J.G.A.J.; Devlieghere, F.; Leemans, R.; Uyttendaele, M. Simulation modelling and risk assessment as tools to identify the impact of climate change on microbiological food safety—The case study of fresh produce supply chain. Food Res. Int. 2010, 43, 1925–1935. [Google Scholar] [CrossRef]
- Kamath, R. Food Traceability on Blockchain: Walmart’s Pork and Mango Pilots with IBM. J. Br. Blockchain Assoc. 2018, 1, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Dediu, L.; Victor, C. Review of the current application of fingerprinting allowing detection of food adulteration and fraud in China. Food Control 2011, 22, 1126–1135. [Google Scholar] [CrossRef]
- Doinea, M.; Boja, C.; Batagan, L.; Toma, C.; Popa, M. Internet of Things Based Systems for Food Safety Management. Inform. Econ. 2015, 19, 87–97. [Google Scholar] [CrossRef]
- Dormehl, L. Flippy, the Burger-Flipping Robot, is Changing the Face of Fast Food|Digital Trends. 2020. Available online: https://www.digitaltrends.com/cool-tech/flippy-burger-robot-changing-fast-food/ (accessed on 10 May 2021).
- Briggo. Briggo’s Connected Coffee Solution. 2020. Available online: https://briggo.com/solutions/ (accessed on 10 May 2021).
- Chowdhury Paul, A. Food Goes the AI Way—See Top Applications of AI in Food Industry. 2017. Available online: https://analyticsindiamag.com/food-goes-ai-way-see-top-applications-ai-food-industry/ (accessed on 10 May 2021).
- Chowbotics. Chowbotics|The First Fresh Food Robot Serving Made-To-Order Meals. 2019. Available online: https://www.chowbotics.com/ (accessed on 10 May 2021).
- Toorajipour, R.; Sohrabpour, V.; Nazarpour, A.; Oghazi, P.; Fischl, M. Artificial intelligence in supply chain management: A systematic literature review. J. Bus. Res. 2021, 122, 502–517. [Google Scholar] [CrossRef]
- Bala, P.K. Improving inventory performance with clustering based demand forecasts. J. Model. Manag. 2012, 7, 23–37. [Google Scholar] [CrossRef]
- Rajesh, R. A grey-layered ANP based decision support model for analyzing strategies of resilience in electronic supply chains. Eng. Appl. Artif. Intell. 2020, 87, 103338. [Google Scholar] [CrossRef]
- Mogre, R.; Talluri, S.S.; Amico, F.D. A Decision Framework to Mitigate Supply Chain Risks: An Application in the Offshore-Wind Industry. IEEE Trans. Eng. Manag. 2016, 63, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Mokhtarinejad, M.; Ahmadi, A.; Karimi, B.; Rahmati, S.H.A. A novel learning based approach for a new integrated loca-tion-routing and scheduling problem within cross-docking considering direct shipment. Appl. Soft Comput. J. 2015, 34, 274–285. [Google Scholar] [CrossRef]
- Fallahpour, A.; Wong, K.Y.; Olugu, E.U.; Musa, S.N. A Predictive Integrated Genetic-Based Model for Supplier Evaluation and Selection. Int. J. Fuzzy Syst. 2017, 19, 1041–1057. [Google Scholar] [CrossRef]
- Haff, R.P.; Toyofuku, N. X-ray detection of defects and contaminants in the food industry. Sens. Strum. Food Qual. Saf. 2008, 2, 262–273. [Google Scholar] [CrossRef]
- Medus, L.D.; Saban, M.; Francés-Víllora, J.V.; Bataller-Mompeán, M.; Rosado-Muñoz, A. Hyperspectral image classification using CNN: Application to industrial food packaging. Food Control 2021, 125, 107962. [Google Scholar] [CrossRef]
- Benouis, M.; Medus, L.D.; Saban, M.; Łabiak, G.; Rosado-Muñoz, A. Food tray sealing fault detection using hyperspectral imaging and PCANet. IFAC-Papers Online 2020, 53, 7845–7850. [Google Scholar] [CrossRef]
- Food & Beverage Industry in India Heading towards Advanced Automation. 2019. Available online: https://www.industr.com/en/food-beverage-industry-in-india-heading-towards-advanced-automation-2392853 (accessed on 10 May 2021).
- Yan, W.J.; Chen, X.; Akcan, O.; Lim, J.; Yang, D. Big Data Analyticsfor Empowering Milk Yield Prediction in Dairy Supply Chains. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 2132–2137. [Google Scholar]
- Farshidpour, S.; Keynia, F. Using artificial bee colony Algorithm for MLP Training on software defect prediction. Oriental J. Comput. Sci. Technol. 2012, 5, 231–239. [Google Scholar]
- Sugiono, S.; Soenoko, R.; Riawati, L. Investigating the Impact of Physiological Aspect on Cow Milk Production Investigating the Impact of Physiological Aspect on Cow Milk Production Using Artificial Intelligence. Int. Rev. Mech. Eng. 2017, 11, 30–36. [Google Scholar] [CrossRef]
- Goyal, S.; Goyal, G.K. Smart Artificial Intelligence Computerized Models for Shelf Life Prediction of Processed Cheese. Int. J. Eng. Technol. 2012, 1, 281. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, V.E.; Barrientos-Blanco, J.A.; Delgado, H.; Fadul-Pacheco, L. Symposium review: Real-time continuous decision making using big data on dairy farms. J. Dairy Sci. 2019, 103, 3856–3866. [Google Scholar] [CrossRef] [PubMed]
- Mor, R.S.; Bhardwaj, A.; Singh, S. Integration of SWOT-AHP approach for measuring the critical factors of dairy supply chain. Logistics 2019, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Mor, R.S.; Bhardwaj, A.; Singh, S. Benchmarking the interactions among barriers in Dairy supply chain: An ISM approach. Int. J. Qual. Res. 2018, 12, 385–404. [Google Scholar] [CrossRef]
- Purnell, G. Robotic equipment in the meat industry. Meat Sci. 1998, 49, 297–307. [Google Scholar] [CrossRef]
- Buckingham, R.; Davey, P. This robot’s gone fishing. Ind. Robot. Int. J. 1995, 22, 12–14. [Google Scholar] [CrossRef]
- Kuuliala, L.; Abatih, E.; Ioannidis, A.G.; Vanderroost, M.; De Meulenaer, B.; Ragaert, P.; Devlieghere, F. Multivariate statistical analysis for the identification of potential seafood spoilage indicators. Food Control 2017, 84, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Kodogiannis, V.S.; Pachidis, T.; Kontogianni, E. Engineering Applications of Arti fi cial Intelligence An intelligent based decision support system for the detection of meat spoilage. Eng. Appl. Artif. Intell. 2014, 34, 23–36. [Google Scholar] [CrossRef]
- Ballerini, L.; Hogberg, A.; Lundstrom, K.; Borgefors, G. Colour Image Analysis Technique for Measuring of Fat in Meat: An Application for the Meat Industry. In Machine Vision Applications in Industrial Inspection IX; International Society for Optics and Photonics: Bellingham, WA, USA, 2001; Volume 4301, pp. 113–124. [Google Scholar] [CrossRef]
- Musatov, V.Y.; Sysoev, V.V.; Sommer, M.; Kiselev, I. Sensors and Actuators B: Chemical Assessment of meat freshness with metal oxide sensor microarray electronic nose: A practical approach. Sens. Actuators B Chem. 2010, 144, 99–103. [Google Scholar] [CrossRef]
- Goyache, F.; Bahamonde, A.; Alonso, J.; Lopez, S.; Del Coz, J.J.; Quevedo, J.R.; Ranilla, J.; Luaces, O.; Alvarez, I.; Royo, L.J.; et al. The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry. Trends Food Sci. Technol. 2001, 12, 370–381. [Google Scholar] [CrossRef] [Green Version]
- Shweta, A.S. Intelligent Refrigerator Using Artificial Intelligence. In Proceedings of the 2017 11th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 5–6 January 2017; pp. 464–468. [Google Scholar] [CrossRef]
- Pla, F.; Sanchiz, J.M.; Sánchez, J.S. An integral automation of industrial fruit and vegetable sorting by machine vision. IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA 2001, 2, 541–546. [Google Scholar] [CrossRef]
- El-Hajj, M.; Fadlallah, A.; Chamoun, M.; Serhrouchni, A. A survey of internet of things (IoT) authentication schemes. Sensors 2019, 19, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Wang, X. Toward an intelligent solution for perishable food cold chain management. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; pp. 852–856. [Google Scholar] [CrossRef]
- Pal, A.; Kant, K. Smart sensing, communication, and control in perishable food supply chain. ACM Trans. Sens. Netw. 2020, 16, 1–41. [Google Scholar] [CrossRef]
- Akpan, N.P.; Iwok, I.A. Application of Linear Programming for Optimal Use of Raw Materials in Bakery. Int. J. Math. Stat. Invent 2016, 4, 51–57. [Google Scholar]
- Utepbergenov, I.T.; Khissamiyev, Z.G.; Toybayeva, S.D.; Musslimova, A.K. Intelligent Oven Control System in Bakery Production. ESA Conference, pp. 1–3. Available online: https://esa-conference.ru/wp-content/uploads/files/pdf/Tojbaeva-SHara-Dzholdaspekovna.pdf (accessed on 11 May 2021).
- Gonzalez Viejo, C.; Torrico, D.D.; Dunshea, F.R.; Fuentes, S. Emerging Technologies Based on Artificial Intelligence to Assess the Quality and Consumer Preference of Beverages. Beverages 2019, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Funes, E.; Allouche, Y.; Beltrán, G.; Jiménez, A. A Review: Artificial Neural Networks as Tool for Control Food Industry Process. J. Sens. Technol. 2015, 5, 28–43. [Google Scholar] [CrossRef] [Green Version]
- Schaller, E.; Bosset, J.O.; Escher, F. “Electronic nose” and their application to food (review). LWT-Food Sci. Technol. 1998, 31, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.C.; Yao, D.J. Intelligent gas-sensing systems and their applications. J. Micromechanics Microengineering 2018, 28. [Google Scholar] [CrossRef]
- Gardner, J.W.; Craven, M.; Dow, C.; Hines, E.L. The prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer perceptron network. Meas. Sci. Technol. 1998, 9, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Goswami, R.; Jain, R. Non-Destructive Quality Evaluation in Spice Industry with Specific Reference to Black Pepper (Piper Nigrum, L.). In Proceedings of the 2013 Nirma University International Conference on Engineering (NUiCONE), Ahmedabad, India, 28–30 November 2013; Volume 5, pp. 6–10. [Google Scholar] [CrossRef]
- Kashwan, K.R.; Bhuyan, M. Robust electronic-nose system with temperature and humidity drift compensation for tea and spice flavour discrimination. In Proceedings of the 2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research, Kuala Lumpur, Malaysia, 5–7 September 2005; pp. 154–158. [Google Scholar] [CrossRef]
Areas | AI Techniques |
---|---|
marketing | ANNs genetic algorithm (GA) FL/modeling agent-based systems (ABSs) swarm intelligence (SI) tree-based model general forms of AI |
logistics | ANNs ABSs Data mining Simulated annealing Automated planning Robot programming Heuristics |
production | ANNs FL/modeling case-based reasoning GA ABSs data mining decision trees daussian SI |
supply chain | ANNs FL/modeling ABSs Bayesian networks SI data mining stochastic simulation |
Area | Algorithm | Major Contributions | Source |
---|---|---|---|
AI for demand forecasting | ANN | A forecasting model was presented for retailers based on customer segmentation to improve inventory data | [64] |
AI for risk management and resilience | 1. ANN/SVM 2. decision tree | (1). Real-time decision model incorporating an amalgamation of grey theory and layered analytic network process (ANP) to measure several resilient strategies for risk reduction. (2). A two-stage decision support system (DSS) helps managers select mitigation strategies for supply chain risk reduction. | [65,66] |
AI for transportation | Genetic algorithm | A novel technique presented to resolve logistics via cross-docking in the supply chain. | [67] |
AI for supplier selection | Genetic algorithm | GA based intelligent model is proposed to solve the suppliers’ performance evaluation and prioritization problems | [68] |
AI for Quality control | X-ray detection and MRI | use of X-ray imaging for the detection of defects and contaminants in agricultural commodities | [69] |
AI for Image Processing | 1. CNN 2. Hyperspectral imaging and PCANet | 1. To detect contamination in the food tray packaging system, this technology plays an important role. 2. Food tray sealing fault detection using hyperspectral imaging and PCA Netdata | [70,71] |
Fruits | Features | Technique | Accuracy |
---|---|---|---|
Mango | Transition in image color | IR vision sensor and Gaussian Mixture Model | Not specified |
Harumani mangoes | Weight, color, and shape | Fourier Based separation model | 90% |
Cashew | Color, texture, size, and shape of cashews. | Multiresolution Wavelet transform and AI (classifier)of SVM and BPNN | 95% |
Cherry tomato | Color, texture, shape | AI technique of SVM and KNN classifier | Not specified |
Peanut | Color, texture, shape | AI technique of BPNN | Not specified |
Apple | Color, texture | AI technique of FNN and SVM | 89% |
Mango | Size, shape, weight, and surface defects of mangoes | AI technique of SVR, MADM and FIL | 87% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Gahlawat, V.K.; Rahul, K.; Mor, R.S.; Malik, M. Sustainable Innovations in the Food Industry through Artificial Intelligence and Big Data Analytics. Logistics 2021, 5, 66. https://doi.org/10.3390/logistics5040066
Sharma S, Gahlawat VK, Rahul K, Mor RS, Malik M. Sustainable Innovations in the Food Industry through Artificial Intelligence and Big Data Analytics. Logistics. 2021; 5(4):66. https://doi.org/10.3390/logistics5040066
Chicago/Turabian StyleSharma, Saurabh, Vijay Kumar Gahlawat, Kumar Rahul, Rahul S Mor, and Mohit Malik. 2021. "Sustainable Innovations in the Food Industry through Artificial Intelligence and Big Data Analytics" Logistics 5, no. 4: 66. https://doi.org/10.3390/logistics5040066
APA StyleSharma, S., Gahlawat, V. K., Rahul, K., Mor, R. S., & Malik, M. (2021). Sustainable Innovations in the Food Industry through Artificial Intelligence and Big Data Analytics. Logistics, 5(4), 66. https://doi.org/10.3390/logistics5040066