Lowering the Toxicity of Cd to Theobroma cacao Using Soil Amendments Based on Commercial Charcoal and Lime
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Vegetable Charcoal: Microscopic and Adsorption Potential Analyses
2.2. Field Evaluation of the Amendments
3. Results
3.1. Charcoal Characterization and Cd Adsorption Potential
3.2. Application of Charcoal and Lime Amendments: Effects on Cd Mobility
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wickramasuriya, A.M.; Dunwell, J.M. Cacao biotechnology: Current status and future prospects. Plant Biotech. J. 2018, 16, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Armengot, L.; Beltrán, M.J.; Schneider, M.; Simón, X.; Pérez-Neira, D. Food-energy-water nexus of different cacao production systems from a LCA approach. J. Clean Prod. 2021, 304, 126941. [Google Scholar] [CrossRef]
- Argüello, D.; Chavez, E.; Lauryssen, F.; Vanderschueren, R.; Smolders, E.; Montalvo, D. Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Sci. Total Environ. 2019, 649, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Maddela, N.R.; Kakarla, D.; García, L.C.; Chakraborty, S.; Venkateswarlu, K.; Megharaj, M. Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Sci. Total Environ. 2020, 720, 137645. [Google Scholar] [CrossRef] [PubMed]
- Scaccabarozzi, D.; Castillo, L.; Aromatisi, A.; Milne, L.; Búllon Castillo, A.; Muñoz-Rojas, M. Soil, Site, and Management Factors Affecting Cadmium Concentrations in Cacao-Growing Soils. Agronomy 2020, 10, 806. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Sohail, M.I.; Cao, X.; Hussain, B.; Aziz, M.Z.; Usman, M.; He, Z.-l.; Yang, X. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ. 2019, 660, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, J.; Huang, Q.; Tang, S.; Wang, J.; Hu, P.; Shao, G. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils. Chemosphere 2018, 193, 547–556. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-B.; Huang, D.-Y.; Zhu, Q.-H.; Wang, S.; Liu, S.-L.; He, H.-B.; Zhu, H.-H.; Xu, C. A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar. Ecotoxicol. Environ. Saf. 2017, 136, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Bian, R.; Chen, D.; Liu, X.; Cui, L.; Li, L.; Pan, G.; Xie, D.; Zheng, J.; Zhang, X.; Zheng, J.; et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment. Ecol. Eng. 2013, 58, 378–383. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Wang, S.-Y.; Tsai, M.-H.; Lo, S.-F.; Tsai, M.-J. Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal. Bioresour. Technol. 2008, 99, 7027–7033. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). J. Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, A.; Ismadji, S. Potential utilization of Jatropha curcas L. press-cake residue as new precursor for activated carbon preparation: Application in methylene blue removal from aqueous solution. J. Taiwan Inst. Chem. Eng. 2011, 42, 826–836. [Google Scholar] [CrossRef] [Green Version]
- Azizian, S. Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci. 2004, 276, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Oyetade, O.A.; Nyamori, V.O.; Jonnalagadda, S.B.; Martincigh, B.S.J.D.W.T. Removal of Cd2+ and Hg2+ from aqueous solutions by adsorption onto nitrogen-functionalized carbon nanotubes. Desalin. Water Treat. 2018, 108, 253–267. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef] [PubMed]
- Castaldi, P.; Melis, P.; Silvetti, M.; Deiana, P.; Garau, G. Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma 2009, 151, 241–248. [Google Scholar] [CrossRef]
- Xiao, R.; Huang, Z.; Li, X.; Chen, W.; Deng, Y.; Han, C. Lime and Phosphate Amendment Can Significantly Reduce Uptake of Cd and Pb by Field-Grown Rice. Sustainability 2017, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Kalamdhad, A.S. Effects of lime on bioavailability and leachability of heavy metals during agitated pile composting of water hyacinth. Bioresour. Technol. 2013, 138, 148–155. [Google Scholar] [CrossRef] [PubMed]
Treatment | Leaves (mg Cd kg−1) | Stem (mg Cd kg−1) | Roots (mg Cd kg−1) | Soil (mg Cd kg−1) | pH |
---|---|---|---|---|---|
Control | 28.8 ± 4.0 | 47.4 ± 10.3 | 130.5 ± 18.6 | 24.6 ± 4.1 | 6.28 ± 0.5 |
Lime | ND | ND | 13.0 ± 10.9 | 28.7 ± 2.9 | 7.46 ± 0.4 |
Charcoal | 20.4 ± 3.7 | 46.6 ± 6.3 | 108.0 ± 14.5 | 18.1 ± 0.6 | 6.04 ± 0.7 |
Charcoal + Lime | ND | ND | ND | 35.9 ± 1.7 | 7.48 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calva Jiménez, C.C.; Pinedo Fernández, L.V.; Rodrigues Reis, C.E. Lowering the Toxicity of Cd to Theobroma cacao Using Soil Amendments Based on Commercial Charcoal and Lime. Toxics 2022, 10, 15. https://doi.org/10.3390/toxics10010015
Calva Jiménez CC, Pinedo Fernández LV, Rodrigues Reis CE. Lowering the Toxicity of Cd to Theobroma cacao Using Soil Amendments Based on Commercial Charcoal and Lime. Toxics. 2022; 10(1):15. https://doi.org/10.3390/toxics10010015
Chicago/Turabian StyleCalva Jiménez, Carla Calixta, Liliana Valentina Pinedo Fernández, and Cristiano E. Rodrigues Reis. 2022. "Lowering the Toxicity of Cd to Theobroma cacao Using Soil Amendments Based on Commercial Charcoal and Lime" Toxics 10, no. 1: 15. https://doi.org/10.3390/toxics10010015
APA StyleCalva Jiménez, C. C., Pinedo Fernández, L. V., & Rodrigues Reis, C. E. (2022). Lowering the Toxicity of Cd to Theobroma cacao Using Soil Amendments Based on Commercial Charcoal and Lime. Toxics, 10(1), 15. https://doi.org/10.3390/toxics10010015