Determination of Parabens, Bisphenol A and Its Analogs, Triclosan, and Benzophenone-3 Levels in Human Urine by Isotope-Dilution-UPLC-MS/MS Method Followed by Supported Liquid Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Chemical
2.2. Sample Collection and Preparation
2.3. Analysis of UPLC-MS/MS Method
2.4. Method Validation
2.5. Quality Control
3. Results and Discussion
3.1. Method Validation and Performance
3.1.1. Recovery and Matrix Effect
3.1.2. Linearity, LODs, and LOQs
3.1.3. Within-Run and Between-Run Accuracy and Precision
3.2. Application to Human Urine
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Louro, H.; Heinälä, M.; Bessems, J.; Buekers, J.; Vermeire, T.; Woutersen, M.; van Engelen, J.; Borges, T.; Rousselle, C.; Ougier, E.; et al. Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. Int. J. Hyg. Environ. Health 2019, 222, 727–737. [Google Scholar] [CrossRef]
- Kolossa-Gehring, M.; Fiddicke, U.; Leng, G.; Angerer, J.; Wolz, B. New human biomonitoring methods for chemicals of concern—The German approach to enhance relevance. Int. J. Hyg. Environ. Health 2017, 220, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Garner, N.; Siol, A.; Eilks, I. Parabens as preservatives in personal care products. Chem. Action 2014, 2014, 38–43. [Google Scholar]
- Fransway, A.F.; Fransway, P.J.; Belsito, D.V.; Warshaw, E.M.; Sasseville, D.; Fowler, J.F., Jr.; DeKoven, J.G.; Pratt, M.D.; Maibach, H.I.; Taylor, J.S.; et al. Parabens. Dermat. Contact Atopic Occup. Drug 2019, 30, 3–31. [Google Scholar] [CrossRef]
- Darbre, P.D.; Harvey, P.W. Paraben esters: Review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J. Appl. Toxicol. 2008, 28, 561–578. [Google Scholar] [CrossRef]
- Engeli, R.T.; Rohrer, S.R.; Vuorinen, A.; Herdlinger, S.; Kaserer, T.; Leugger, S.; Schuster, D.; Odermatt, A. Interference of Paraben Compounds with Estrogen Metabolism by Inhibition of 17β-Hydroxysteroid Dehydrogenases. Int. J. Mol. Sci. 2017, 18, 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darbre, P.D.; Byford, J.R.; Shaw, L.E.; Hall, S.; Coldham, N.G.; Pope, G.S.; Sauer, M.J. Oestrogenic activity of benzylparaben. J. Appl. Toxicol. 2003, 23, 43–51. [Google Scholar] [CrossRef]
- Garcia, T.; Schreiber, E.; Kumar, V.; Prasad, R.; Sirvent, J.J.; Domingo, J.L.; Gómez, M. Effects on the reproductive system of young male rats of subcutaneous exposure to n-butylparaben. Food Chem. Toxicol. 2017, 106, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Kolatorova, L.; Sramkova, M.; Vitku, J.; Vcelak, J.; Lischkova, O.; Starka, L.; Duskova, M. Parabens and their relation to obesity. Physiol. Res. 2018, 67, S465–S472. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D. Endocrine Disruptors and Obesity. Curr. Obes. Rep. 2017, 6, 18–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NIH. Compound Summary-Propylparaben. PubChem. 2019. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/7175 (accessed on 2 August 2021).
- Meeker, J.D.; Yang, T.; Ye, X.; Calafat, A.M.; Hauser, R. Urinary concentrations of parabens and serum hormone levels, semen quality parameters, and sperm DNA damage. Environ. Health Perspect. 2011, 119, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Halden, R.U.; Lindeman, A.E.; Aiello, A.E.; Andrews, D.; Arnold, W.A.; Fair, P.; Fuoco, R.E.; Geer, L.A.; Johnson, P.I.; Lohmann, R.; et al. The Florence Statement on Triclosan and Triclocarban. Environ. Health Perspect. 2017, 125, 064501. [Google Scholar] [CrossRef] [PubMed]
- Iacopetta, D.; Catalano, A.; Ceramella, J.; Saturnino, C.; Salvagno, L.; Ielo, I.; Drommi, D.; Scali, E.; Plutino, M.R.; Rosace, G.; et al. The Different Facets of Triclocarban: A Review. Molecules 2021, 26, 2811. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Pulicharla, R.; Brar, S.K.; Cledón, M.; Verma, M.; Surampalli, R.Y. Triclosan: Current status, occurrence, environmental risks and bioaccumulation potential. Int. J. Environ. Res. Public Health 2015, 12, 5657–5684. [Google Scholar] [CrossRef]
- Rocha, B.A.; Asimakopoulos, A.G.; Honda, M.; da Costa, N.L.; Barbosa, R.M.; Barbosa, F.; Kannan, K. Advanced data mining approaches in the assessment of urinary concentrations of bisphenols, chlorophenols, parabens and benzophenones in Brazilian children and their association to DNA damage. Environ. Int. 2018, 116, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Andújar, N.; Gálvez-Ontiveros, Y.; Zafra-Gómez, A.; Rodrigo, L.; Álvarez-Cubero, M.J.; Aguilera, M.; Monteagudo, C.; Rivas, A.A. Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review. Nutrients 2019, 11, 2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.; Kannan, K. Concentrations and Profiles of Bisphenol A and Other Bisphenol Analogues in Foodstuffs from the United States and Their Implications for Human Exposure. J. Agric. Food Chem. 2013, 61, 4655–4662. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China. Food Addit. Contam. Part A 2014, 31, 319–329. [Google Scholar] [CrossRef]
- ECHA. Inclusion of Substances of very High Concern in the Candidate List for Eventual Inclusion in Annex XIV. Candidate List of Substances of very High Concern for Authorisation ED/01/2018. 2018. Available online: https://echa.europa.eu/candidate-list-table (accessed on 4 August 2021).
- Qiu, W.; Zhan, H.; Hu, J.; Zhang, T.; Xu, H.; Wong, M.; Xu, B.; Zheng, C. The occurrence, potential toxicity, and toxicity mechanism of bisphenol S, a substitute of bisphenol A: A critical review of recent progress. Ecotoxicol. Environ. Saf. 2019, 173, 192–202. [Google Scholar] [CrossRef]
- Wu, L.-H.; Zhang, X.-M.; Wang, F.; Gao, C.-J.; Chen, D.; Palumbo, J.R.; Guo, Y.; Zeng, E.Y. Occurrence of bisphenol S in the environment and implications for human exposure: A short review. Sci. Total Environ. 2018, 615, 87–98. [Google Scholar] [CrossRef]
- CHOI, S.J.; YUN, E.S.; SHIN, J.M.; KIM, Y.S.; LEE, J.S.; LEE, J.H.; KIM, D.G.; OH, Y.H.; JUNG, K.; KIM, G.H. Concentrations of Bisphenols in Canned Foods and Their Risk Assessment in Korea. J. Food Prot. 2018, 81, 903–916. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Zhang, J.; Yin, J.; Zhao, Y.; Shen, J.; Jiang, H.; Shao, B. Bisphenol A and Its Analogues in Chinese Total Diets: Contaminated Levels and Risk Assessment. Oxidative Med. Cell. Longev. 2020, 2020, 8822321. [Google Scholar] [CrossRef]
- González, N.; Cunha, S.C.; Ferreira, R.; Fernandes, J.O.; Marquès, M.; Nadal, M.; Domingo, J.L. Concentrations of nine bisphenol analogues in food purchased from Catalonia (Spain): Comparison of canned and non-canned foodstuffs. Food Chem. Toxicol. 2020, 136, 110992. [Google Scholar] [CrossRef] [PubMed]
- Ghazipura, M.; McGowan, R.; Arslan, A.; Hossain, T. Exposure to benzophenone-3 and reproductive toxicity: A systematic review of human and animal studies. Reprod. Toxicol. 2017, 73, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Burnett, M.E.; Lim, H.W. Safety of Oxybenzone: Putting Numbers Into Perspective. Arch. Dermatol. 2011, 147, 865–866. [Google Scholar] [CrossRef] [Green Version]
- Seidel, F. Reproductive toxicity of benzophenone-3. Arch. Toxicol. 2020, 94, 3593–3594. [Google Scholar] [CrossRef]
- Majhi, P.D.; Sharma, A.; Roberts, A.L.; Daniele, E.; Majewski, A.R.; Chuong, L.M.; Black, A.L.; Vandenberg, L.N.; Schneider, S.S.; Dunphy, K.A.; et al. Effects of Benzophenone-3 and Propylparaben on Estrogen Receptor-Dependent R-Loops and DNA Damage in Breast Epithelial Cells and Mice. Environ. Health Perspect. 2020, 128, 17002. [Google Scholar] [CrossRef] [Green Version]
- Vorkamp, K.; Castaño, A.; Antignac, J.-P.; Boada, L.D.; Cequier, E.; Covaci, A.; Esteban López, M.; Haug, L.S.; Kasper-Sonnenberg, M.; Koch, H.M.; et al. Biomarkers, matrices and analytical methods targeting human exposure to chemicals selected for a European human biomonitoring initiative. Environ. Int. 2021, 146, 106082. [Google Scholar] [CrossRef]
- Sanchis, Y.; Coscollà, C.; Yusà, V. Analysis of four parabens and bisphenols A, F, S in urine, using dilute and shoot and liquid chromatography coupled to mass spectrometry. Talanta 2019, 202, 42–50. [Google Scholar] [CrossRef]
- Ren, L.; Fang, J.; Liu, G.; Zhang, J.; Zhu, Z.; Liu, H.; Lin, K.; Zhang, H.; Lu, S. Simultaneous determination of urinary parabens, bisphenol A, triclosan, and 8-hydroxy-2’-deoxyguanosine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 2621–2629. [Google Scholar] [CrossRef]
- van der Meer, T.P.; van Faassen, M.; van Beek, A.P.; Snieder, H.; Kema, I.P.; Wolffenbuttel, B.H.R.; van Vliet-Ostaptchouk, J.V. Exposure to Endocrine Disrupting Chemicals in the Dutch general population is associated with adiposity-related traits. Sci. Rep. 2020, 10, 9311. [Google Scholar] [CrossRef]
- Zhu, H.; Chinthakindi, S.; Kannan, K. A method for the analysis of 121 multi-class environmental chemicals in urine by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2021, 1646, 462146. [Google Scholar] [CrossRef]
- Ryska, M. How to Deal with the “Matrix Effect” as an Unavoidable Phenomenon. Eur. J. Mass Spectrom. 2015, 21, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Cortese, M.; Gigliobianco, M.R.; Magnoni, F.; Censi, R.; Di Martino, P. Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review. Molecules 2020, 25, 3047. [Google Scholar] [CrossRef]
- Myridakis, A.; Balaska, E.; Gkaitatzi, C.; Kouvarakis, A.; Stephanou, E.G. Determination and separation of bisphenol A, phthalate metabolites and structural isomers of parabens in human urine with conventional high-pressure liquid chromatography combined with electrospray ionisation tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 2509–2518. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, A.; Rascón, A.J.; Ballesteros, E. Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood and breast milk by continuous solid-phase extraction and gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2016, 119, 16–26. [Google Scholar] [CrossRef]
- Walker, V.; Mills, G.A. Solid-phase extraction in clinical biochemistry. Ann. Clin. Biochem. 2002, 39, 464–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhongzhe, C.; Jiang, H. Supported Liquid Extraction (SLE) in LC-MS Bioanalysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 76–84. [Google Scholar]
- Denham, S.; Just, G.; Kyle, C.; Richardson, J.; Lee, P.; Simpson, J.; Gifford, R.M.; Andrew, R.; Reynolds, R.; Homer, N. Automated Supported Liquid Extraction for the analysis of a panel of 12 endogenous steroids in human plasma by LC-MS/MS. Preprints 2020, 2020110551. [Google Scholar] [CrossRef]
- Jiang, H.; Cao, H.; Zhang, Y.; Fast, D.M. Systematic evaluation of supported liquid extraction in reducing matrix effect and improving extraction efficiency in LC-MS/MS based bioanalysis for 10 model pharmaceutical compounds. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 891–892, 71–80. [Google Scholar] [CrossRef]
- Shang, T.; Zhao, L.-J.; Li, P.; Zeng, X.-Y.; Yu, Z.-Q. Determination of Ten Kinds of Monohydroxylated Polycyclic Aromatic Hydrocarbons in Human Urine by Supported Liquid Extraction Followed by Liquid Chromatography-Tandem Mass Spectrometry. Chin. J. Anal. Chem. 2019, 47, 876–882. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Huang, P.C.; Waits, A.; Chen, H.C.; Chang, W.T.; Jaakkola, J.J.K.; Huang, H.B. Mediating role of oxidative/nitrosative stress biomarkers in the associations between phthalate exposure and thyroid function in Taiwanese adults. Environ. Int. 2020, 140, 105751. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.C.; Tsai, C.H.; Liang, W.Y.; Li, S.S.; Pan, W.H.; Chiang, H.C. Age and Gender Differences in Urinary Levels of Eleven Phthalate Metabolites in General Taiwanese Population after a DEHP Episode. PLoS ONE 2015, 10, e0133782. [Google Scholar] [CrossRef] [Green Version]
- van der Meer, T.P.; van Faassen, M.; Frederiksen, H.; van Beek, A.P.; Wolffenbuttel, B.H.R.; Kema, I.P.; van Vliet-Ostaptchouk, J.V. Development and Interlaboratory Validation of Two Fast UPLC-MS-MS Methods Determining Urinary Bisphenols, Parabens and Phthalates. J. Anal. Toxicol. 2019, 43, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.T.; Chen, H.C.; Ding, W.H. Accurate analysis of parabens in human urine using isotope-dilution ultrahigh-performance liquid chromatography-high resolution mass spectrometry. J. Pharm. Biomed. Anal. 2018, 150, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, P.; Zhou, X.; Powell, T.G.; Calafat, A.M.; Ye, X. Impact of enzymatic hydrolysis on the quantification of total urinary concentrations of chemical biomarkers. Chemosphere 2018, 199, 256–262. [Google Scholar] [CrossRef]
- EMA. Guideline on Bioanalytical Method Validation; CHMP: London, UK, 2011. [Google Scholar]
- Liu, H.; Huang, L.; Chen, Y.; Guo, L.; Li, L.; Zhou, H.; Luan, T. Simultaneous determination of polycyclic musks in blood and urine by solid supported liquid–liquid extraction and gas chromatography–tandem mass spectrometry. J. Chromatogr. B 2015, 992, 96–102. [Google Scholar] [CrossRef]
- del Carmen Hurtado-Sánchez, M.; Acedo-Valenzuela, M.I.; Durán-Merás, I.; Rodríguez-Cáceres, M.I. Determination of chemotherapeutic drugs in human urine by capillary electrophoresis with UV and fluorimetric detection using solid-supported liquid–liquid extraction for sample clean-up. J. Sep. Sci. 2015, 38, 1990–1997. [Google Scholar] [CrossRef]
- Marin, S.J. What’s the Best Way to Do Supported Liquid Extraction? ISOLUTE® SLE+ User Guide Supported Liquid Extraction. 2020. Available online: https://sampleprep.biotage.com/blog/whats-the-best-way-to-do-sle (accessed on 25 July 2021).
- Berger, K.P.; Kogut, K.R.; Bradman, A.; She, J.; Gavin, Q.; Zahedi, R.; Parra, K.L.; Harley, K.G. Personal care product use as a predictor of urinary concentrations of certain phthalates, parabens, and phenols in the HERMOSA study. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 21–32. [Google Scholar] [CrossRef]
- Chen, C.W.; Hsu, W.C.; Lu, Y.C.; Weng, J.R.; Feng, C.H. Determination of parabens using two microextraction methods coupled with capillary liquid chromatography-UV detection. Food Chem. 2018, 241, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.K.; Shiea, J.; Tsai, H.J. Urinary Concentrations of Triclosan, Benzophenone-3, and Bisphenol A in Taiwanese Children and Adolescents. Int. J. Environ. Res. Public Health 2017, 14, 1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Analyte | MRM Transition Ions (m/z) | MRM Transition Ions (m/z) | ||||
---|---|---|---|---|---|---|
Precursor Ion (DP 1, V) | Quantitated Ion (CE 2, V) | Qualified Ion (CE, V) | SIL-ISTD 3 | Precursor Ion | Quantitated Ion (CE, V) | |
MePB | [M − H]− 151 (60) | 92 (27) | 136 (21) | 13C6-MePB | [M − H]− 157 | 98 (28) |
EtPB | [M − H]− 165 (40) | 92 (29) | 136 (22) | 13C6-EtPB | [M − H]− 171 | 98 (29) |
PrPB | [M − H]− 179 (60) | 92 (28) | 136 (22) | PrPB-d7 | [M − H]− 186 | 92 (28) |
BuPB | [M − H]− 193 (60) | 92 (32) | 136 (24) | BuPB-d9 | [M − H]− 202 | 92 (32) |
TCS | [M − H]− 287 (55) | 35 (30) | 142 (27) | TCS-d3 | [M − H]− 290 | 35 (30) |
TCCB | [M − H]− 313 (42) | 126 (28) | 160 (36) | TCCB-d4 | [M − H]− 317 | 130 (28) |
BPA | [M − H]− 227 (40) | 212 (25) | 133 (45) | 13C12-BPA | [M − H]− 239 | 223 (25) |
BPS | [M − H]− 249 (70) | 108 (27) | 92 (40) | BPS-d8 | [M − H]− 257 | 112 (28) |
BPF | [M − H]− 199 (85) | 93 (26) | 105 (35) | BPF-d10 | [M − H]− 209 | 97 (26) |
BP-3 | [M + H]+ 229 (71) | 105 (36) | 71 (36) | BP-3-d5 | [M + H]+ 234 | 110 (35) |
Analyte | Spike Conc. (ng/mL) | Recovery (n = 3) | Matrix Effect (n = 3) | ||
---|---|---|---|---|---|
Mean | RSD | Mean | RSD | ||
MePB | 0.9 | 100.9% | 6.1% | 92.4% | 8.2% |
700 | 84.4% | 1.9% | 96.7% | 6.1% | |
1125 | 95.2% | 1.7% | 89.5% | 8.6% | |
EtPB | 0.9 | 91.6% | 6.7% | 85.6% | 4.7% |
250 | 99.5% | 7.1% | 80.3% | 4.8% | |
375 | 90.8% | 12.8% | 88.7% | 6.2% | |
PrPB | 0.9 | 97.2% | 5.4% | 83.0% | 3.8% |
250 | 91.8% | 2.2% | 92.6% | 7.0% | |
375 | 86.8% | 13.7% | 90.5% | 11.2% | |
BuPB | 0.9 | 99.3% | 10.5% | 85.4% | 14.2% |
250 | 86.0% | 6.9% | 91.8% | 13.2% | |
375 | 98.4% | 13.3% | 88.4% | 13.9% | |
BPA | 0.9 | 85.0% | 3.8% | 95.3% | 5.1% |
250 | 89.1% | 4.3% | 79.5% | 5.5% | |
375 | 93.7% | 6.2% | 81.4% | 5.0% | |
BPS | 0.9 | 81.0% | 4.6% | 99.0% | 6.4% |
250 | 89.4% | 11.1% | 87.7% | 0.6% | |
375 | 90.5% | 5.6% | 87.3% | 0.3% | |
BPF | 0.9 | 75.6% | 1.8% | 103.2% | 4.0% |
250 | 93.0% | 8.6% | 81.3% | 3.7% | |
375 | 90.0% | 8.4% | 86.3% | 4.7% | |
TCS | 0.9 | 98.5% | 8.9% | 110.2% | 2.2% |
700 | 89.1% | 4.9% | 114.7% | 1.8% | |
1125 | 92.6% | 14.1% | 102.2% | 7.6% | |
TCCB | 0.9 | 102.4% | 5.8% | 115.0% | 7.7% |
250 | 92.6% | 2.8% | 115.8% | 5.3% | |
375 | 94.3% | 9.2% | 106.2% | 12.0% | |
BP-3 | 0.9 | 90.9% | 9.2% | 118.9% | 7.2% |
700 | 96.9% | 8.4% | 100.7% | 3.9% | |
1125 | 92.2% | 11.8% | 111.9% | 9.1% |
Analyte | r2 | Equation (1/x Weighting) | LOD (ng/mL) | LLOQ (ng/mL) | ULOQ (ng/mL) |
---|---|---|---|---|---|
MePB | 0.9978 | y = 0.2182x − 0.0670 | 0.1 | 0.3 | 1500 |
EtPB | 0.9955 | y = 0.1986x − 0.0537 | 0.1 | 0.3 | 500 |
PrPB | 0.9982 | y = 0.1625x − 0.0451 | 0.1 | 0.3 | 500 |
BuPB | 0.9972 | y = 0.1869x − 0.0541 | 0.1 | 0.3 | 500 |
TCS | 0.9958 | y = 0.1362x − 0.0284 | 0.1 | 0.3 | 1500 |
TCCB | 0.9983 | y = 0.1761x − 0.0179 | 0.1 | 0.3 | 500 |
BPA | 0.9985 | y = 0.0954x − 0.0275 | 0.1 | 0.3 | 500 |
BPS | 0.9981 | y = 0.0824x − 0.0228 | 0.1 | 0.3 | 500 |
BPF | 0.9952 | y = 0.0964x − 0.0236 | 0.1 | 0.3 | 500 |
BP-3 | 0.9976 | y = 0.1462x − 0.0378 | 0.1 | 0.3 | 1500 |
Analyte | Spiked Conc. (ng/mL) | Within-Run (n = 5) | Between-Run (n = 5 × 3) | ||||
---|---|---|---|---|---|---|---|
MeanMeasured ± SD (ng/mL) | Accuracy (%) | Precision (%) | MeanMeasured ± SD (ng/mL) | Accuracy (%) | Precision (%) | ||
MePB | 0.9 | 1.0 ± 0.1 | 111.6 | 10.4 | 0.9 ± 0.04 | 103.4 | 3.9 |
700 | 754.9 ± 76.2 | 107.8 | 10.1 | 704.7 ± 15.9 | 100.7 | 2.3 | |
1125 | 986.9 ± 131.4 | 87.7 | 13.3 | 1152.9 ± 89.6 | 102.5 | 7.8 | |
EtPB | 0.9 | 0.9 ± 0.1 | 100.9 | 12.6 | 0.9 ± 0.1 | 97.8 | 6.3 |
250 | 225.0 ± 18.8 | 90.0 | 8.3 | 245.2 ± 18.1 | 98.1 | 7.4 | |
375 | 386.6 ± 15.9 | 103.1 | 4.1 | 395.0 ± 18.4 | 105.3 | 4.7 | |
PrPB | 0.9 | 1.0 ± 0.1 | 110.5 | 7.7 | 0.9 ± 0.1 | 100.8 | 6.3 |
250 | 236.7 ± 2.8 | 94.7 | 1.2 | 238.8 ± 3.3 | 95.5 | 1.4 | |
375 | 332.7 ± 14.7 | 88.7 | 4.4 | 370.7 ± 11.9 | 98.9 | 3.2 | |
BuPB | 0.9 | 0.9 ± 0.1 | 100.8 | 7.0 | 0.9 ± 0.04 | 101.7 | 4.1 |
250 | 280.7 ± 12.1 | 112.3 | 4.3 | 252.6 ± 9.0 | 101.0 | 3.6 | |
375 | 379.5 ± 8.0 | 101.2 | 2.1 | 365.7 ± 14.6 | 97.5 | 4.0 | |
BPA | 0.9 | 1.0 ± 0.03 | 105.6 | 2.7 | 0.9 ± 0.02 | 98.3 | 2.8 |
250 | 220.3 ± 11.1 | 88.1 | 5.0 | 259.8 ± 19.4 | 103.9 | 7.5 | |
375 | 421.7 ± 37.1 | 112.4 | 8.8 | 383.8 ± 16.2 | 102.4 | 4.2 | |
BPS | 0.9 | 1.0 ± 0.01 | 110.1 | 1.1 | 0.9 ± 0.02 | 100.4 | 1.9 |
250 | 275.9 ± 30.6 | 110.4 | 11.1 | 261.1 ± 12.7 | 104.4 | 4.9 | |
375 | 415.0 ± 18.7 | 110.7 | 4.5 | 396.6 ± 16.3 | 105.8 | 4.1 | |
BPF | 0.9 | 1.0 ± 0.04 | 109.1 | 3.8 | 0.9 ± 0.03 | 101.0 | 3.0 |
250 | 267.8 ± 31.3 | 107.1 | 11.7 | 245.5 ± 12.9 | 98.2 | 5.3 | |
375 | 365.4 ± 18.7 | 97.4 | 1.6 | 376.9 ± 15.9 | 100.5 | 4.2 | |
TCS | 0.9 | 0.9 ± 0.1 | 99.8 | 5.6 | 0.9 ± 0.01 | 100.7 | 0.8 |
700 | 729.6 ± 30.3 | 104.2 | 4.2 | 675.3 ± 47.1 | 96.5 | 7.0 | |
1125 | 1095.3 ± 18.7 | 97.4 | 9.1 | 1138.0 ± 62.9 | 101.2 | 5.5 | |
TCCB | 0.9 | 1.0 ± 0.04 | 106.4 | 3.8 | 0.9 ± 0.01 | 100.7 | 0.6 |
250 | 261.3 ± 15.2 | 104.5 | 5.8 | 243.4 ± 11.9 | 97.4 | 4.9 | |
375 | 416.3 ± 29.6 | 111.0 | 7.1 | 374.5 ± 14.7 | 99.9 | 3.9 | |
BP-3 | 0.9 | 0.8 ± 0.03 | 91.1 | 3.8 | 0.9 ± 0.02 | 98.3 | 2.5 |
700 | 714.1 ± 44.2 | 102.0 | 6.2 | 688.8 ± 64.4 | 98.4 | 9.9 | |
1125 | 1031.3 ± 57.7 | 91.7 | 5.6 | 1141.7 ± 73.1 | 101.5 | 6.4 |
Subjects | Concentration (ng/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MePB | EtPB | PrPB | BuPB | BPA | BPF | BPS | TCS | TCCB | BP-3 | ||
Child (n = 13, 8–12 years old) | Min. | 209.2 | 10.6 | 39.2 | 3.2 | 1.2 | 3.9 | 0.8 | 7.4 | 3.4 | 5.4 |
Max. | 925.3 | 703.7 | 281.9 | 13.7 | 10.1 | 16.4 | 3.5 | 86.1 | 22.5 | 16.4 | |
Mean | 481.0 | 181.9 | 121.3 | 7.0 | 4.6 | 8.5 | 2.0 | 31.4 | 10.5 | 9.6 | |
SD | 246.5 | 241.2 | 69.4 | 3.0 | 2.8 | 3.6 | 0.9 | 23.9 | 6.4 | 3.4 | |
Adolescent (n = 28, 13–18 years old) | Min. | 78.1 | 0.3 | 17.4 | 0.7 | 0.2 | 1.1 | 0.5 | 0.1 | 1.7 | 1.8 |
Max. | 959.4 | 1200.9 | 343.7 | 9.4 | 13.1 | 20.3 | 5.9 | 102.4 | 26.1 | 24.1 | |
Mean | 435.4 | 177.8 | 107.8 | 5.2 | 3.9 | 7.0 | 1.9 | 25.4 | 8.7 | 9.1 | |
SD | 244.3 | 251.5 | 73.1 | 3.1 | 3.7 | 4.4 | 1.3 | 25.4 | 6.2 | 5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-C.; Chang, J.-W.; Sun, Y.-C.; Chang, W.-T.; Huang, P.-C. Determination of Parabens, Bisphenol A and Its Analogs, Triclosan, and Benzophenone-3 Levels in Human Urine by Isotope-Dilution-UPLC-MS/MS Method Followed by Supported Liquid Extraction. Toxics 2022, 10, 21. https://doi.org/10.3390/toxics10010021
Chen H-C, Chang J-W, Sun Y-C, Chang W-T, Huang P-C. Determination of Parabens, Bisphenol A and Its Analogs, Triclosan, and Benzophenone-3 Levels in Human Urine by Isotope-Dilution-UPLC-MS/MS Method Followed by Supported Liquid Extraction. Toxics. 2022; 10(1):21. https://doi.org/10.3390/toxics10010021
Chicago/Turabian StyleChen, Hsin-Chang, Jung-Wei Chang, Yi-Chen Sun, Wan-Ting Chang, and Po-Chin Huang. 2022. "Determination of Parabens, Bisphenol A and Its Analogs, Triclosan, and Benzophenone-3 Levels in Human Urine by Isotope-Dilution-UPLC-MS/MS Method Followed by Supported Liquid Extraction" Toxics 10, no. 1: 21. https://doi.org/10.3390/toxics10010021
APA StyleChen, H. -C., Chang, J. -W., Sun, Y. -C., Chang, W. -T., & Huang, P. -C. (2022). Determination of Parabens, Bisphenol A and Its Analogs, Triclosan, and Benzophenone-3 Levels in Human Urine by Isotope-Dilution-UPLC-MS/MS Method Followed by Supported Liquid Extraction. Toxics, 10(1), 21. https://doi.org/10.3390/toxics10010021