Acute Hepatic Injury Associated with Acute Administration of Synthetic Cannabinoid XLR-11 in Mouse Animal Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Biochemical Measures
2.3. Histopathological Examination
2.4. Total RNA Isolation and cDNA Synthesis
2.5. Quantitative Real-Time PCR (qPCR)
2.6. MDA Assay
2.7. TUNEL Assay
2.8. Statistical Analysis
3. Results
3.1. XLR-11 Treatment Induced Oxidative Stress, Inflammationy, and Apoptosis in the Liver
3.2. XLR-11 Treatment Induces Histopathological Changes in Liver
3.3. XLR-11 Treatment Alters AST and ALT Serum Level
3.4. XLR-11 Treatment Does Not Induce Fibrosis in Liver
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castaneto, M.S.; Gorelick, D.A.; Desrosiers, N.A.; Hartman, R.L.; Pirard, S.; Huestis, M.A. Synthetic cannabinoids: Epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol. Depend. 2014, 144, 12–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattore, L.; Fratta, W. Beyond THC: The New Generation of Cannabinoid Designer Drugs. Front. Behav. Neurosci. 2011, 5, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinotti, G.; Santacroce, R.; Papanti, D.; Elgharably, Y.; Prilutskaya, M.; Corazza, O. Synthetic Cannabinoids: Psychopharmacology, Clinical Aspects, Psychotic Onset. CNS Neurol. Disord. Drug Targets 2017, 16, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Sedefov, R.; Gallegos, A.; King, L.; Lopez, D.; Auwärter, V.; Hughes, B.; Griffiths, P.J.T.P. Understanding the ‘Spice’ Phenomenon; Addiction, D., Ed.; European Monitoring Centre for Drugs: Lisbon, Portugal, 2009. [Google Scholar]
- Tai, S.; Fantegrossi, W.E. Pharmacological and Toxicological Effects of Synthetic Cannabinoids and Their Metabolites. Curr. Top. Behav. Neurosci. 2017, 32, 249–262. [Google Scholar] [PubMed]
- Fonseca, B.M.; Costa, M.A.; Almada, M.; Correia-da-Silva, G.; Teixeira, N.A. Endogenous cannabinoids revisited: A biochemistry perspective. Prostaglandins Other Lipid Mediat. 2013, 102–103, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Howlett, A.C.; Breivogel, C.S.; Childers, S.R.; Deadwyler, S.A.; Hampson, R.E.; Porrino, L.J. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology 2004, 47 (Suppl. S1), 345–358. [Google Scholar] [CrossRef]
- Hoyte, C.O.; Jacob, J.; Monte, A.A.; Al-Jumaan, M.; Bronstein, A.C.; Heard, K.J. A characterization of synthetic cannabinoid exposures reported to the National Poison Data System in 2010. Ann. Emerg. Med. 2012, 60, 435–438. [Google Scholar] [CrossRef]
- Sherpa, D.; Paudel, B.M.; Subedi, B.H.; Chow, R.D. Synthetic cannabinoids: The multi-organ failure and metabolic derangements associated with getting high. J. Community Hosp. Intern. Med. Perspect. 2015, 5, 27540. [Google Scholar] [CrossRef] [Green Version]
- Schep, L.; Slaughter, R.; Hudson, S.; Place, R.; Watts, M. Delayed seizure-like activity following analytically confirmed use of previously unreported synthetic cannabinoid analogues. Hum. Exp. Toxicol. 2015, 34, 557–560. [Google Scholar] [CrossRef]
- Tait, R.J.; Caldicott, D.; Mountain, D.; Hill, S.L.; Lenton, S. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin. Toxicol. 2016, 54, 1–13. [Google Scholar] [CrossRef]
- Solimini, R.; Busardo, F.P.; Rotolo, M.C.; Ricci, S.; Mastrobattista, L.; Mortali, C.; Graziano, S.; Pellegrini, M.; di Luca, N.M.; Palmi, I. Hepatotoxicity associated to synthetic cannabinoids use. Eur. Rev. Med. Pharmacol. Sci. 2017, 21 (Suppl. S1), 1–6. [Google Scholar]
- Knowles, K.J.; Wei, E.X.; Seth, A.; Bienvenu, J.; Morris, J.; Manas, K.; Jordan, P.; Boktor, M. Synthetic Cannabinoid Abuse and a Rare Alpha-1-Antitrypsin Mutant Causing Acute Fulminant Hepatitis: A Case Report and Review of the Literature. Case Rep. Hepatol. 2017, 2017, 9627452. [Google Scholar] [CrossRef] [Green Version]
- Paez, M.; Laiyemo, A.; Atanda, A.C.; Mehari, A.; Davis, W.; Odeyemi, Y. Synthetic Marijuana-Induced Acute Liver Failure: 1820. Off. J. Am. Coll. Gastroenterol. ACG 2016, 111, S873. [Google Scholar] [CrossRef]
- Shahbaz, A.; Gaviria, R.E.E.; Shahid, M.F.; Yasin, M.A.; Ashraf, A.; Zaman, M.A. Acute Liver Injury Induced by Synthetic Cannabinoid Abuse. Cureus 2018, 10, e3257. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, I.A.; Luksic, M.; Ferstenberg, R.; Culpepper-Morgan, J.A. Spice/K2 synthetic marijuana-induced toxic hepatitis treated with N-acetylcysteine. Am. J. Case Rep. 2014, 15, 584–588. [Google Scholar]
- Wiley, J.L.; Marusich, J.A.; Lefever, T.W.; Grabenauer, M.; Moore, K.N.; Thomas, B.F. Cannabinoids in disguise: Delta9-tetrahydrocannabinol-like effects of tetramethylcyclopropyl ketone indoles. Neuropharmacology 2013, 75, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.P.; Carmo, H.; Carvalho, F. The synthetic cannabinoid XLR-11 induces in vitro nephrotoxicity by impairment of endocannabinoid-mediated regulation of mitochondrial function homeostasis and triggering of apoptosis. Toxicol. Lett. 2018, 287, 59–69. [Google Scholar] [CrossRef]
- Banister, S.D.; Stuart, J.; Kevin, R.C.; Edington, A.; Longworth, M.; Wilkinson, S.M.; Beinat, C.; Buchanan, A.S.; Hibbs, D.E.; Glass, M.; et al. Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem. Neurosci. 2015, 6, 1445–1458. [Google Scholar] [CrossRef] [Green Version]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1978; Volume 52, pp. 302–310. [Google Scholar]
- Law, R.; Schier, J.; Martin, C.; Chang, A.; Wolkin, A. Increase in reported adverse health effects related to synthetic cannabinoid use—United States, January–May 2015. Morb. Mortal. Wkly. Rep. 2015, 64, 618. [Google Scholar]
- Shanks, K.G.; Winston, D.; Heidingsfelder, J.; Behonick, G. Case reports of synthetic cannabinoid XLR-11 associated fatalities. Forensic Sci. Int. 2015, 252, e6–e9. [Google Scholar] [CrossRef]
- Jang, M.; Kim, I.S.; Park, Y.N.; Kim, J.; Han, I.; Baeck, S.; Yang, W.; Yoo, H.H. Determination of urinary metabolites of XLR-11 by liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, T.; Kanda, K.; Yamamuro, T.; Kuwayama, K.; Tsujikawa, K.; Iwata, Y.T.; Inoue, H. Detection of main metabolites of XLR-11 and its thermal degradation product in human hepatoma HepaRG cells and human urine. Drug Test. Anal. 2015, 7, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.M.; Holm, N.B.; Olsen, L.; Linnet, K. Cytochrome P450-mediated metabolism of the synthetic cannabinoids UR-144 and XLR-11. Drug Test. Anal. 2016, 8, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Wohlfarth, A.; Pang, S.; Zhu, M.; Gandhi, A.S.; Scheidweiler, K.B.; Liu, H.F.; Huestis, M.A. First metabolic profile of XLR-11, a novel synthetic cannabinoid, obtained by using human hepatocytes and high-resolution mass spectrometry. Clin. Chem. 2013, 59, 1638–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brents, L.K.; Gallus-Zawada, A.; Radominska-Pandya, A.; Vasiljevik, T.; Prisinzano, T.E.; Fantegrossi, W.E.; Moran, J.H.; Prather, P.L. Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochem. Pharmacol. 2012, 83, 952–961. [Google Scholar] [CrossRef] [Green Version]
- Brents, L.K.; Reichard, E.E.; Zimmerman, S.M.; Moran, J.H.; Fantegrossi, W.E.; Prather, P.L. Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity. PLoS ONE 2011, 6, e21917. [Google Scholar] [CrossRef]
- Chimalakonda, K.C.; Seely, K.A.; Bratton, S.M.; Brents, L.K.; Moran, C.L.; Endres, G.W.; James, L.P.; Hollenberg, P.F.; Prather, P.L.; Radominska-Pandya, A.; et al. Cytochrome P450-mediated oxidative metabolism of abused synthetic cannabinoids found in K2/Spice: Identification of novel cannabinoid receptor ligands. Drug Metab. Dispos. 2012, 40, 2174–2184. [Google Scholar] [CrossRef]
- Lapenna, D.; Cuccurullo, F. TBA test and “free” MDA assay in evaluation of lipid peroxidation and oxidative stress in tissue systems. Merican J. Physiol.-Heart Circ. Physiol. 1993, 265, H1030–H1032. [Google Scholar] [CrossRef]
- Majtnerová, P.; Roušar, T. An overview of apoptosis assays detecting DNA fragmentation. Mol. Biol. Rep. 2018, 45, 1469–1478. [Google Scholar] [CrossRef] [Green Version]
- Parolini, M.; Binelli, A. Oxidative and genetic responses induced by Delta-9-tetrahydrocannabinol (Delta-9-THC) to Dreissena polymorpha. Sci. Total. Environ. 2014, 468–469, 68–76. [Google Scholar] [CrossRef]
- Schultze, N.; Wanka, H.; Zwicker, P.; Lindequist, U.; Haertel, B. Mitochondrial functions of THP-1 monocytes following the exposure to selected natural compounds. Toxicology 2017, 377, 57–63. [Google Scholar] [CrossRef]
- Wolff, V.; Schlagowski, A.I.; Rouyer, O.; Charles, A.L.; Singh, F.; Auger, C.; Schini-Kerth, V.; Marescaux, C.; Raul, J.S.; Zoll, J.; et al. Tetrahydrocannabinol induces brain mitochondrial respiratory chain dysfunction and increases oxidative stress: A potential mechanism involved in cannabis-related stroke. BioMed Res. Int. 2015, 2015, 323706. [Google Scholar] [CrossRef] [Green Version]
- Oztas, E.; Abudayyak, M.; Celiksoz, M.; Ozhan, G. Inflammation and oxidative stress are key mediators in AKB48-induced neurotoxicity in vitro. Toxicol. In Vitro 2019, 55, 101–107. [Google Scholar] [CrossRef]
- Guler, E.M.; Bektay, M.Y.; Akyildiz, A.G.; Sisman, B.H.; Izzettin, F.V.; Kocyigit, A. Investigation of DNA damage, oxidative stress, and inflammation in synthetic cannabinoid users. Hum. Exp. Toxicol. 2020, 39, 1454–1462. [Google Scholar] [CrossRef]
- Bileck, A.; Ferk, F.; Al-Serori, H.; Koller, V.J.; Muqaku, B.; Haslberger, A.; Auwarter, V.; Gerner, C.; Knasmuller, S. Impact of a synthetic cannabinoid (CP-47,497-C8) on protein expression in human cells: Evidence for induction of inflammation and DNA damage. Arch. Toxicol. 2016, 90, 1369–1382. [Google Scholar] [CrossRef]
- Kang, S.W.; Wahl, M.I.; Chu, J.; Kitaura, J.; Kawakami, Y.; Kato, R.M.; Tabuchi, R.; Tarakhovsky, A.; Kawakami, T.; Turck, C.W.; et al. PKCbeta modulates antigen receptor signaling via regulation of Btk membrane localization. EMBO J. 2001, 20, 5692–5702. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Shen, X.; Lin, L.; Leitges, M.; Rosario, R.; Zou, Y.S.; Yan, S.F. PKCbeta promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1779–1787. [Google Scholar] [CrossRef] [Green Version]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [Green Version]
- Koller, V.J.; Zlabinger, G.J.; Auwarter, V.; Fuchs, S.; Knasmueller, S. Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB(1). Arch. Toxicol. 2013, 87, 1287–1297. [Google Scholar] [CrossRef]
- Ferk, F.; Gminski, R.; Al-Serori, H.; Misik, M.; Nersesyan, A.; Koller, V.J.; Angerer, V.; Auwarter, V.; Tang, T.; Arif, A.T.; et al. Genotoxic properties of XLR-11, a widely consumed synthetic cannabinoid, and of the benzoyl indole RCS-4. Arch. Toxicol. 2016, 90, 3111–3123. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Mariscal, I.; Krzysik-Walker, S.M.; Doyle, M.E.; Liu, Q.R.; Cimbro, R.; Santa-Cruz Calvo, S.; Ghosh, S.; Ciesla, L.; Moaddel, R.; Carlson, O.D.; et al. Human CB1 Receptor Isoforms, present in Hepatocytes and beta-cells, are Involved in Regulating Metabolism. Sci. Rep. 2016, 6, 33302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julien, B.; Grenard, P.; Teixeira-Clerc, F.; Van Nhieu, J.T.; Li, L.; Karsak, M.; Zimmer, A.; Mallat, A.; Lotersztajn, S. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 2005, 128, 742–755. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gao, B.; Mirshahi, F.; Sanyal, A.J.; Khanolkar, A.D.; Makriyannis, A.; Kunos, G. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem. J. 2000, 346 Pt 3, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Parfieniuk, A.; Flisiak, R. Role of cannabinoids in chronic liver diseases. World J. Gastroenterol. 2008, 14, 6109–6114. [Google Scholar] [CrossRef]
- Kim, Y.; Gautam, S.; Aseer, K.R.; Kim, J.; Chandrasekaran, P.; Mazucanti, C.H.; Ghosh, P.; O’Connell, J.F.; Doyle, M.E.; Appleton, A.; et al. Hepatocyte cannabinoid 1 receptor nullification alleviates toxin-induced liver damage via NF-kappaB signaling. Cell Death Dis. 2020, 11, 1044. [Google Scholar] [CrossRef]
- Bataller, R.; Brenner, D.A. Liver fibrosis. J. Clin. Investig. 2005, 115, 209–218. [Google Scholar] [CrossRef]
Gene | Forward Primer | Reverse Primer |
---|---|---|
NOX4 | 5′-TCATTTGGCTGTCCCTAAACG-3′ | 5′-AAGGATGAGGCTGCAGTTGAG-3′ |
NOX2 | 5′-CTGGTGTGGTTGGGGCTGAATGTC-3′ | 5′-CAGAGCCAGTGCTGACCCAAGGAGT-3′ |
iNOS | 5′-ATGGACCAGTATAAGGCAAGC-3′ | 5′-GCTCTGGATGAGCCTATATTG-3′ |
TNF-α | 5′-AAGCCTGTAGCCCACGTCGTA-3′ | 5′-AGGTACAACCCATCGGCTGG-3’ |
IL-1β | 5'-AACCTGCTGGTGTGTGACGTTC-3' | 5'-CAGCACGAGGCTTTTTTGTTGT-3' |
IL-6 | 5'-ACAACCACGGCCTTCCCTACTT-3' | 5'-CACGATTTCCCAGAGAACATGTG-3' |
Bax | 5′-CTGAGCTGACCTTGGAGC-3′ | 5′-GACTCCAGCCACAAAGATG-3 |
Bcl2 | 5′-GTGGATGACTGAGTACCT-3′ | 5′-CCAGGAGAAATCAAACAGAG-3′ |
TGF-β | 5′-TCTACAACCAACACAACCCGG-3′ | 5′-GAGCGCACAATCATGTTGGAC-3′ |
CTGF | 5’-CAAAGCAGCTGCAAATACCA-3’ | 5’-GGCCAAATGTGTCTTCCAGT-3’ |
Collagen 1 | 5′-TGGCCTTGGAGGAAACTTTG-3′ | 5′-CTTGGAAACCTTGTGGACCAG-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzu’bi, A.; Zoubi, M.S.A.; Al-Trad, B.; AbuAlArjah, M.I.; Shehab, M.; Alzoubi, H.; Albals, D.; Abdelhady, G.T.; El-Huneidi, W. Acute Hepatic Injury Associated with Acute Administration of Synthetic Cannabinoid XLR-11 in Mouse Animal Model. Toxics 2022, 10, 668. https://doi.org/10.3390/toxics10110668
Alzu’bi A, Zoubi MSA, Al-Trad B, AbuAlArjah MI, Shehab M, Alzoubi H, Albals D, Abdelhady GT, El-Huneidi W. Acute Hepatic Injury Associated with Acute Administration of Synthetic Cannabinoid XLR-11 in Mouse Animal Model. Toxics. 2022; 10(11):668. https://doi.org/10.3390/toxics10110668
Chicago/Turabian StyleAlzu’bi, Ayman, Mazhar Salim Al Zoubi, Bahaa Al-Trad, Manal Isam AbuAlArjah, Malek Shehab, Hiba Alzoubi, Dima Albals, Gamal T. Abdelhady, and Waseem El-Huneidi. 2022. "Acute Hepatic Injury Associated with Acute Administration of Synthetic Cannabinoid XLR-11 in Mouse Animal Model" Toxics 10, no. 11: 668. https://doi.org/10.3390/toxics10110668
APA StyleAlzu’bi, A., Zoubi, M. S. A., Al-Trad, B., AbuAlArjah, M. I., Shehab, M., Alzoubi, H., Albals, D., Abdelhady, G. T., & El-Huneidi, W. (2022). Acute Hepatic Injury Associated with Acute Administration of Synthetic Cannabinoid XLR-11 in Mouse Animal Model. Toxics, 10(11), 668. https://doi.org/10.3390/toxics10110668